
Computing and Informatics, Vol. 26, 2007, 171–197

KNOWLEDGE DISCOVERY IN DATABASE:
INDUCTION GRAPH AND CELLULAR AUTOMATON

Baghdad Atmani

Leibniz Laboratory, IMAG

46 Av Felix Viallet, 38031 Cedex Grenoble, France

&

Department of Computer Science, Faculty of Science, University of Oran,

BP 1524 El M’Naouer 31000 Oran, Algeria

e-mail: baghdad.atmani@imag.fr

Bouziane Beldjilali

Department of Computer Science, Faculty of Science, University of Oran,

BP 1524 El M’Naouer 31000 Oran, Algeria

e-mail: bouziane.beldjilali@univ-oran.dz

Manuscript received 8 June 2006; revised 19 December 2006
Communicated by Prabhat Kumar Mahanti

Abstract. In this article we present the general architecture of a cellular machine,
which makes it possible to reduce the size of induction graphs, and to optimize
automatically the generation of symbolic rules. Our objective is to propose a tool
for detecting and eliminating non relevant variables from the database. The goal,
after acquisition by machine learning from a set of data, is to reduce the complexity
of storage, thus to decrease the computing time. The objective of this work is to
experiment a cellular machine for systems of inference containing rules. Our system
relies upon the graphs generated by the SIPINA method.

After an introduction aiming at positioning our contribution within the area of
machine learning, we briefly present the SIPINA method for automatic retrieval of
knowledge starting from data. We then describe our cellular system and the phase

of knowledge post-processing, in particular the validation and the use of extracted
knowledge.

The presentation of our system is mostly done through an example taken from
medical diagnosis.

172 B. Atmani, B. Beldjilali

Keywords: Symbolic system, induction graph, automatic training, cellular au-

tomaton, rule extraction, medical diagnosis

1 INTRODUCTION

Many medical organizations collect and manage increasingly large and bulky masses
of information [8, 18, 21, 27, 30]. This increasing number of large databases are
seldom exploited for extracting new knowledge on various phenomena or simply
to clarify decisions [14]. Knowledge discovery from database (KDD) [9, 14, 36] is
a recent concern in data-processing research. In addition to the discovery of new
knowledge, the techniques of knowledge extraction [12, 17, 19, 20, 24] can contribute
to the implementation of expert systems, by reducing the cost and the difficulty of
traditional techniques of knowledge acquisition from human experts.

A solution to this problem is to design data-processing programs able to learn
and discover their own knowledge starting from practical examples [6]. In this
type of systems, the expertise is not provided any more by human experts, but is
built starting from data relating to the field. Knowledge extraction starting from
data relies upon the principles of machine learning [2, 25, 26] and uses supervised
inductive training methods [4, 19, 20]. Among these methods, we are interested
more particularly in those which are based on induction graphs [11, 15], because
the classification function is expressed by graphs which can be transformed into
production rules. However, the direct use of the rules extracted from an induction
graph [27, 28, 36] is not possible, for several reasons. On the one hand, production
rules are generally conjunctive and not disjunctive-conjunctive like those resulting
from an induction graph. In addition, since variables can appear several times in
the graph, the graphs obtained can then be of a large size and comprise redundant
and incoherent information. It is then necessary to simplify the graphs generated,
and consequently the outcoming productions rules [3, 7, 27, 36].

Within the framework of a medical project, we have been submitted a problem
concerning diabetic patients, with the purpose of designing an automatic system for
identification of the diabetes types. In order to propose a first automatic model of
prediction of the various diabetes types, we tried knowledge extraction using several
methods of KDD [19, 20, 22, 36]. We used, the regression model, discriminating
analysis, a multi-layer perceptron, four methods relying upon induction graphs (ID3,
C4.5, CART, SIPINA) and the system CHARADE [10]. Through a comparison of
the results of the various methods, it appears that induction graphs, and in particular
the SIPINA method [36], show better rates of classification with a low number of
rules.

