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Abstract. Algorithms for many complex computations assume that all the rele-
vant data is available on a single node of a computer network. In the emerging
distributed and networked knowledge environments, databases relevant for compu-
tations may reside on a number of nodes connected by a communication network.
These data resources cannot be moved to other network sites due to privacy, secu-
rity, and size considerations. The desired global computation must be decomposed
into local computations to match the distribution of data across the network. The
capability to decompose computations must be general enough to handle different
distributions of data and different participating nodes in each instance of the global
computation. In this paper, we present a methodology wherein each distributed
data source is represented by an agent. Each such agent has the capability to
decompose global computations into local parts, for itself and for agents at other
sites. The global computation is then performed by the agent either exchanging

some minimal summaries with other agents or travelling to all the sites and per-
forming local tasks that can be done at each local site. The objective is to perform
global tasks with a minimum of communication or travel by participating agents
across the network.
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1 INTRODUCTION

The parallel implementations of pattern analysis algorithms take advantage of the
high performance of multiprocessor computer systems and work by transferring data
from one processor to the other. It is desirable to implement algorithms in parallel
and even build specialized hardware chips when large amounts of data are available
at a single geographical site. The main focus of most of the parallel and distributed
algorithms has been on closely coupled processor systems where data can be easily
shared by the processors and the number of processors assigned to an algorithm may
depend on the data to be processed.

Distributed Data Sources: Computing situations that are beginning to emerge
in the networked environment require data and knowledge from a number of
geographically distributed sites to be simultaneously considered. A number of
geographically distributed databases together form an implicitly specified global
dataset that contains all the data relevant for a computation. For example, some
pattern discovery tasks may require simultaneous consideration of data, parts
of which reside in census databases, labor statistics databases, and employment
related databases. Each of these is a huge database and resides on a different
site in a different city. One cannot hope to easily move all these databases to
a single computer site, merge or join them, and then execute an algorithm with
the tuples in the resulting humongous database. It would be desirable to have
algorithms that let the individual databases reside at their own sites and work
with an imagined implicit join of the databases by decomposing themselves into
localized computations such that each localized computation can be performed
locally within a single site using its physical database. A common constraint
in these situations is that the data cannot be moved to other network sites
due to security, size, privacy and data ownership considerations. Example of
such situations is we may need to compute decision trees, association rules, or
some complex statistical quantities using data from a census database, a diseases
database, a labor statistics database, and a few pollution databases located in
ten different cities across the country. It is impossible to bring these databases
together and join them for performing some computations. Also, a new instance
of some computation may require data from a different set of participating nodes
and databases.

Our approach here has been to present a methodology and design of decompos-
able version of association rules, and induction of decision trees algorithms. In our
methodology each data source (a network node) is represented by an agent. This



Agents for Integrating Distributed Data for Complex Computations 151

agent knows all about its underlying database and can access any part of it, as
represented in Figure 1, which can be described as follows:

1. Some network node (Init-Node) wants to perform a computation C which re-
quires a body of data D. The entire data D may not be available on Init-Node
itself.

2. A search is performed over the network to identify those other nodes that can
provide some relevant parts of D for the computation and are willing to coopera-
te. Init-Node selects a sufficient set of participant nodes that together constitute
the body D. Attributes of databases at different nodes may be unique to their
sites or may exist at more than one participating sites.

3. The initiator Init-Node determines a decomposition of computations C, com-
patible with the distribution of attributes of D. It then seeks results of local
computations from the participating nodes and composes them to construct the
global result. A number of (decomposition, partial computation, composition)
iterations may be required for completion of C.

If the computation does not require updates to databases, then the agent also
does not need an update privilege for its underlying data. The desired global com-
putation, such as the need to induce a decision tree from underlying databases, is
conveyed to the agents of the participating sites. Each agent then determines the
local computations that it needs to perform, keeping in mind the constraints of
shared data with other sites and also the local results that it needs to share with
other agents in order for the global result to evolve at Init-Node. An alternative to
communicating with agents at other sites is that a single agent visits each of the
participating sites and performs some local computation at each site when it visits.
Objectives of the agent’s design include minimization of communication across the
sites and enough generality of the formulation to permit agents to handle different
sets of participating sites and different patterns of knowledge sharing across the
participating nodes.

