
Computing and Informatics, Vol. 26, 2007, 45–62

MULTILAYER PERCEPTRONS

AND DATA COMPRESSION

Robert Manger, Krunoslav Puljić

Department of Mathematics

University of Zagreb

Bijenička cesta 30

10000 Zagreb, Croatia

e-mail: {manger, nuno}@math.hr

Manuscript received 30 March 2006; revised 7 November 2006
Communicated by Vladimı́r Kvasnička

Abstract. This paper investigates the feasibility of using artificial neural networks
as a tool for data compression. More precisely, the paper measures compression
capabilities of the standard multilayer perceptrons. An outline of a possible “neural”
data compression method is given. The method is based on training a perceptron
to reproduce a given data file. Experiments are presented, where the outlined
method has been simulated by using differently configured perceptrons and various

data files. The best compression rates obtained in the experiments are listed, and
compared with similar results produced in a previous paper by holographic neural
networks.

Keywords: Artificial neural networks, data compression, multilayer perceptrons,
holographic neural networks, experiments

1 INTRODUCTION

Artificial neural networks [5] are an interesting and flexible computing paradigm.
They are usually applied to simulate systems that cannot otherwise be described by
explicit mathematical modelling. The behaviour of a considered system is captured
as a set of stimulus-response associations. A chosen network is trained on a training
set consisting of some of the available stimulus-response pairs. During training,
the parameters within the network are adjusted, so that for each stimulus from the



46 R. Manger, K. Puljić

training set, taken as input, the network produces an output approximately equal to
the associated response. After successful training, a network should not only be able
to reproduce the learned stimulus-response pairs, but also to generalize the learned
associations.

In this paper we are considering neural networks as a tool for data compres-

sion [12]. A file to be compressed is interpreted as a set of stimulus-response pairs.
A chosen network is trained on that set. After training, the network should enable
approximate reproduction of the original file. Consequently, the stored version of the
trained network could be regarded as an encoded version of the file. If the stored net-
work happens to be physically smaller than the original file, we can talk about data
compression. Note that in the proposed application of neural networks we are not
directly concerned with generalization of the learned associations. Instead, we are
faced with a different problem of finding a suitable network, which is as small as pos-
sible, while still assuring a desired accuracy in reproducing the learned associations.

The idea of using artificial neural networks for data compression is not new,
and it can be encountered for instance in [7, 8, 9, 11, 14]. However, most of the
relevant papers found in literature deal with specific applications and special data, or
employ neural networks only as enhancements to traditional compression methods.
A more general approach has been introduced in a previous paper of ours [10],
where a relatively exotic type of holographic neural networks [16] has been employed.
The whole effort described in [10] has been motivated by the claim from [15] that
holographic networks provide spectacular storage capacities. The primary aim of
this paper is to check how successfully the same general approach can be realized
with more conventional network types, such as multilayer perceptrons [3, 5]. Thus,
in this paper we are concerned with measuring overall data compression capabilities
of multilayer perceptrons, in order to see if those capabilities are better or worse
than for holographic networks.

The paper is organized as follows. Section 2 gives an outline of a possible neural
compression method. Section 3 describes properties of a suitable family of multi-
layer perceptrons. Section 4 presents experiments, where the outlined compression
method has been simulated by using the described family of multilayer perceptrons
and three groups of data files. Section 5 summarizes the results of experiments, and
also compares the obtained compression rates with those produced in [10]. Finally,
Section 6 offers a conclusion.

2 A NEURAL COMPRESSION METHOD

Suppose that we are given a sequential file consisting of p (let say) real values r1,
r2, . . . , rp. We would like to design a method to store the file in a neural network;
or, differently speaking, we would like to design a procedure to train the network
with the values r1, r2, . . . , rp, so that after training each of those values is available
(at least approximately) as a response to a suitable stimulus to the network. Let us
now discuss how such a method could look like.



Multilayer Perceptrons and Data Compression 47

Since the values r1, r2, . . . , rp are generally independent, each of them must
be used as the response in at least one training example. Obviously, one training
example per value is enough. Also, for j1 6= j2, the stimuli associated with rj1
and rj2, respectively must be different (otherwise the network would be exposed to
contradictory data). Thus, the stimulus associated with rj must be equivalent to
the index j. For simplicity, we can assume that our original training set consists
of the pairs (j, rj), j = 1, 2, . . . , p. As we see, both the stimulus and the response
are vectors of length 1, and the training set consists of p training examples. After
training, rj can hopefully be reproduced by stimulating the network with j.

