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Abstract. Machine learning and knowledge representation are two fields of artificial
intelligence that lead with intelligent reasoning, each one differently. When Know-
ledge Representation (KR) focuses more on the epistemological face of knowledge
to carry out a power-expression model with detriment of the computation efficiency.
Machine learning pays more attention to the computation efficiency, often with loss
of expressing power. In this paper we show that features of one may overwhelm
drawbacks of the other. Taking the uncertainty artefact from machine learning
and symbolic representation from KR, we propose in this paper a new memory
modelling for knowledge based systems which is at the same time machine-learning
structure and a knowledge representation model. In terms of machine learning,
our structure allows an unlimited flexibility where no restraining architecture is
imposed at the beginning (think about decision trees [18, 6, 5, 2]). Classification
can be performed with incomplete vectors where the most likely corresponding
class is assigned to the vector with missing attributes. Viewed as a knowledge
model, a basic knowledge is easily specified graphically. Inference is defined by
rules expressed in the same manner, where the existing sub-instances are used to
generate new connections and entities. Inference on existing knowledge is described
in two algorithms. Our approach is mainly based on the representation of the
context concept. Our model brings together advantages of the symbolic knowledge

representation, namely human to computer knowledge coding, and those of machine
learning structures, namely ease of efficient coding of inference to perform the so-
called intelligent tasks like pattern recognition, prediction and others. Its graphical
representation allows visualization of both dynamic and static sides of the model
(i.e. inference and knowledge).
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1 INTRODUCTION

When researchers in KR tempt to simplify knowledge expressing and give less at-
tention to the computation performances [4], those in machine learning [23] tend
to design structures that make computation more efficient. Learn automatically
means learn from examples. This means that the acquired knowledges are uncer-
tain. Hence, each structure in ML has its own manner to symbolize this uncer-
tainty [20, 17].

Section two is a description of neural nets which shows the main characteristics
of machine learning structures and semantic net which is one of the first and most
used knowledge models which also may be viewed as a representative model in KR.
This will introduce our idea of merging features of KR and ML in order to carry
out a knowledge model that allows powerful and flexible knowledge expressing and
efficient computation both in learning and inference.

The model proposed in [12] which will be described in Section three is an attempt
to endow the knowledge representation with a simple uncertainty modelling. This
was the first version of our model. Section four will show how our model represents
a simple Boolean function and how its architecture allows easy addition of new
knowledge. This is a ML-like approach to show capabilities of our representation.
Section five shows how inference rules are defined. New knowledge is intuitively and
efficiently added. This may be viewed as a KR-like approach to show expressing
capabilities of our model. Section six details the representation of weights which
express uncertainty in our model. This representation allows unsupervised learning
as well as machine learning structures do.

2 NEURAL NETWORKS AND SEMANTIC NETWORKS

Comparing our model to all others may take hundreds of pages. We restrict ourselves
to give representative and well known examples. Neural nets is a well explored and
nowadays well exploited machine learning structure, where semantic nets is one of
the primary knowledge representation models, but also one of the most used in the
modern sub fields of AI (eg. ontologies).

2.1 Neural Networks

The pioneers of neural networks [26, 14, 19, 7, 9, 22] were McCuloch and Pitts who
designed a simple network using electrical circuits. The neural networks are quite
famous by being well adapted for classification problems.
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As its name suggests, a neural net is a set of connected logical units that form
a network with successive layers. The outputs of each unit are inputs of units
(neurons) of the following layer. The inputs of the neurons of the first layer are
the components of the characteristic vector, while the outputs of the last layer are
the classification results. The layers between the first and the last are called hidden
layers. The output function of each neuron is in the form:

o = φ

(

k
∑

i=1

wixi + b

)

where φ is a non-linear function such as 1

1+eax
or tanh(x). Figure 1 shows a graphical

representation of a multi-layer neural network.
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Fig. 1. Multi-layer neural network

Training the neural network means readjusting weights and bias to minimize the
sum of released errors:

E(f) =

n
∑

i=1

|f(xi) − ci|
2.