Agent
1

AgentnAgent2

D1 D2 Dn...................

 x1   x2   x3   x4             x3   x4    x5    x6                          x1      x5       x12         Attributes

Network

Databases

Interface Agents

Fig. 1. Databases represented by agents
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A desired global computation, such as the need to induce a decision tree from
underlying databases, is conveyed to the agents of the participating sites. Each
agent also knows about the other participating sites. It then determines the local
computations that it needs to perform, keeping in mind the constraints of shared
data with other sites and also the local results that it needs to share with other
agents, in order for the global result to evolve at either one of, or each of the par-
ticipating agents. An alternative to communicating with agents at other sites is
that a single agent visits each of the participating sites and performs some local
computation at each site when it visits. Objectives of the agent’s design include
minimization of communication across the sites and enough generality of the formu-
lation to permit agents to handle different sets of participating sites and different
patterns of knowledge-sharing across the participating nodes.

Our presented algorithms have the capability to decompose their computations
to fit the nature of data distribution across the network nodes. The objective of the
algorithms is to perform pattern discovery tasks for any arbitrary data distribution
across the network by exchanging summaries derived from local databases. Our idea
is to decompose the steps of an algorithm into localized computational steps that
can be executed at the participating sites and the intermediate results thus obtained
are transmitted to the central site. This may have to be repeated a number of times
until an algorithm is completed. It thus works by exchanging partial results during
the execution of an algorithm. Our algorithms are tailored for situations in which
we don’t have closely connected processors. There are multiple processors but they
are independent and reside at geographically distant sites.

The rest of the paper is organized as follows: In the next section, we give an
introduction to the basic concepts of our approach. A decomposable version of the
association rule algorithm with its complexity computing is given in Section 3. In
Section 4, we give a decomposable version of the induction of decision tree algorithm
and its complexity computing. In Section 5, we present our simulation results. In
Section 6 we give the related works to our handled problems. We conclude our work
in Section 7.

2 INTEGRATION OF DISTRIBUTED DATA

In the situation modeled, here we consider n databases located at n different network
sites, and all of them together constitute the dataset D for the global computation.
As an abstraction, we model the databaseDi at each ith node by a relation containing
a number of tuples.

The set of attributes contained in Di is represented by Xi. For any pair of re-
lations, (Di and Dj), the corresponding sets Xi and Xj may have a set of shared
attributes given by Sij . Since an arbitrary number of independent, already exist-
ing, databases may be consulted for a computation, we cannot assume any data
normalization to have been performed for their schemas.
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The implicit datasetD with which the computation is to be performed is a subset
of the set of tuples generated by a Join operation performed on all the participating
relations (D1, D2, . . . , Dn). However, the tuples of D cannot be made explicit at any
one network site by any one agent because the Di’s cannot be moved in their entirety
to other network sites. The tuples of D, therefore, must remain implicitly specified
only to one agent. This inability of an agent to make explicit the tuples of D is the
main problem addressed in the generalized decomposition of global algorithms and
is discussed in later sections.

To facilitate computations with implicitly specified sets of tuples of D, we define
a set (S) that is the union of all the attribute intersection sets (Sij), that is,

S =
⋃

i,j,i 6=j

Sij. (1)

The set S, thus, contains the names of all those attributes that are visible to more
than one agent because they occur in more than one participating Di. We define
a relation Shared containing all possible enumerations for the attributes in the set
S. This formulation of S facilitates similar treatment for horizontally or vertically
partitioned datasets because horizontal partitioning can be seen as the case where
all attributes are shared.

2.1 Nature of Data Distribution

Let us say there are n different sites containing databases D1, D2, . . . , Dn respec-
tively. Depending on the sets of attributes contained in each Di, there are two
primary ways in which the databases, together, may be seen as forming an implicit
global dataset D.

Horizontally Partitioned Datasets: Figure 2 shows partitioning of D into com-
ponents D1, D2, . . . , Dn such that each component Di contains the same attri-
bute set (Xi), but a different set of data tuples. The set of shared attributes (S)
is the same as Xi for each database.