For the success of our file storage method, it is crucial that the learned values rj
are reproduced with satisfactory precision. In order to assure this, we will have to
use a sufficiently large network, i.e. a network consisting of an adequate number
of neurons with a sufficient total number of free parameters. On the other hand,
if we wish that the described storage method is also a compression method, we
must require from the network to be smaller than the original file. Let n denote
the physical size of the stored network, expressed as a multiple of the size needed
to store one real number. Then on one hand n should be large enough to assure
a satisfactory reproduction accuracy, and on the other hand it should still be smaller
than p. In fact, we are interested in finding the smallest possible n meeting the
described criteria.

Putting it all together, the basic version of our hypothetical compression method
should look as shown in Figure 1. Note that Figure 1 gives only an outline, leaving
many details unexplained. For instance, it is not quite clear how to generate effi-
ciently the set of all suitable networks for a given file. Also, there are many possible
algorithms for training a chosen network, and each of them has its own advantages
and drawbacks.

Note that our proposed compression method treats all files in the same way, ir-
relevantly if they originate from one-dimensional or multi-dimensional applications.
Indeed, if we deal for instance with a two-dimensional image, then the whole corre-
sponding set of pixels would first be stored as a sequential file, and each pixel would
obtain an implicit index (sequence number) showing its relative position within that
file. During training, our method would use those implicit indices as stimuli, and
the associated pixels as responses. Consequently, our two-dimensional image would
be processed as being a one-dimensional data set.

Let us now consider the computational complexity of the proposed compression
method. If the file size p becomes larger, the network size n should also increase
in order to retain the same precision in response. It is well known [3, 5] that the
available network training algorithms have large (surely nonlinear) complexities, i.e.
for a bigger network and a bigger training set they require unproportionally more
computing. Thus, it is obvious that our method would not be able to code directly
very big files – it would be computationally too expensive.

The only way how to deal with a large file is to divide it into smaller blocks.
A practical compression method should use a fixed block size. Each block should
be compressed separately, according to the basic version of the method shown in



48 R. Manger, K. Puljić

Input the original file consisting of p real values r1, r2, . . . , rp.
Input a criterion for reproduction accuracy.A

A
A

�
�
�

Form the training set consisting of p stimulus-response pairs
(j, rj), j = 1, 2, . . . , p.

Determine all possible neural networks that
are physically smaller than the original file.
Organize those networks in a list sorted in
ascending order according to their size.

�
�

�
�
�
�

@
@

@
@
@
@�

�
�
�
�
�

@
@

@
@
@
@

Is
there any

unexplored network
in our list

?

Signal failure.
�
�

A
A

Choose the next (i.e. the smallest) unexplored network
from the list as the current network.

Train the current network on the training set.

Reproduce each rj, j = 1, 2, . . . , p, by stimulating
the current trained network with j.

Compare the original vs. the reproduced values.

�
�

�
�
�
�

@
@

@
@
@
@�

�
�
�
�
�

@
@

@
@
@
@

Is
the criterion

for reproduction
accuracy
satisfied?

Signal success.
Output the

compressed file (the

current trained network).�
�
�
�
�
�

A
A

A
A

A
A

?

?

?

?

?

?

?

-

-�

6
- no

yes

yesno

Fig. 1. Outline of a basic neural compression method



Multilayer Perceptrons and Data Compression 49

Figure 1. Or differently speaking, each block should be represented by a separate
trained network. The final compressed file would be produced as the union of
its compressed blocks, i.e. it would consist of the corresponding separate trained
networks stored next to each other. The whole “block” version would then have
linear computational complexity.

The question remains how to choose the block size for our block method. From
the computational point of view, smaller blocks are better. But we must also take
into account how the block size influences the overall compression capabilities. If
our file exhibits some kind of regularity (redundancy), the network can “learn” that
regularity and use it more efficiently to reproduce a larger block. For instance, if
our file is a tabulated linear function, then the network should learn and store only
one value (i.e. the slope), which represents 10% of a 10-values block and only 1% of
a 100-values block. Thus, from the compression point of view it is safer to use larger
blocks. Consequently, the method should use blocks that are small enough to assure
reasonably fast computation, and still big enough to enable efficient compression.

Note that the proposed neural compression method bears some resemblance to
the widely used JPEG compression standard [17]. First, our method is also lossy,
i.e. it only approximately reproduces original data. Also, both procedures are block
procedures, i.e. they divide a large file into smaller (equally sized) blocks that are
compressed independently. Finally, our method is also parameterizable in the sense
that accuracy can be traded for better compression.

3 USING MULTILAYER PERCEPTRONS

An artificial neural network is built of relatively simple computing elements called
neurons. There are many types of neural networks found in literature. Particular
types differ in the way how their neurons operate and how the neurons may be
connected together.

In this paper we are dealing with the most popular type of neural networks:
multilayer perceptrons [3, 5]. Neurons within a multilayer perceptron are normally
arranged into layers (input, output, hidden). The input-layer neurons are consi-
dered to be degenerate: they actually have no parameters and they simply serve
to distribute original stimulus values to the next-layer neurons. Any other neuron
transforms data, by using its activation function f and its adjustable parameters
(weights wi, a threshold t). More precisely, for given inputs xi, the single output z
of the neuron is computed as

z = f(
∑

i

wixi − t).