The tuning process of these parameters is described in details in [11, 8].

2.2 Semantic Network

In the 70s Winston [30] proposed a knowledge model intended to allow supervised
learning of shapes. It was then adopted in many knowledge based systems and took
the name of semantic network.

A semantic network is constituted of two main elements: entities represented
graphically by nodes and relations symbolised by edges. Generally, a label is asso-
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ciated with each edge to identify the kind of the relationship. Figure 2 is a graphical
representation of a semantic network which represents the meaning of the sentence
X shows Y .

X Y
Shows

Fig. 2. Semantic network of the predicate Shows(X, Y )

When even the example above typifies a binary predicate, semantic networks
are easily used to represent unary predicates. Let us consider the unary predicate
man(Jim). Figure 3 shows the corresponding semantic network.

Jim

Man

Instance of

Fig. 3. Semantic net of the predicate Man(Jim)

n-ary predicates are as well representable [15]. Figure 4 shows an example of
a semantic network of the predicate Gives(John, Beggar, $10).

Gives

John $10

Beggar

Event

Instance of

Object

Agent

Beneficiary

Fig. 4. Semantic net of the predicate Gives(John, Beggar, $10)
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It is effortless to notice that the n-ary predicates are transformed into binary
ones before being represented. The predicates of the last example were transformed
into the following set of predicates:

• Agent(John, Event)

• Beneficiary(Beggar, Event)

• Object($10, Event)

• Is a(Gives, Event)

Consequently, use of two predicates is not unique.
When the relations represent a partial order and the transitivity is satisfied, the

network representing this kind of relations is known as inheritance system. Having
this property, the arcs drawing up the relations deduced by transitivity are omitted.
Figure 5 illustrates this kind of networks.

Biological mass

Living organism
Nonliving organism

Invertebrate Vertebrate

Protozoa Porifera Arthropod Amnelida

Bacteria

Is a

Is a

Is aIs aIs a

Is a Is a

Is a

Is a

Fig. 5. An inheritance system

Let us introduce the following assertions:

1. We will note the unconditional absolute links using a continuous arrow and the
default links using discontinuous arrows 99K.

2. nodes symbolise predicates or constants

3. no edge must point towards a constant

4. the absolute well as default links can point from a constant

5. when p is a constant, an edge p→ q denotes the predicate q(p)
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6. else:
∀X, (p(X)⇒ q(X))

when p and q are predicates

7. the edge p 9 q denotes ¬q(p) when p is a constant, and

∀X, (p(X) ; q(X))

when p and q are predicates

8. the following assertions are equivalent

∀X(p(X) 9 q(X))

∀X(p(X)→ ¬q(X))

∀X(¬p(X)→ ¬q(X)).

Consequently, inference rules with the absolute links are as follows:

1. symmetry: if p 9 q, where p is not a constant, then q 9 p.

Proof. By definition we have:

p 9 q ⇒ p→ ¬q,

and by definition of the implication:

¬p ∨ ¬q

which can be written using the symmetry of ∨:

¬q ∨ ¬p

using the definition of the implication:

q → ¬p

then :
q 9 p

�

2. positive field: If p → q → r → s then p → s. The proof is rather obvious
using transitivity.

3. negative links: If p1 → p2 → . . .→ pk and q1 → q2 → . . .→ qm and pk 9 qm,
then p1 9 q1, where q1 is not a constant.
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Avis

Birdgreen bird

Singing bird

Parrot

Cuckoo

Is a

Is a

Is a
Is a
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Fig. 6. A semantic network with negative links

Example 1. Let us consider the semantic net of Figure 6.
The canonical interpretation of the network is as follows:

• Green-bird(Parrot)

• Singer-bird(Cuckoo)

• Bird(Green-bird)

• Bird(Singer-bird)

• Avis(Bird)

• ¬Singer-bird(parrot)

• ¬Green-bird(Cuckoo)

From the above description we can use the inference rules to deduce the following
links:

1. Singer-bird9 parrot

2. Parrot→ avis

Suppose that the link Green-bird9Singer-bird. Using the last rule of inference
we obtain parrot9Cuckoo.