Vertically Partitioned Datasets: Figure 3 shows another way in which compo-
nents of D may be distributed across a network. In this case, each compo-
nent (Di) may share some attributes with other databases (Dj and j 6= i).
Each Di may also contain some attributes not shared with any other database.

In effect, each Di is a projection of an implicit global D. Vertically partitioned
datasets are of more interest because they provide an opportunity to share knowledge
across the participating nodes. Our algorithms are designed to work with vertically
partitioned databases and can also work with horizontally partitioned databases by
considering all attributes are Shared.
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2.2 Agent’s Decomposition Task

The objective of an agent is to perform the global computation by communicating
with other similar agents at other sites, and each agent performing some compu-
tation with its local database. Each agent should be able to decompose the global
computation into local computations – in the context of and as constrained by the
sharing of attributes across the participating agents and perform its local part with
its own data.

Each agenti in Figure 1 represents a Di and communicates with similar agents
at other nodes to exchange the results of its local computations. The decomposition
methodologies discussed here can be seen to reside with each individual agent; each



Agents for Integrating Distributed Data for Complex Computations 155

agent is also capable of initiating and completing an instance of a global computa-
tion by either exchanging local results with other agents, while stationary at their
respective sites, or by launching a mobile agent that visits other network sites. In
the case of a mobile agent, the decomposition tools and knowledge reside with the
mobile agent.

Let us say a result R is to be obtained by applying a function F to the implicit
dataset D. That is:

R = F(D). (2)

When the global computation is to induce a decision tree from D, the value of R is
the induced decision tree, and F corresponds to the implementation of an algorithm
for inducing R from D.

Distributed databases used by the agents cannot make explicit the tuples of D,
which remain implicit in terms of the explicitly known components D1, D2, . . . , Dn.
The set S of shared attributes determines what explicit D would be generated by
the individual data components. An implementation of F in Equation (2) for some
S can be engineered by a functionally equivalent formulation given as:

R(S) = H[h1(D1, S), h2(D2, S), . . . , hn(Dn, S)]. (3)

That is, a local computation hi(Di, S) is performed by agenti using the database Di

and the knowledge about the attributes shared among all the data sites (S). The
results of these local computations are aggregated by an agent using the operationH.
However, it may not be possible to decompose a complex computation such as the full
algorithm for inducing a decision tree into local computations and an aggregator. We
can decompose smaller computational primitive steps of such a complete algorithm
and the agent keeps track of the control aspects of sequencing various steps of such
an algorithm.

The number and nature of hi operators and the nature of H would vary with
the participating Dis and the set of attributes (S) shared among them. Hence,
a different set of h-operators would need to be generated by the agent for each new
instance of Di’s and S.

Figure 5 shows the process by which the agent would compute R from the Dis.
That is, a local computation hi(Di) is performed at every Nodei using the data-
base Di. The results of these local computations are aggregated using the opera-
tion H.

The component operators of a decomposition (H and his), therefore, need to
be dynamically determined by the agent for each instance of F(D), depending on
the participating nodes, the attributes contained in their native databases, and the
sharing pattern of attributes.

2.3 Stationary and Mobile Agents

We consider two types of agents for computing the decomposed hi and H functions.
Stationary agents that stay at their respective data sites compute local hi’s and
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send them to a coordinating agent who applies H operation to all the local results.
Mobile agents move from one site to another, perform local hi at each site that they
visit, and at the end apply the H operation to the gathered results. In the following
discussion we present complexity for both of these kinds of agents.

2.4 Cost Models for Algorithmic Complexity

Traditionally, the complexity of algorithms has been measured in terms of CPU time
and the required memory. This cost model is well-suited for computations on a sin-
gle computer and the closely-coupled processors model. When a number of loosely
networked nodes are involved in a cooperative computation, the communication cost
becomes the overwhelmingly dominant component of the total cost. Complexity for
distributed query processing in databases has been discussed in [25], and the cost
model used is total data transferred for answering a query. This cost model suits
those applications well, where a large amount of data is exchanged during a compu-
tation. We have used here, and in other similar work [6, 17], cost models involving
the number of messages exchanged and reflecting the efficiency of decomposition
carried out by the network algorithm. The following are the three cost models for
analyzing the complexity of our algorithms.
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1. Communication Cost only: In this cost model we count the number of mes-
sages, Nm, that must be exchanged among all the participating sites in order
to complete the execution of the algorithm. One message exchange includes
one message sent by a site requesting some computation from another site and
the reply message sent by the responding site. This cost model is relevant in
situations where communication cost of messages is orders of magnitude larger
than the cost of computations at local sites.