The output-layer neurons have the “linear” activation function

f(y) = y,



50 R. Manger, K. Puljić

while hidden neurons use the “logistic” function

f(y) = 1/(1 + e−y).

All involved values are assumed to be real numbers.

To realize the neural compression method outlined in the previous section, we
have used a slightly restricted family of standard multilayer perceptrons. In ac-
cordance with our particular application, we have fixed the number of neurons in
both the input and output layers to 1. Since it is generally believed [13] that
three or four layers can solve virtually all problems, we have limited the number
of hidden layers to 2. Consequently, one particular configuration within our re-
stricted family is determined by the number of hidden layers (0 or 1 or 2) and by
the number of neurons in each of the hidden layers. Figure 2 presents all such
configurations.

0 hidden layers

��
HHb b

1 hidden layer

��
HH

1

2

...

l1

b b

2 hidden layers

��
HH

1

2

3

...

l1

1

2

...

l2

b b

Fig. 2. A restricted family of multilayer perceptrons



Multilayer Perceptrons and Data Compression 51

For our purposes, it is very important to estimate the physical size (measured
in real numbers) of any particular network. In this paper we assume that the size
of a network is equal to the total number of weights and thresholds within all of its
neurons. This assessment is slightly optimistic, since it does not take into account
the overhead needed to record the network configuration. However, small networks
from our restricted family are either uniquely determined by their number of weights
and thresholds, or there are only few possible configurations. Thus, with appropriate
auxiliary data, the mentioned overhead can be made negligible i.e. reduced to only
few bits.

Using the above assessment, we can easily compute the size n of any considered
network configuration. Namely, for the network with no hidden layers,

n = 2.

If the network has one hidden layer with l1 neurons, then

n = 3l1 + 1.

If the network has two hidden layers with, l1 and l2 neurons, respectively, then

n = 2l1 + 2l2 + l1l2 + 1.

number of number of neurons in number of neurons in size of the
hidden layers the 1st hidden layer the 2nd hidden layer network

0 - - 2
1 1 - 4
2 1 1 6

1 2 - 7
2 2 1 9
2 1 2 9
1 3 - 10
2 3 1 12
2 1 3 12
1 4 - 13
2 2 2 13
2 4 1 15
2 1 4 15
1 5 - 16
2 3 2 17
2 2 3 17
2 5 1 18
2 1 5 18
1 6 - 19

Table 1. Sorted list of all considered perceptrons whose size is less than 20



52 R. Manger, K. Puljić

By varying network configurations and by using the above formulae, one can
relatively quickly produce the sorted list of all networks whose size is below a certain
limit, as required in our compression method. Table 1 shows the list of networks
whose size is less than 20. The table can also be interpreted as the beginning of
a similar list for any higher size limit.

It is interesting to note that our restricted family of perceptrons is still rich
enough, so that it contains perceptrons which are able to reproduce any given file
with any required precision. Moreover, a desired reproduction accuracy can always
be accomplished by using configurations with only one hidden layer. In the following
paragraph we give an informal proof of this fact.

So suppose again that we are given a file consisting of p real values r1, r2, . . . , rp.
Let us choose the perceptron from our family, having one hidden layer and exactly
p hidden neurons. With suitable weights and thresholds, logistic functions inside
hidden neurons can be made “steep enough”, so that they behave virtually as step
functions. More precisely, it can be achieved that the ith hidden neuron produces
the output ≈ 1 for an input ≥ i, and the output ≈ 0 otherwise. With such settings,
the resulting response from our perceptron to a stimulus j has the form

zj ≈
j

∑

i=1

wi − t,

where wi and t denote the weights and the threshold belonging to the single output-
layer neuron. Let us now take t = 0, and set the values of wi in turn:

w1 = r1,

w2 = r2 − w1,

· · ·

wj = rj −
j−1
∑

i=1

wi,

· · ·

wp = rp −
p−1
∑

i=1

wi.

Obviously, with these final adjustments, the response zj to a stimulus j beco-
mes ≈ rj. Thus, our perceptron correctly reproduces the given file.

The presented proof can of course be made more formal by using exact error
estimates instead of approximate equalities. Rigorous proofs of similar or more ge-
neral results are based on the well known Kolmogorov’s theorem [3] and can be
found for instance in [2, 6]. Note that although we have shown that a sufficiently
large perceptron can always reproduce a given file to any desirable precision, we still
cannot guarantee that such reproduction results can be realized in practice. Namely,
the available training algorithms usually get stuck in local minima, thus never dis-
covering the theoretically optimal adjustment of network weights and thresholds.