Indeed, we use 99K in order to avoid contradictions.

Example 2. Let us consider the semantic network of Figure 7.
Using the inference rules of the absolute links; by transitivity, we can deduce

that Tweety(X)→ Fly(X) as well as Tweety(X)9 Fly(X).
Figure 8 shows how this contradiction is avoided using default links.
Has-wings (X)99K Fly(X) means that flying is the default property of any bird

and that Diseased(X)9 Fly(X) is a special case which may affect the default pro-
perty.
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Tweety

Bird(X)

Has wings(X)

Fly(X)

Deseased(X)

Instance-of

Property

Property

Instance-of

Property

Fig. 7. Semantic network with contradiction

Tweety

Bird(X)

Has wings(X)

Fly(X)

Diseased(X)

Instance-of

Property

Property

Instance-of

Property

Fig. 8. Default and absolute links

3 DISCUSSION

We have seen two famous models in the previous section. The first belongs to the
class of machine learning models while the second belongs to the most known ones in
knowledge representation. Table 1 draws up some differences between these models;
each of these differences may be an advantage (denoted by ) or a drawback.

Many of these drawbacks are related, and may be generalized to many other
knowledge models and machine learning structures. Our aim is to define a simple
model which constitutes a compromise between the knowledge models and machine
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Neural nets Semantic nets

Very low level
of abstraction

High level
of abstraction

Is not easily
interpretable

Is obvious
to interprete

Allow unsupervised
learning

Should be built
by an expert

Errors are not directly
pointed out

Error may be directly
pointed out

Is not extendable May be extended

Limited learning
capability

Its structure allows
addition of new
knowledge

Reflect the uncertainty
concept

No representation
of uncertainty

Table 1. Some differences between neural networks and semantic networks

learning structures and which inherits from the first and the second their advantage,
namely, the high level abstraction and the uncertainty representation.

4 THE PRIMARY VERSION

Based on some experiments on human cognition behaviours, a simple model has
been proposed in [12] where knowledge is represented by entities linked using binary
relations. Each relation (or entity) is weighted with the number of simultaneous oc-
currences of the the relation components (or entity). Weights are said remembering
level.

The knowledge base may be viewed as a non oriented graph G(N,A) where N is
a set of nodes, N = {(x, y) | x is a label and y is the remembering level}. A is
the set of weighted edges A = {(x1, x2, y) | x1, x2 are labels of entities, y is the
weight of the relation (x1, x2)}. Figure 9 shows an illustration of the graphical
representation of the sentence “parasympathomimetic is a word”. wis are weights
that correspond either to an entity or relation. In case of relations, the weight
corresponds to the number of simultaneous occurrences of the adjacent entities.
Weight of an entity refers to the number of its occurrences either with other entities
or alone.

4.1 Implementation

The first implementation of the model above was in Arabic script recognizer [24].
Our application was based on the extraction of characteristics of hand-written Arabic
letters. The encoding method is summarized in the Algorithm 4.1.
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isw1

aw2

wordw3

parasympathomimeticw4

w5

w6

w7
w8

w9

Fig. 9. Graphic representation of the sentence “parasympathomimetic is a word”

In each sub-area, each axis will carry out 3 letters. The code extracted from the
letter (Figure 11) is as follows: 0-m-0, 0-c-0, 0-c-0, 0-c-0, 0-c-0, 0-c-0, 0-c-0, 0-c-0,
0-c-0, 0-c-0, 0-c-0, 0-c-0, 0-c-c, 0-c-0, 0-c-0, 0-c-0, 0-c-0, 0-c-0, 0-c-0, 0-c-0, 0-c-0,
0-c-0, 0-c-0, 0-m-0.