2. Communication Plus Computation Cost: In this model we examine a weighted
sum of the number of messages exchanged and the number of local computations
performed. If Nm messages are exchanged among the sites and a total of Nc

computational units are performed at all the sites combined, then the algorithm’s
cost is given by: Nm+Nc. This cost model is useful when the local computation
time within a site is not negligible and must be included within the cost model.
When the databases stored at the sites are huge, as in many scientific and data-
mining applications, the time to execute a local computation may be comparable
to the time taken for exchanging a message across a wide-area network.

3. Elapsed Time Cost: In this model we examine a weighted sum of the number
of messages exchanged and the number of local computations performed, while
accounting for parallel transmission of messages and simultaneous execution of
local computations at the participating sites. If Nm messages are exchanged
among the sites and a total of Nc computational units are performed at all the
sites combined, then the algorithm’s cost is given by: Nm + Nc/p where p is
the average number of messages that can be exchanged in parallel. This cost
model is useful when our criterion is the total elapsed time for executing the
algorithm.

In the case of a Mobile Agent, the decomposition tools and knowledge reside with
the mobile agent. This agent has the set Shared stored in it. During a visit to
a data site, it can compute the local result for that site. Once all the sites have been
visited, the aggregator H can be then applied to the local results collected from all
the sites. Therefore, the mobile agent needs to visit each site only once in order to
compute the global results.

In this paper each step of the algorithm must exchange a number of messages
for evaluating the various quantitative values. Each message is generally of a very
small length, but the number of messages may grow very fast. We ignore the local
computation cost Nc because we perform only queries at the local sites.

3 ASSOCIATION RULES

Given a set of transactions where each transaction is a set of items, an association
rule is an expression X ⇒ Y , where X and Y are sets of items. Intuitively, it would
mean that transactions in the database which contains the items in X also contain
the items in Y. Traditionally, most of the algorithms to determine association rules
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are confined to a single large database. The main issues have been the size of the
data, how many passes that are to be made over the database and the resultant
time taken. However, this research is focused on mining the association rules in
a distributed database scenario where explicit join is not possible because of the
security, privacy, and other issues. Algorithms for discovering association rules in
databases [1, 2] have been studied extensively. The main phases of various versions
of the algorithm involve iterating the following 2 steps:

1. Enumerate item-sets at level Lk from the frequent item-sets (the sets of items
that have minimum support) determined at level Lk−1.

2. Determine the support and the confidence levels for the item-sets and rules at
level Lk.

The decomposability of an association rule algorithm can be similarly divided into
2 major tasks: (1) Maintenance of the active item-sets and enumeration of the
candidates at the next level from the frequent item sets at the preceding level;
(2) Computation of the support and confidence levels. A general decomposition of
the algorithm can be implemented as follows: an agent at any network node ini-
tiates the algorithm; this agent performs within itself all the control aspects of the
algorithm, such as the tasks of maintaining and generating the candidate item-sets;
computation of support and confidence levels requires consultation with agents at
other sites and it is this step that needs to be redesigned by an agent using decom-
position; the decomposed version for support computations can then be repeated at
each iterative step where the algorithm requires it, the control being with the agent.

3.1 Computational Primitives

The most common computational primitive needed in the above algorithm is the
count of all tuples in D to be determined only by obtaining local results from each
participating agent. Counts of tuples that satisfy certain attribute-value conditions
are a little bit more complex and we describe them below.

3.1.1 Count of Tuples in Implicit Space

When the tuples of D are explicitly available in a relation then the count of all its
tuples can be obtained easily. For our case of an implicitly defined set of tuples, we
can decompose the counting process in such a way that various local count requests
can be sent to the agents of individualDis and their responses can then be composed
to construct the total count for the tuples in implicit D. The decomposition for
obtaining the count Ntotal(D) is as follows:

Ntotal(D) =
∑

j

∏

t

N(Dt)condj (4)

where the subscript condJ specifies a condition composed from the attribute-value
pairs of the jth tuple of the relation Shared, n is the number of participating



Agents for Integrating Distributed Data for Complex Computations 159

agents (Dis), and N(Dt)condJ is the count in relation Dt of those tuples that satisfy
the condition condj.