Multilayer Perceptrons and Data Compression 53

Another reason why the above described perceptron is not of much practical rele-
vance is its size, which is several times greater than the original file size. Indeed, to
achieve data compression, we actually have to use much smaller perceptrons with
no guaranteed reproduction capabilities.

4 EXPERIMENTS

In order to test data compression capabilities of multilayer perceptrons, we have
performed a series of experiments. We have followed the neural compression method
outlined in Section 2. As the set of networks considered by the method, we have
used the restricted family of multilayer perceptrons described in Section 3.

For one experiment, one particular combination of data file and perceptron was
chosen. Then at least four training algorithms were tried in order to obtain the
best possible results, including back propagation, conjugate gradient descent, quasi
Newton, Levenberg-Marquardt, and quick propagation [3]. That gave altogether
more than 4000 network training sessions. All computations were done by the
Statistica Neural Networks software package [13]. The accumulated results of all
experiments involving the same file depict the performance of our method for that
file and for different accuracy criteria.

file description graphical
name interpretation

linear

rj =
j

100 ,

j = 1, 2, . . . , 100 qqqqqq
qqqqqq

qqqqqq
qqqqqq

qqqqqq
qqqqqq

qqqqqq
qqqqqq

qqqqqq
qqqqqq

qqqqqq
qqqqqq

qqqqqq
qqqqqq

qqqqqq
qqqqqq

qqqq

step

rj = 0 for j = 1, 2, . . . , 50,

rj = 1 for j = 51, 52, . . . , 100 qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

poly-
nomial

rj =
j(j−100)

2500 + 1,

j = 1, 2, . . . , 100

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqq
qqqq
qqq
qqq
qqq
qqq
qq
qq
qq
qq
qq
qq
qq
qq
q

sine

rj =
1
2 sin

2πj
101 + 1

2 ,

j = 1, 2, . . . , 100

qq
qq
qq
qqq
qqq
qqq
qqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqq
qqq
qqq
qq
qq
qq
q

sine+
cosine

rj =
√
2
4 (sin 2πj

101 + cos 2πj
101 ) +

1
2 ,

j = 1, 2, . . . , 100

qqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqq
qqq
qqq
qq
qq
qq
qq
qq
qq
qq
qqq
qqq

Table 2. Experimental data – regular files

We used altogether fifteen different data files from [10]. All of them had the
same size p = 100 and consisted of real numbers rj spanning the range between 0
and 1. Those data files should be regarded as blocks in the block version of the



54 R. Manger, K. Puljić

file description graphical
name interpretation

mul-
tiple
linear

rj =
j

100 for 1 ≤ j ≤ 25,

rj =
2(j−25)

100 for 26 ≤ j ≤ 50,

rj =
3(j−50)

100 for 51 ≤ j ≤ 75,

rj =
4(j−75)

100 for 76 ≤ j ≤ 100 qqqqqq
qqqqqq

qqqqqq
qqqqqq

q

qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
q

qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
q

qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
q

mul-
tiple
step

rj = 0 for 1 ≤ j ≤ 50 or
76 ≤ j ≤ 88 or 95 ≤ j ≤ 100,
rj = 1 for 51 ≤ j ≤ 75 or
89 ≤ j ≤ 94 qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqq

qqqqqq

qqqqqq

amp-
lified
sine

rj = c1 · j · sin
4πj
101 + c2,

c1 = 0.006563739,
c2 = 0.5824075,
j = 1, 2, . . . , 100

qqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qqq
qqqqqqqqqqqqq

q
q
q
q
q
q
qqqqqqqqqqqq

qq
qq
q
q
q
q

accel-
erated
sine

rj =
1
2 sin 4π(

j

101 )
2 + 1

2 ,

j = 1, 2, . . . , 100

qqqqqqqqq
qqqq
qqqq
qqq
qqq
qqq
qqqq
qqqqqqqqqqqqqqqqqq

q
q
q
q
q
q
qqqqqqqqqq

qq
q
q
q
q
q
q
q
q
q
qq
qqqqqq

q
q
q
q
q
q
q
q
qqqqq
q
q
q
q

modu-
lated
sine

rj =
∣

∣

∣
sin 4πj

101

∣

∣

∣
,

j = 1, 2, . . . , 100 q
q
q
q
q
q
q
q
qq
qqqqqq

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qqqqqqq

q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
qqqqqqq

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qqqqqq

q
q
q
q
q
q
q
q

Table 3. Experimental data - more demanding files

outlined compression method. Choosing the block size 100 can be regarded as an
empirical rule targeted to maximize compression efficiency. Namely, the chosen size
is almost too large from the computational point of view – one training session could
last few minutes on a conventional PC. By working with such large blocks we tried
to give more chance for successful compression.