Algorithm 1 Encoding of the letter graph

1: Divid horizontally the writting area into three parts : Middle, Pole and jamb
(Figure 10).

2: Cross the letter graph by vertical axis outstripped by a fixed distance as shown
in (Figure 11)

3: for all axis do
4: for all parts of the axis (i.e. Middle, Pole and jamb) do
5: Let n be the number of intersection points.
6: if ≥ n ≤ 9 then

7: concatenate the code with the letter ’c’.
8: else

9: if 10 ≥ n ≤ 40 then

10: concatenate the code with the letter ’m’.
11: else

12: if n > 40 then

13: concatenate the code with the letter ’l’.
14: end if

15: end if

16: end if

17: end for

18: end for
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Fig. 10. The three writing areas

Fig. 11. Code generation

4.1.1 Learning Phase

The set of generated codes for all graphs may be viewed as a language for which
we can build a classical finite automaton as the first step recogniser. Hence, we
implemented a simple deterministic finite automaton to check the common shapes
(Figure 12).

In practice every person has his/her own style to write the same character and
the code generated from the graph will differ from that recognized by the automa-
ton. In such case our system learns the scripting manner of the author of the
non-recognized letter. When the automaton fails to recognize the graph, the recog-
nizer prompts the user to give formally the letter which corresponds to the graph
(for example H. ). The code generated from the unrecognised graph will form the
entities linked to the letter entity. Since the model is initially empty when the code
occurs for the first time, this code is added to the model with the weight 1. The same
thing is done with the entity which represents the letter H. . The conjunction be-
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Fig. 12. A portion of the automaton

tween these two entities, graph code and the drawn letter, is assigned with weight 1
if the conjunction is added for the first time, otherwise the conjunction weight is
incremented. In this phase, the system learns the writer’s scripting manner. Once
the model is sufficiently enriched, the learning phase is stopped.

4.1.2 Recognition Using the Model

The system tempts to recognise the drawn letter using an automaton; if the automa-
ton fails to recognise the graph, the recognizer looks for the code in the knowledge
base that is the closest to the generated code by the graph. The following Table
shows some test results.

Letters Number of correct recognitions/5 tests Number of codes

H. 5 1
¼ 4 29
X 5 2
�H 5 1
�H 4 11
ð 3 11
�
�. 4 7
	

¬ 4 4

5 THE NEW VERSION

Let X = 〈x1, . . . , xn〉 be a vector of n features. A classification system assigns X to
some class Ci according to the values of the xps. It can be viewed as a function f
which maps vectors in D1 × D2, . . . × Dn to some class in the set of all possible
classes C. In machine learning, we try to build semi- or quasi-automatically an
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approximation of the function f [16, 23, 13]. For simplicity, let us consider a Boolean
classification, where the system has to choose between just two classes 0 or 1. Va-
lues of the features xps also belong to {0, 1}. Let f be a Boolean function where
f(x1, x2) = x1x2. f assigns to 〈0, 1〉, 〈1, 0〉, 〈0, 0〉 the class 0, and only the vector 〈1, 1〉
is assigned to the class 1. We will say that in the context f , there are two entities 0
and 1, and in the context 1, the only available relationship is 〈1, 1〉. All other
relationships belong to the context 0. Figure 14 gives a simple set representation
of f . Note that we can represent “context of ” by a relation between the context
and the relation belonging to. Since the entity 0 (or 1) has the same semantic being
either an input or an output of the function, we use a unique representation of 0
(or 1). Figure 13 is a graphical representation of the instance of the model which
represents f .

Context 1

1

Context 0

0

1

Fig. 13. Context representation of the the function f = x1x2

0 1

f

Fig. 14. Model instance of f

In Figure 14, edges are not oriented because the and operator is symmetric,
but also because the reasoning can be done in two ways. Having the output value
(context), we can find the input values that lead to; we also can find deterministically
the value of the output when we have the input values.