As per the decomposition expressed in Equation (3), we can see that

hi(Di, S) = N(Dt)condj (5)

where j corresponds to the jth tuple of Shared. One such summary is needed from
each agent for each tuple in the relation Shared. The relation Shared can be con-
trolled by one agent or maintained by each agent separately, and thus it can reduce
the communication among the agents. The function H in this case would per-
form a sum-of-products from the summaries as per Equation (4). Each term in the
product is the count of tuples satisfying condition condj in a Di. The resulting
product produces the number of distinct tuples that would be contributed to the
implicit Join of all the Dis for the condition specified by condj. The summations
in the above expression amount to selecting each tuple of Shared as condj and then
summing the product terms obtained for each tuple. This expression, therefore,
simulates the effect of a Join operation performed on all the databases without
explicitly enumerating the tuples.

A very desirable aspect of the above decomposition of Ntotal(D) is that each
product term N(Dt)condJ can be translated into an SQL query; select count (*)
where condj can be performed by the local agent at Dt.

Communication Complexity: When there are k attributes in the relation Shared

and each attribute has I values on the average, the relation Shared would have
k ∗ I tuples in all.

First we consider the case of stationary agents at the local sites. If there
are n participating agents, then one agent would be sending one request to each
of the (n− 1) agents for each tuple in Shared, amounting to a total of (n− 1) ∗ k ∗ I
messages being exchanged among the agents.

However, it is possible to send a request to an agent for all hi(Di, S) values,
that is, values corresponding to all tuples condj of S in one request, and receive
all the summaries in one message. This reduces the number of messages exchanged
to n, the same as the number of participating agents. The trade-off between the
two approaches is that the first one may be considered more secure for transmission
over a network because each message contains only very little information about
the participating databases. The second alternative requires very few messages, but
each message contains more information about each database. At no time, though,
actual data tuples are transferred across the sites; only counts of tuples satisfying
certain conditions are transferred.

Now we consider the case of mobile agents. This agent has the set Shared

stored in it. During a visit to a data site, it can compute the local hi for that site.
Once all the sites have been visited, the sum-of-products (H aggregator) can be
applied to the local results collected from all the sites. Therefore, the mobile agent
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needs to visit each site only once in order to compute the count of all the tuples in
implicit D.

3.1.2 Support for Candidate Sets

We can easily extend the above decomposition for count to the counts of only those
tuples that satisfy a certain new condition by simply changing condj in Equation (4):

Nnew−condition =
∑

j

(
n
∏

t=1

(N(Dt)condj .and.new−condition. (6)

This would be required to determine the support level for a candidate frequent
item set. The values of attributes in the frequent item set would form the new-

condition

The way the support measure for a candidate frequent item-set would be com-
puted by an agent can be viewed as follows: In relation Shared, it retains only those
tuples that match the attribute value pairs for the conditions specified in the candi-
date set; determine a count of the tuples that is obtained using this reduced Shared

relation; this resulting candidate count divided by the count Ntotal provides the sup-
port level for a candidate set of attribute-value pairs. Each count would require n
messages to be exchanged and thus a support level can be computed by exchanging
2 ∗ n messages. However, messages for each candidate set currently under consider-
ations can be packed into a single message. Therefore, the support levels for all the
candidate sets at a level can be computed by exchanging only 2 ∗n messages among
the nodes.

For a mobile agent, the local results for computing all the candidate relevant
tuple counts and also the total tuple counts can be gathered during a single visit to
a site. Thus, the mobile agent can compute the support levels for all its candidate
item sets by visiting each site only once and then aggregating the local results.