Our fifteen data files have been chosen in order to form three different groups
of five. Members of the first group are very “regular” files, obtained by tabulat-
ing elementary functions. Members of the second group are more demanding: they
have been constructed by repeating or combining simple patterns used in the first
group. The third group comprises extremely “irregular” files, i.e. sequences of ran-
dom numbers uniformly distributed between 0 and 1. Exact file descriptions can
be found in Tables 2, 3 and 4. Graphical interpretations within these tables clearly
demonstrate to what extent a particular file is smooth or redundant or predictable.
According to the shown graphs, one would expect that both regular and more de-
manding files should be compressible, and that regular files are easier to compress
than more demanding ones. Also, truly random files should be incompressible by
definition.

For a file of size p = 100, our method should in principle consider all network
configurations with size n < 100. Actually, there exist 223 such perceptrons. How-



Multilayer Perceptrons and Data Compression 55

file description graphical
name interpretation

random-1
first 100 values from a
pseudo-random sequence q

q

q

q

q
q
q

q
q
q

q

q

q

q

q

q
q

q

qq

q

q

q
qq

q

qq
qq

q

q

q
q

q

q

qq

q

q

q

q

qq

q

q

q

q

q

q

q
q

qq

q

q
qq

q

q

q

q

q

qq

q

qq

q
q

q
q

q

q

q

qq

q

q

q

q

q

q
qq

q

q
q

q

q

q

q

q

q

q

q

q

q

q

q

random-2
101st to 200th value
from the same sequence q

q

q

q

q

q

q
q

q

q

q

q

q

qq

qq

q

q

q
q
q

q

q

q

q

q

q

q

q

q

q

q
q

q

q

q

q
q

q

q
qq

q

q

q

q

q
q

q

qq

q

q

q

q

q
q

q
q
q

qq
q

q

q

qq

q
q

q

q

q
q

q
q

q

q

q

q

q

q
q

q

q

qq

q

q

qq
q

q

q

qqq
q

q

q

random-3
201st to 300th value
from the same sequence q

q
q

q
q
q
q

q

q

qq

q

q

q

q
q
qq

q

q
q

q

q
q

q

q

q

q

q

q

q

q

q

qq

q

qq

q
q

q

q

qq

q

q

q
q

q

q

qq

q
q

q

q

q

q

q

q

q

q

q

qq

q

q
q

q

q

q
q

q

qq

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
q

q

q

q

q

q

q

q

random-4
301st to 400th value
from the same sequence q

q

q

q
q

q

q

q

q

q

q

q
q

q

q

q
q

q

q

qq

q

q

q

q
qq

q

q

q

q

q

q

q

q
q
q

q

q

q

q

q

q

q

q

q
q

q

q

qq
q
q

q

q

q

q

q

q

q
q

q

q

q

q

q

q
q

q

q

q

q

q

q

q
q

q

q

qq
q

q
q
qq

q

q
q

q

q

q

q

q

q

q

q

q
q

q

q

random-5
401st to 500th value
from the same sequence q

q

q

qq
q
q

q

q

q

qq

q

q

q

q

q

q

q

qq
qq

q

q
q

qq
q
q

q
q

q

q

qq

q
q

q
q

q

q

q
q

q

q

q

q

q

q

q

q

q

q

q

q
q

q

q
q

q

q

q

q
q

q

q

qq

qq

q

q

q

q

q
q

q

q

qq

q

q

q

q

q

q

q

q

q
q
qq

q

q

q

q

q

q

q

Table 4. Experimental data – random files

ever, in our experiments involving regular or more demanding files (first two groups)
we used only 113 networks with size up to 61. Namely, by employing these smaller
networks it was already possible to reach even the sharpest reproduction accuracy
criteria. Larger perceptrons were needed only for random files (third group), where
we used all 223 configurations with size n < 100 and also few additional configura-
tions with n >> 100.

To measure the current reproduction quality during training, we computed the
so-called RMS error (root mean squared error). Thus, we collected squares of dif-
ferences among original and reproduced file values, computed the mean value of
those squares, and then square rooted the mean. Since our files consisted of values
between 0 and 1, the chosen error measure can also be interpreted as “relative to
full range”. For instance, error 0.0100 simply means that the expected difference
between an original value and its corresponding reproduced value is about 1% of
full range.