136 A. Khorsi

Let us examine how to add a new knowledge to the instance of Figure 14.
Let f ′ be a Boolean function where f ′(x1, x2, x3) = f(x1, x2) + x3. A canonical
representation of the new instance of the model is given in Table 2, and the graphical
representation is shown in Figure 15.

R0 : 1 ↔ 1
R1 : R0 ↔ 1
R2 : 0 ↔ 0
R3 : 0 ↔ 1
R4 : R2 ↔ 0
R5 : R3 ↔ 0
R6 : R4 ↔ f
R7 : R5 ↔ f
R8 : f ↔ 1
R9 : 1 ↔ R8

R10: f ↔ 0
R11: f ↔ R10

R12: f ′ ↔ R9

R13: f ′ ↔ R11

Table 2. Canonical description of f and f ′

0 1

f f ′

Fig. 15. Model instance of f and f ′

As opposite to semantic networks which explicitly label relations with their
semantics, the philosophy of our model is that “the semantic of things is expressed
in an architecture of links”. Note also that we may have different semantics for the
same relation in different contexts. Entities may be contexts as well. Actually, in our
model, a context may be an entity of a context and relation may be a component of
another one. For instance, the relation R13 means that in the context f ′, the output
is f when the third parameter is equal to 0. Note that we represented the new
function f ′ which really depends on f , using knowledge on f already represented.
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6 INFERENCE RULES

When the representation contains so much knowledge on some context, inference
is then a link-follow-like task. In practice, exhaustive representation is generally
impossible either because the complete description of some part of the real world isn’t
available, or because the computational resources might be burdened by maintaining
such a big volume of information.

Generalization will refer to the use of the available entities and relations in an
instance of the model to generate new relations and/or entities.

Finite automata model remains a fascinating one even in artificial intelligence.
The following example shows how an instance of our model may be built up and
trained on a formal knowledge such finite automata. First, let us recall that a deter-
ministic finite automaton is a simplified model of neural networks especially adapted
to formal languages recognition. Briefly, DFA defines a set of transitions due to the
occurrence of a pair (r, a) ∈ Q × Σ, where Q is a finite set called set of states,
and Σ set of symbols; towards an other state s. Each state may be final or not.

Formally spoken.

Definition 1. Let A be a finite set of symbols. A finite automaton is a quintuple
A = (Q,A, δ, q0, F ) where

• Q is a finite set of states,

• A is the alphabet,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of final states, and

• δ ⊆ Q× (A ∪ {ε}) ×Q is the transition mapping;

we shall denote, for p ∈ Q, a ∈ A ∪ {ε}, δ(p, a) = {q ∈ Q | (p, a, q) ∈ δ}. The size
of an automaton A, denoted by |A|, is the number of its states. The automaton A
is called deterministic if |δ(q, a)| ≤ 1, ∀q ∈ Q, ∀a ∈ A.

Definition 2. A path in A is a sequence (qi, ai, qi+1), i = 0, · · · , n, of consecutive
transitions. Its label is the word w = a1a2 · · · an.

Definition 3. A word w = a1a2 · · · an is recognized by the automaton A if there is
a path labelled w such that qn+1 ∈ F .

Definition 4. The language recognized by the automaton A, denoted by L(A), is
the set of words it recognizes.

Definition 5. The right language of a state q in the automaton A, denoted by
~Lq(A), is obtained by setting q to be the initial state A, i.e., ~Lq(A) = {w ∈
A∗ | δ(q, w) ∩ F 6= ∅}.
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Definition 6. Two states p and q in Q are said to be equivalent if and only if
~Lp(A) = ~Lq(A)

Details on finite automaton can be found in many books on theory of formal
languages [10]. Minimization of a finite automatonA is the building of an eventually
different deterministic finite automaton B in which no pair of states are equivalent.
The problem is then to find every equivalent pair of states in A, or in a negative
reasoning, to find all non equivalent pairs. The minimization process starts with the
assumption that none of the final states is equivalent to a not final one.