3.2 Full Algorithm Complexity

As seen above, frequent item-sets at each level of the association rule algorithm can
be determined by exchanging only 2 ∗n messages among the participating nodes. If
an association rule algorithm needs to run up to k levels, then we need to exchange
a total of 2 ∗ n ∗ k messages among the stationary agents to run the association
rule algorithm. This number of messages is not dependent on the number of tuples
contained in each database and the system, therefore, is easily scalable to large
databases. Also, this number of messages is much smaller than the data that may
need to be transferred if we were to accumulate all databases at one site and then
perform the data mining task.

For a mobile agent, an algorithm performing k iterations would mean visiting
each site k times and after that the agent would be able to get the global results.
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While it is easy to decompose arithmetic primitives, the step-sequencing and
control aspects of an algorithm are more difficult to decompose efficiently and in
a generalizable manner. For the results described here we have assumed that the
algorithm initiator node executes the control steps of the original algorithm and
decomposes each arithmetic computation as it sequences through the algorithm’s
steps.

The above algorithm decomposition works well for both horizontally partitioned
and vertically partitioned databases. The algorithm is especially beneficial for verti-
cally partitioned databases and can run horizontally partitioned databases as a spe-
cial case. More efficient implementations are possible when we encounter only a ho-
rizontal database.

4 INDUCTION OF DECISION TREES

We can also easily perform decomposition of a decision tree induction algorithm
using minimization of average entropy because entropy computation depends only
on various tuple counts being obtained from the participating databases.

Various tree induction algorithms [7, 22], modeled after Quinlan’s entropy-
based tree-induction algorithms start by considering the complete dataset D be-
longing at the root of the tree and then repeating the following steps until all or
a large majority of tuples at each leaf node of the tree belong to some unique
class.

1. Pick one such dataset at a leaf node, some large fraction whose tuples belong to
different classes.

2. Select an attribute aj , having m distinct values: aj1, aj2, . . . , ajm. The attribute
that results in minimum average entropy for the resulting partitions is chosen.
This entropy value can be computed by the decomposition primitives described
above, mainly the counts with various conditions placed on tuples for determin-
ing the appropriate probability values.

3. Split D into m distinct partitions such that the kth partition contains only those
tuples for which aj = ajk.

4. The m distinct partitions are added to the tree as child datasets of the par-
titioned parent dataset. These child nodes reside at the end of m branches
emanating from the parent node.

In the preceding discussion we have included the complexity of performing decom-
position of each computational step in terms of the number of messages to be ex-
changed among the nodes. We show below an expression for the number of mes-
sages that need to be exchanged among the stationary agents by transferring only
one hi(Di, S) summary at a time for generating a simple decision tree using en-
tropy minimization at each step and dealing with the implicit set of tuples. Let us
say:
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• There are n databases, D1, D2, . . . , Dn, residing at n different network sites.

• There are k attributes in set S of shared attributes. Each attribute in this set
appears at more than one site.

• There are m distinct attributes in D (
⋃i=n

i=1 Ai) combined.

• There are l possible discrete values for each attribute in set S.

The informational entropy that is computed by the algorithm at each leaf node of
the growing tree is given by the expression

E =
m
∑

b=1

(

Nb

Nt

×

(

∑

c

−
Nbc

Nb

log
Nbc

Nb

))

(7)

where Nb is the total number of tuples in the database at a parent node of the tree,
Nb is the number of tuples at a child node, and Nbc is the number of tuples in Nb

that belong to class c.
Complexity: To evaluate the entropy for an implicit database D once, we need

to compute the following quantities:

• one Nt count;

• l ∗Nb counts; and

• l2 ∗Nbc counts.

The computation of each entropy value, therefore, requires an exchange of n ∗ lk+2

messages among the participating nodes. For a dataset at depth D in the decision
tree, the number of messages exchanged would be (md) ∗n ∗ lk+2. If we assume that
on the average the decision tree is akin to a filled l− ary tree with p levels, then the
total number of message-exchanges needed would be:

(

n ∗ lk+2
)

p
∑

d=0

(m− d) ∗ lp. (8)

The above expression gives an estimate of the number of messages to be exchanged
for constructing a decision tree using the decomposed version of the algorithm, but
assuming that only one integer value is exchanged per message.