5 RESULTS

The more attractive part of experimental results has been summarized in Tables 5
and 6. Table 5 indicates how the outlined compression method with multilayer per-
ceptrons behaves on regular data files (first group). Table 6 illustrates the behaviour
on more demanding files (second group). Each row corresponds to combination of
one particular file with one particular criterion for reproduction accuracy. The cho-



56 R. Manger, K. Puljić

sen criteria simply demand that the RMS error should be below a certain limit. The
results for one row are presented by quoting the corresponding compression rate,
and by specifying the involved optimal network configuration.

file RMS com- optimal network configuration:
name error pression # of # of # of

≤ rate hidden neurons in neurons in
layers 1st hid. lay 2nd hid. lay

linear 0.0100 2% 0 – –
0.0010 2% 0 – –
0.0001 2% 0 – –

step 0.0100 4% 1 1 –
0.0010 4% 1 1 –
0.0001 4% 1 1 –

poly- 0.0100 7% 1 2 –
nomial 0.0010 7% 1 2 –

0.0001 7% 1 2 –

sine 0.0100 7% 1 2 –

0.0010 10% 1 3 –
0.0001 10% 1 3 –

sine+ 0.0100 7% 1 2 –
cosine 0.0010 10% 1 3 –

0.0001 12% 2 3 1

Table 5. Summary results – experiments with regular files

The compression rate is defined rather conventionally, as the ratio n/p expressed
as a percentage, where n denotes the size of the involved optimal perceptron (i.e. the
size of the obtained compressed file), and p is again the size of the original file. Both
sizes are measured in the same units (i.e. in real numbers). Thus, our compression
rate specifies the compressed file size relatively in terms of the original file size.

As we see from Table 5, our compression method with multilayer perceptrons
can very successfully compress regular files. According to Table 6, the method is
less successful in compressing more demanding files, although the results are still
acceptable. It is very hard to determine which of the demanding files are “regular
enough” to be efficiently compressed and which are not.

Tables 5 and 6 also reveal that optimal network configurations are sometimes
based on one and sometimes on two hidden layers. As expected, the configuration
with no hidden layers is useful only in one exceptional case. The presented results
were obtained by combining different training algorithms. However, most accurate
and efficient training was usually provided by Levenberg-Marquardt [3].

Some of the results from Table 6 are illustrated in more detail by Figures 3
and 4. Both figures correspond to the relatively demanding but still compressible
“accelerated sine” file, defined by Table 3, row 4. Figure 3 shows precisely how the
RMS error depends on the compression rate - note that the values of the RMS error



Multilayer Perceptrons and Data Compression 57

file RMS com- optimal network configuration:
name error pression # of # of # of

≤ rate hidden neurons in neurons in
layers 1st hid. lay 2nd hid. lay

mul- 0.0100 16% 1 5 –
tiple 0.0010 21% 2 4 2
linear 0.0001 29% 2 6 2

mul- 0.0100 12% 2 3 1
tiple 0.0010 12% 2 3 1
step 0.0001 12% 2 3 1

amp- 0.0100 10% 1 3 –
lified 0.0010 13% 1 4 –
sine 0.0001 13% 1 4 –

accel- 0.0100 10% 1 3 –

erated 0.0010 13% 2 2 2
sine 0.0001 19% 1 6 –

modu- 0.0100 37% 1 12 –
lated 0.0010 55% 1 18 –
sine 0.0001 60% 2 7 5

Table 6. Summary results – experiments with more demanding files

are plotted on the logarithmic scale. Figure 4 compares the original file values with
the reproduced values obtained after compressing the file to 10% of its original size
(RMS error ≤ 0.01).

In the next part of this section we report on our attempts to compress random
data files (third group). The results dealing with random files are less encouraging
than those dealing with regular or more demanding files. Namely, our experiments
have proved that the considered perceptrons of size n < 100 are not able to reproduce
a random file of size p = 100 with any satisfactory accuracy. Or, differently speaking,
our outlined compression method signals failure when applied to a random file.

It is certainly true that any compression procedure should fail on random files.
Our method based on multilayer perceptrons makes no exception to this rule, thus
its failure has been expected. Still, the question remains how far a certain method is
from being successful. Or in our case, we could ask ourselves how large a perceptron
should be in order to be able to reproduce a random file.

To answer the above question, we have done the previously mentioned additional
series of experiments using perceptrons whose size is above 100. The results of those
additional experiments are presented in Table 7, which is structured similarly as
Tables 5 and 6. According to Table 7, a perceptron capable of reproducing a random
file with low accuracy (RMS error ≤ 0.01) should be 50% larger than the original
file. For high accuracy (RMS error ≤ 0.0001) we would need a perceptron with
size about 300% of the original file size. Medium accuracy (RMS error ≤ 0.001) is
achieved somewhere between the size limits of 150% and 300%.



58 R. Manger, K. Puljić

-

6RMS
error

1.0

0.1

0.01

0.001

0.0001

compression
rate (%)

2 4 6 8 10 12 14 16 18 20

s s s
s

s

s

s

s
s

s

s

s

s

Fig. 3. Detailed results – experiments with the “accelerated sine” file

The results shown in Table 7 have been obtained again by using the Levenberg-
Marquardt training algorithm. The recorded size estimates are only approximate –
namely it was not possible to do an exhaustive test of all large perceptrons due to
combinatorial explosion of configurations and prohibitive training costs. Note that
the established size limit of 300% corresponds exactly to the perceptron constructed
within our informal reproduction-capability proof in Section 3.