∀p ∈ F and q ∈ Q− F : ~Lp(A) 6= ~Lq(A)

In fact, all minimization algorithms are based on the principle of finding the partition
of Q using this last hypothesis. Albeit in [27, 28, 29] B. Watson assumes that
Brzozowski’s algorithm [1] isn’t based on the partition of the set Q. In [3] we prove
that even this algorithm is based on the same partitioning principle.

Let us consider the deterministic finite automaton of Figure 16.

0

1

2

3

4

a

b

a, b

a, b

a, b

a, b

Fig. 16. Deterministic finite automaton to be minimized

Performed by a machine or manually, an algorithm uses:

1. basic knowledge on finite automaton graphs such as:

(a) an edge label is a symbol

(b) a circle is a state

(c) a double circle is a final state others are not final

(d) an edge is a transition

2. knowledge on state’s equivalence:

(a) a final state is not equivalent to a non-final one

(b) if at least two transitions map with the same symbol two states s1 and s2
into two non equivalent ones, then s1 and s2 are not equivalent.

Figure 17 is the representation of the basic knowledge on finite automata.
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0

1

2

3

4

a

b

State

Symbol

Final State

Not Final

Fig. 17. Representation of the automaton of Figure 16

At the first view, the representation seems to be too heavy. Access to some
knowledge is an access to only a part of the global model. For instance, entities a
and 1 are bounded up with a relation which is also bounded with the entity 3.
This means that when the pair (1, a) occurs, the automaton will transit to state
three. The instance of the model in Figure 17 shows the representation of the basic
knowledge on the DFA (Figure 12). In classical programming, such structure is an
input of the minimization algorithm. We have now to define the reasoning rules to
generate knowledge on states equivalence. Figure 18 represents the rule that “a final
state is not equivalent to a non-final one”. Using this rule, if a part of the instance
contains at least links in the left side of Figure 18, whatever are values of x1 and x2,
we can substitute it by the right side representation.

x1

x2

Final

Not Final

⇒

x1

x2

Final

Not Final

6≡

Fig. 18. First rule of knowledge generation in the instance of Figure 17

Figures 19 and 20 are the representation of the rule “if two states go with the
same symbol to a non-equivalent pair of states then the two first states are not
equivalent”. This has two forms. The first one is represented in Figure 18 where
x1, x2, x3, x4 are states and x5 is a symbol. x3 and x4 are already known to be
non-equivalent which results in that x1 and x2 are non-equivalent too. The second
form is showed in Figure 19: x1, x3, x4 are states and x5 is a symbol. x3 and x4 are
already known to be non-equivalent. Since x1 goes to x3 with the symbol x5 and x3
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goes to x4 with the same symbol, we can deduce that x1 and x3 are non-equivalent
too (the right part of the figure).

x1

x2

x3

x4

x5

State

Symbol

6≡

⇒

x1

x2

x3

x4

x5

State

Symbol 6≡

Fig. 19. First form of the first knowledge generation rule

x1 x3

x4

x5

State

Symbol

6≡

⇒

x1 x3

x4

x5

State

Symbol

6≡

Fig. 20. Second form of the second knowledge generation rule

After the application of the first rule (Figure 18) on the pair of states 1 and 3,
the model becomes as shown in Figure 21.

Before the generation of the entity 6≡ using the first rule, the model instance
didn’t contain a sufficient knowledge to use the second rule. Figure 22 shows an
example of the generation of a new knowledge using the second rule (Figure 20).