However, using a more efficient implementation in which all the needed hi(Di, S)
values are requested from a node in a single message, we need only c∗n messages to
compute a count or a sum of products, where c is a constant and n is the number of
participating nodes. In this case, an entropy computation would require an exchange
of only l∗n messages and computation of d∗ l entropy values would require d∗ l∗ l∗n
messages to be exchanged. This is much more efficient than transferring a single
summary per message.

A mobile agent can perform all potential computations for a decision tree level
once it visits a data site. Therefore, a mobile agent would need to visit each site at
most as many times as is the depth of the intended decision tree. During each cycle
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of visits it will compute entropies for all nodes that can be split at the current level
of the tree. At the end of each cycle it will then compute the actual partitioning to
be performed and then it will continue with the cycle of visits for the next level of
the tree. It is greatly advantageous that a d-level decision tree can be learned by an
agent from distributed data by visiting each data site only d times.

5 SIMULATION RESULTS

We have performed a number of tests to demonstrate that counts of tuples, candidate
support levels, informational entropy values and mining association rules can be
computed in a distributed knowledge environment without moving all the databases
to a single site. These tests have been carried out on a network of workstations
connected by a LAN and tested against a number of databases of different sizes.
The algorithms have been tested on both test data and real life databases; both flat
files and relational databases like MySQL were used to test the algorithms. We have
implemented the algorithms using Java and RMI (Remote Method Invocation), and
used JDBC (Java Database Connectivity) to interface with the databases. This
was done to provide a standard interface and platform independence. We present
the results in the form of graphs, which provide a comparative analysis of when
the algorithms are run using the non-optimized version, i.e., sending one summary
per message, and using the optimized version, i.e., sending all the summaries for
a particular site in one message.

Figure 5 shows how the time taken to compute the total number of tuples (Ntotal)
in an implicit database D changes with the size of the individual database. As we
can see, when we exchange one summary per message, the time taken to compute
the count increases as the size of the database increases. However, when we use the
optimized method, the time taken to compute the count reduces considerably and
depends on the number of participating nodes.

Figure 6 shows how the number of messages exchanged between the coordinator
site and the remote sites varies with the number of tuples in the database. It can
be seen easily that the number of messages exchanged varies exponentially with the
size of the database when we send one summary per message. The result validates
the expression for the total number of messages exchanged as given above. However,
in the optimized version, when we receive all the summaries in a single message, the
number of messages exchanged was a constant depending upon the total number of
participating nodes.

Coming to the implementation of the Apriori Association Rules algorithm, we
see that Figure 7 gives an analysis of the time taken and the number of messages
exchanged between the learner and the remote sites for mining association rules in
distributed databases. We note that the graph of the distributed databases indicates
exponential complexity. This implies that although an algorithm can be decomposed
into sub-parts and run on distributed databases, it will typically incur an extra cost
in terms of total execution time and messages exchanged.
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Fig. 5. Time taken to calculate Nt for different database sizes
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Fig. 6. Number of exchanged messages to calculate Nt for different database sizes
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Fig. 7. Number of exchanged messages and time taken for rule mining in distributed
database
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Fig. 9. Number of Exchanged Messages to calculate entropy for different database sizes

Figure 8 shows the variation of the time taken to calculate entropy and the
number of tuples in a database. Similar to the analysis in Figure 7, we see that the
time taken to calculate entropy varies exponentially when only one summary is sent
per message. However, the computing time reduces significantly when using the
optimized version. Figure 9 shows the number of exchanged messages to calculate
entropy for different database sizes (unoptimized and optimized versions).

6 RELATED WORKS

There has been extensive research in algorithms for sequential and parallel architec-
tures [3, 4, 5, 8, 16]. The main focus of parallel and distributed algorithms has been
on systems of closely-coupled processors, where data can be easily shared by the pro-
cessors. The distributed knowledge environment, where data cannot be shared as
easily as a shared memory and must be transmitted over a wide-area network in the
form of small message packets, needs a set of network algorithms, which minimize
the traffic over the wide-area network.

References [8, 15, 14] offer an attractive approach to implementing modular and
extensible distributed computing systems. Each data site has one or more associated
agents that process the local data and communicate the results to the other agents
or to a Coordinator supervising agent that controls the behavior of the local agents.
In [21], a distributed system that takes advantage of data resource migration for
transaction processing in ATM networks has been proposed. The proposed system
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provides mechanisms to select the transaction processing method, to migrate data
resources in a way that reduces the time delay and message traffic in locating and
accessing them.