-

6
rj

0.25

0.50

0.75

j20 40 60 80

b original file values

× reproduced file values

cccc
cc
cc
cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
cc
ccccc

c
c
c
c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c
c
ccc

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c
ccc

c

c

c

c

c

c

c

c

c

c

c

c
cc
c

c

c

c

c

×××
××
××
××
××
××
××
××
××
××
××
××
××
××
××
×××

×××××××
×
×
×
×
×
×

×

×

×

×

×

×

×

×

×
×
×
×
××××

×
×
×

×

×

×

×

×

×

×

×

×

×

×
×
×××

×
×

×

×

×

×

×

×

×

×

×
×
××
×
×

×

×

×

Fig. 4. More details – accelerated sine, compression rate 10% (RMS error ≤ 0.01)



Multilayer Perceptrons and Data Compression 59

file RMS com- optimal network configuration:
name error pression # of # of # of

≤ rate hidden neurons in neurons in
layers 1st hid. lay 2nd hid. lay

random-1 0.0100 151% 1 50 –
0.0010 211% 1 70 –
0.0001 301% 1 100 –

random-2 0.0100 181% 1 60 –
0.0010 201% 2 15 10
0.0001 271% 1 90 –

random-3 0.0100 151% 1 50 –
0.0010 201% 2 15 10
0.0001 301% 1 100 –

random-4 0.0100 151% 1 50 –

0.0010 211% 1 70 –
0.0001 271% 1 90 –

random-5 0.0100 121% 1 40 –
0.0010 261% 2 20 10
0.0001 286% 2 15 15

Table 7. Summary results – experiments with random files

In the last part of the section we compare the results presented in this paper with
similar results presented in the previous paper [10]. For each value in Tables 5 and 6,
there is a corresponding value in [10]. By direct comparison of the corresponding
values, we can see that the compression rates for regular and more demanding files
obtained with multilayer perceptrons are in general better than those obtained with
holographic neural networks. More precisely, the results from this paper are con-
siderably better in 22 cases out of 30, and equal in 4 cases. Holographic networks
perform better only on the “sine” file (Table 2, row 4), and partially on the “modu-
lated sine” file (Table 3, row 5). A similar advantage of perceptrons vs. holographic
networks can also be observed when dealing with random files. Namely, by com-
paring the values in Table 7 with the corresponding values in [10], we observe that
a large perceptron capable of reproducing a random file with certain precision is
in most cases smaller than the corresponding holographic network (typically 150%
vs. 180% of the original file size, or 300% vs. 400%). Note that the two papers
use the same data files but slightly different error measures. Still, the involved error
measures have the same orders of magnitude, thus allowing fair comparison.

6 CONCLUSION

The primary aim of this paper has been to measure data compression capabilities
of standard multilayer perceptrons, and to compare those capabilities with holo-
graphic networks. The results presented in the paper indicate that multilayer per-



60 R. Manger, K. Puljić

ceptrons assure better compression rates than holographic networks, which is quite
in contradiction with the claims given by some proponents of the holographic neural
technology.

The secondary aim of this paper has been to outline a possible neural compres-
sion method. According to the presented results, such a method is possible, but
it should be based on ordinary multilayer perceptrons rather than on holographic
networks. Also, such a method can work well only if the file to be compressed is
in some sense regular (smooth, redundant, predictable). Through the process of
training, the involved perceptron discovers such regularity, and uses it for compres-
sion better than a holographic network would do. For random files, the method with
multilayer perceptrons produces a substantial overhead in file size, but this overhead
is still smaller than with holographic networks.

It is interesting to note that our approach to compression, based on discovering
regularities, fits nicely into the well known Minimum Description Length (MDL)
principle [4]. The fundamental idea behind MDL is that any regularity in a given
set of data can be used to compress the data, i.e. to describe it using fewer symbols
than needed to describe the data literally. Our neural compression method can be
considered as a tool for automatic implementation of the MDL principle.

At this moment, we are still quite far from a robust and practically useful ver-
sion of the outlined perceptron-based compression method. The development of
such a version shall be the topic of our future research. The most important open
problem to be solved is how to reduce computational complexity, which is at present
prohibitive even if blocks are used. One approach to deal with computational com-
plexity would be to choose a more restricted family of promising perceptrons in
order to reduce searching for optimal configuration. Also, the method would surely
be more efficient if dedicated and faster training algorithms could be designed.

Finally, let us note that the idea of using machine learning for the aim of data
compression could as well be extended to other learning paradigms. It is quite
conceivable that, for instance, regression trees [1] would deal better with irregular
or random data than neural networks. Such possibilities should also be investigated
in future papers.