7 UNCERTAINTY AND UNSUPERVISED LEARNING

In the previous section, we saw how to define a basic knowledge and inference rules in
an explaining-like manner. The purpose of this section is to show the unsupervised
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0

1

2

3

4

a

b

State

Symbol

Final State

Not Final
6≡

Fig. 21. New knowledge generated in the instance of Figure 17 after the application of the
first rule

0

1

2

3

4

a

b

State

Symbol

Final State

Not Final
6≡

Fig. 22. Example of the application of the second rule

learning using the same model. Generally, a system is called an unsupervised learn-
ing system when it can acquire automatically the knowledge issued from information
contained in some sample. Such observation generates an uncertain knowledge. To
see clearer, let us consider a sample of 100 birds. 24 are ill, and two have their wings
broken and can not fly. 10 of the 24 ill birds can fly while the others can not. All
other birds can fly. In this example we consider two classes: ‘can fly’ and ‘can not
fly’. Figure 23 is a representation of the knowledge issued from the observation of
this sample.

Notice that both entities and relationships are weighted with occurrence num-
bers. For instance, the occurrence number of the relationship between the entity
Wings and Broken is weighted with the number of simultaneous occurrences of
both.
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Can fly84

Diseased24 Can not fly16

Wings100

Broken2

2

10

14

2

Fig. 23. Knowledge representation issued from the observation of a sample of 100 birds

The relationships of the entity Diseased may carry out a contradiction without
weights, since it is linked to the context Can fly and Can not fly. Let us now see how
a classification of a new bird should be performed using the knowledge represented
in Figure 23. Suppose that the bird to be classified is ill and has safe wings. We
can then say that the probability of being in the class Can fly is 10

24
≈ 0.42.

Let E be a set of l samples represented in the form of vector X = 〈x1, . . . , xn〉,
where xis are values of some attributes. Suppose we know that C0nb vectors belong
to class C0. Let Y = 〈y1, . . . , yk〉 be a new vector where Y 6∈ E . Note that the
size of Y is not n as Xs. We will consider that Y does not contain all and just
the n attributes. Classification should thus be performed with relatively incomplete
information to our observations. The advantage to have such modular representa-
tion where modules are mutually independent is in being able to do tasks such as
classification with incomplete information. Formally spoken, we have:

P (C0|Y ) =
P (C0 ∩ Y )

P (Y )
.

P (C0|Y ) is the probability that the class C0 occurs when the attributes compounding
the vector Y occur. We have:

P (C0|Y ) =
P (C0 ∩ y1 ∩ . . . ∩ yk)

P (y1 ∩ . . . ∩ yk)

which we can reformulate as follows:

P (C0|Y ) =
P ((C0 ∩ y1) ∩ (C0 ∩ y2) ∩ . . .∩ (C0 ∩ yk))

P (y1 ∩ . . . ∩ yk)
.

Even if it is wrong we will suppose as a Bayesian classifier [21, 25] does that
occurrence of any attributes is independent from all others. Upon this hypothesis
we can write:
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P (C0|Y ) =
P (C0 ∩ y1)P (C0 ∩ y2) . . . P (C0 ∩ yk)

P (y1) . . . P (yk)
.

In our model, P (C0 ∩ yi) should be approximated with the weight of the rela-
tionship between the entities C0 and yi. Note that we can use the approximation in
the form P (C0∩yi∩yj) when the model instance contains the relationships between
the entity C0 and the relationship 〈yi, yj〉 which uses the following formula:

P (C0|Y ) =
P (C0 ∩ y1 ∩ yi1)P (C0 ∩ y1 ∩ yi2) . . . P (C0 ∩ yk ∩ yjl)

P (y1 ∩ yi1) . . . P (yk ∩ yjl)

where P (u∩v) is approximated by weight (〈u, v〉), which is the weight of the relation-
ship between u and v; recall that u and v may be either entities or relationships. For
example, if the model instance contains R1 = 〈x1, y1〉, R2 = 〈x2, y2〉, R3 = 〈R1, R2〉,
then P (x1 ∩ x2 ∩ x3 ∩ x4) is supposed to be the weight of R3.