Central to our approach is a clear separation of concerns between hypothesis
construction and moving data, and extraction of statistics from data. This sepa-
ration makes it possible to explore the use of sophisticated techniques for query
optimization that yield optimal plans for gathering statistics from distributed data
sources under a specified set of constraints describing the query capabilities and
operations permitted by the data sources.

In our system, the computing agent at each node does not need to have any
uncertainty about the state of data or knowledge of other sites or computing agents.
The agent only needs to ask for their local results and it would be truthfully given the
needed information sought by other agents. However, this access can be restricted
to prohibit any actual data tuples flowing out of a site. All examples given in this
paper require only the results of very high level local computations from each site
and actual data tuples never leave a site. The goal of the agents in our formulation
is also to minimize the exchange of information among themselves for performing
the global computations.

Our algorithmic decompositions can be seen as regular data mining algorithms
being implemented by a number of coordinated agents either exchanging messages
among themselves or visiting participating nodes to gather results of local queries
and computations. Multi-agent systems research has addressed many issues relating
to the distribution of knowledge and processing capability over a loosely connected
communication network. In most of this work [10, 11, 13, 23], agents are modeled
as having only a limited view of the global resources and knowledge. The objective
of learning by each agent is that the whole society should converge to an optimal
operating point after each agent has individually learned about its own optimal
performance. In the work on multi-agent learning [23, 26, 27], most of the focus is
also on learning about the environment by observing the behavior of other agents in
the environment. In contrast, our approach is directed at systems where cooperative
agents freely access local results from other agents to evolve concepts from their
collective knowledge, while trying to minimize the communication of messages and
data among themselves.

Two of our examples in this paper relate to learning and data mining compu-
tations, which are widely investigated fields, and we have extensively examined [6]
the decomposability of decision-tree induction [7, 18, 19, 22] algorithms. Some other
work in distributed data mining [9, 20, 24] seeks to learn local models completely
and then resolve their differences at the central coordinating site. This is in con-
trast to our approach where we seek to decompose every primitive of the global
computation and then perform the decomposed steps at local sites. Algorithms
for association rules [1, 2] have become very popular, but are designed for cases
when the database resides on a single network site. We have adapted these algo-
rithms for distributed knowledge environments. Our focus is on decomposing each
primitive computational step of an algorithm and executing it for the same results
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that would have been obtained if the databases were to be moved to one single
site.

Database researchers have done much work towards the optimization of queries
from distributed databases [28]. Databases from which the transfer of large amounts
of actual data is not feasible cannot participate in distributed querying, but still may
be useful for participating in network algorithms by exchanging local summaries and
inferences. Intelligent Query Answering and Data Clustering in large databases have
been addressed in [12, 29], and their treatment is also limited to databases residing
and available at a single computer site.

7 CONCLUSIONS

We have demonstrated that agents can perform the integration of arbitrarily dis-
tributed data and knowledge for performing complex computations. Tasks such as
counting tuples in imagined Joins of distributed databases, computation of support
and confidence levels for candidate item-sets, and informational entropy values of
implicit databases can be computed by appropriately coordinating agent actions.
These actions are self-determined and self-controlled by the agents in response to
the varying sets of participating agents and arbitrary overlaps in the local datasets.
Also, for simple arithmetic computations, the number of messages to be exchanged
among the n participating agents does not exceed the order of n. This is very signi-
ficant because it gives us the scalability required for handling large databases. The
number of tuples at individual network nodes may keep on increasing but the number
of messages that need to be exchanged among the agents for a global computation
remains constant. We have demonstrated the adaptability of an association rule
learning algorithm, and an informational entropy-driven decision tree induction al-
gorithm. We have shown the complexity of performing these computations in terms
of messages that need to be exchanged among the stationary agents for performing
these computations. We have also analyzed the number of visits that a mobile agent
would need to make to each site for completing the global computation.

One very significant contribution of these results is that many mining and know-
ledge discovery tasks can be performed by agents on a number of databases residing
at different network nodes without having to move the databases to a single site and
the communication cost among the performing agents is also very low.
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