REFERENCES

[1] Breiman, L. et al.: Classification and Regression Trees. Chapman&Hall, New York,
NY, 1984.

[2] Cybenko, G.: Approximation by Superpositions of a Sigmoidal Function. Mathe-
matics of Control, Signals, and Systems, Vol. 2, 1989, pp. 303–314.

[3] Fine, T. L.: Feedforward Neural Network Methodology. Springer Series in Statistics,
Springer Verlag, New York, NY, 1999.

[4] Grünwald, P. D.: Introducing the Minimum Description Length Principle. In:
P.D. Grünwald, I. J. Myung and M.A. Pitt (Eds.): Advances in Minimum Descrip-
tion Length: Theory and Applications, MIT Press, Cambridge, MA, 2005, pp. 3–22.



Multilayer Perceptrons and Data Compression 61

[5] Haykin, S.: Neural Networks – A Comprehensive Foundation. Second Edition. Pren-

tice Hall, Englewood Cliffs, NJ, 1998.

[6] Hornik, K.—Stinchcombe, M.—White, H.: Universal Approximation of an Un-
known Mapping and its Derivatives Using Multilayer Feedforward Networks. Neural

Networks, Vol. 3, 1990, pp. 551–560.

[7] Kouda, N.—Matsui, N.—Nishimura, H.: Image Compression by Layered Quan-
tum Neural Networks. Neural Processing Letters, Vol. 16, 2002, No. 1, pp. 67–80.

[8] Laskaris, N.A.—Fotopoulos, S.: A Novel Training Scheme for Neural-Network-
Based Vector Quantizers and its Application in Image Compression. Neurocomputing,
Vol. 61, 2004, pp. 421–427.

[9] Logeswaran, R.: Fast Two-Stage Lempel-Ziv Lossless Numeric Telemetry Data
Compression Using a Neural Network Predictor. The Journal of Universal Computer
Science, Vol. 10, 2004, No. 9, pp. 1199–1211.

[10] Manger, R.: Holographic Neural Networks and Data Compression. Informatica,
Vol. 21, 1997, No. 4, pp. 665–673.

[11] Meyer-Bäse, A. et al.: Medical Image Compression Using Topology-Preserving
Neural Networks. Engineering Applications of Artificial Intelligence, Vol. 18, 2005,
No. 4, pp. 383–392.

[12] Sayood, K.: Introduction to Data Compression. Second Edition, Morgan Kaufmann,
San Francisco, CA, 2000.

[13] Statistica Neural Networks (user manual). StatSoft Inc, Tulsa, OK, 1998.

[14] Sun, K.T.—Lee, S. J.—Wu, P.Y.: Neural Network Approaches to Fractal
Image Compression and Decompression. Neurocomputing, Vol. 41, 2001, Nos. 1–4,
pp. 91–107.

[15] Sutherland, J.G.: Holographic Model of Memory, Learning and Expression. In-
ternational Journal of Neural Systems, Vol. 1, 1990, No. 3, pp. 256–267.

[16] Sutherland, J.G.: The Holographic Cell: a Quantum Perspective. In: V. L. Plan-
tamura, B. Souček and G. Visaggio (Eds.): Frontier Decision Support Concepts. John
Wiley and Sons, New York, NY, 1994, pp. 65–78.

[17] Taubman, D. S.—Marcellin, M.W.: JPEG 2000: Image Compression Funda-
mentals, Standards and Practice. Kluver International Series in Engineering and
Computer Science, 642. Kluwer Academic Publishers, Dordrecht, NL, 2001.



62 R. Manger, K. Puljić

Robert Manger received the B. Sc. (1979), M. Sc. (1982), and

Ph.D. (1990) degrees in mathematics, all from the University of
Zagreb. For more than ten years he worked in industry, where
he gained experience in programming, computing, and design-
ing information systems. He is presently an associate professor
at the Department of Mathematics, University of Zagreb. His
current research interests include: parallel and distributed al-
gorithms, combinatorial optimization, and neural networks. He
has published 15 papers in international scientific journals, over
20 scientific papers in conference proceedings, 10 professional

papers, and 3 course materials. He is a member of the Croatian Mathematical Society,
Croatian Society for Operations Research and IEEE Computer Society.

Krunoslav Pulji�
 received his B. Sc. and M. Sc. degrees in
mathematics from the University of Zagreb in 1999 and 2005,
respectively. He is now a research assistant at the Department
of Mathematics, University of Zagreb, and is working on his
Ph.D. thesis. His research interests include combinatorial opti-
mization, evolutionary algorithms and object-oriented software
engineering. He has published 2 scientific papers in conference
proceedings. He is a member of the Croatian Mathematical So-
ciety.