The approximation can use an intersection of any size when relationships linking
their entities are represented.

8 INFERENCE

In this section, we show how an inference can be performed using our structure. Let
us denote the representation of some feature x M(x). Ri will denote any relation
in the model instance and Context(Ri) will denote the entity which is the direct
context of Ri. Algorithm 2 summarizes the inference steps on an instance built
using deterministic knowledge.

Algorithm 2 Inference on deterministic knowledge

Require: e = {e1, . . . , el} Inputs should be represented in the instance of the model
Ensure: e′ = {e′1, . . . , e

′

m} Outputs are some other entities bounded up with inputs
for all ei do
activate M(ei)

end for

for all Rj = 〈M(ei),M(ek)〉 where ei, ek ∈ e do

activate Rj //activate all relations compounded from inputs
end for

repeat

activate Context(Rj)
for all Ru = 〈cv, cw〉 where cv, cw are contexts recently activated do

activate Ru //activate all relations between contexts recently activated
end for

until Stability

More intuitively, in the case of deterministic knowledge, inputs are entities rep-
resented in an instance of the model. The algorithm proceeds as follows:
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1. All inputs’ representations and direct relations between them are activated.

2. All contexts of direct relations are activated.

3. Repeat 1 and 2 considering contexts recently activated as inputs until there is
no new activated context.

Let us consider the following assertions:

• each entity x (characteristic or context) is represented in the model instance by
M(x) which is its graphical representation and Weight(M(x)) the weight of its
representation;

• each relation Ri in the model has three components: two representations of its
entities and the weight of the relationship. Say Ri = 〈M(x1),M(x2), ω〉;

• the context of any relation is denoted by Context(Ri);

• before being activated, entity (or relation) has a null activation weight
AWeight(M(xi)) = 0 (orAWeight(Ri) = 0), and once activatedAWeight(M(ei))
(or AWeight(Ri) = 0) is assigned with a non null value.

Algorithm 3 describes the inference in a model of an uncertain knowledge:

Algorithm 3 Inference on uncertain knowledge

Require: e = 〈e1, . . . , ep〉
Ensure: e′ = 〈e′1, . . . , e

′

m〉
for all ei do
activate M(ei) with weight Wheight(M(ei)) say AWheight(M(ei)) ←
Wheight(M(ei))

end for

repeat

for all Rj = 〈M(ei),M(ej), ω〉 such that AWheight(M(ei)) > 0 and
AWheight(M(ej)) > 0 do

AWheight(Rj) ← min(AWheight(M(ei)), AWheight(M(ej)),Wheight(Rj))
//activate the relation with minimum value between
AWheight(M(ei)), AWheight(M(ej)),Wheight(Rj)

end for

until nothing

9 CONCLUSION

Performance of any knowledge based system is, mainly due to its knowledge base, in
terms of containment and representation. That knowledge has two known sources:
either a human expert or an observation. Our aim was to design a flexible model
which can support both modes of learning. The first mode requires a simple compre-
hensible representation to allow an easy expression. The second requires an efficient
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representation of knowledge uncertainty. A purification process that minimizes the
representation may be done in the case of unsupervised learning. This is possible
by eliminating the insignificant relationships and entities. When relationships go-
ing from an entity to two opposite entities are weighted with approximately the
same weight, this intuitively means that the first entity isn’t a good discrimina-
tion. At the first view our model seems to be Bayesian nets-like one. Let us recall
that the last one implements directly the conditional probabilities on events. When
a new event occurs, an update requires another computation of all probabilities of all
bound events. Our model adds the new events intuitively by incrementing weights
of individual entities and relations binding them. In other terms, the Bayesian nets
model makes computation on knowledge, then represents it; our model represents
and lets computation to the time due. The main idea of our model is to keep a basic
information (occurrence number) to allow any kind of computation on.
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