Our contribution within the framework of this real application is twofold. On the
one hand, we propose a new method of representation and simplification of graphs
generated by the SIPINA method, with the detection and the elimination of useless
splitting-fusion parts. In addition, to feed the knowledge base of an expert system,

Knowledge Discovery in Database: Induction Graph and Cellular Automaton 173

we generate simple conjunctive rules starting from the optimal induction graph. In
response to the limitations of various approaches [3, 7, 27] to rules simplifications,
we propose our own cellular machine which makes it possible to eliminate redundant
and incoherent information in order to produce an optimal set of rules.

2 CHOSEN APPROACH FOR AUTOMATIC TRAINING

All along this paper, we take as an example the assistance to medical diagnosis. One
can consider two approaches [36]:

1. Training by heart: the knowledge that describes what has to be done in the
presence of some symptoms is introduced in the machine in the form of rules
collected from physicians. The system is endowed with an inference engine that
allows to use this knowledge in order to infer new facts.

2. Automatic training: in this case, knowledge is not provided by experts but
generated by the machine from already encountered situations. This is training
or automatic learning from examples or from data.

The problem with automatic learning from examples is to let this process induce only
correct classification procedures from correctly classified data. For example, from
a set of data about patients treated for diabetes, correctly stored by physicians, the
machine will try to determine diagnosis rules that are applicable to new patients
in order to determine if they are insulin dependent or not. Once validated, these
rules can be inserted into a running system. Following [36], the knowledge produced
by the machine, also called output of the automatic training, is not necessarily of
a logical nature, and it can take various forms: neuron networks, algebraic models,
geometric models, etc.

There are two main categories of techniques for achieving this [9, 14, 36]:

1. Symbolic techniques, based on knowledge of experts, in limited number, without
errors and ready for logical calculation.

2. Symbolic techniques with numerical induction from data, that learn from a nu-
merical representation of applicable information for training.

The approach that we propose here belongs to the second category. Using a cel-
lular automaton [1] cooperating with an induction graph (SIPINA method), our
cellular system permits to extract new knowledge from observed data. With the
goal of extracting applicable knowledge that reflects the reality and that will be
validated by experts of the domain, data or observations presented to the machine
are supposed to contain sufficient information to be generalizable, and rich enough
to cover as much cases as possible.

174 B. Atmani, B. Beldjilali

3 PRESENTATION FROM AN EXAMPLE

In a context of diabetic patients monitoring [8, 21, 27], setting up tools for accident
detection is not possible without considering the necessary role that the physician
must have. The aim is to design a system for assisted monitoring and diagnosis that
will provide specialists with the necessary information for identifying the diabetes
type of patients.

Let Ω = {ω1, ω2, . . . , ωp} be the population of diabetic patients taken into ac-
count for the training. An attribute is associated with this population, called en-
dogenous variable (also called explicative variable or class attribute), denoted C.

A class C (ω) can be associated with every individual ω. The endogenous vari-
able C takes its values in the set IC of class identifiers.

C : Ω→ IC = {c1, c2, . . . , cm}
ωi 7→ C(ωi) = cj

In the example, the aim is diagnosing a possible insulin dependence. This will
be designated by an endogenous variable C : Ω → {1, 2}, where class 1 contains
all insulin dependent patients (diabetes of type I), and class 2 the non dependent
patients (diabetes of type II). The objective is to define a function ϕ for predicting
the class C, thus the detection of possible accidents. The determination of the
prediction model ϕ, which is the goal of the training, is bound to the hypothesis
that the values taken by the endogenous variable C are not at random, but depend
upon certain individual situations, called exogenous variables that are determined
by the expert.

The exogenous variables concerning an individual constitute a tuple of attribu-
tes:

X = (X1, X2, . . . , Xn) .

The exogenous variables take their values in a set IM of mode identifiers:

X : Ω→ IM

X (ω) = (X1 (ω) , X2 (ω) , . . . , Xn (ω)) .

The value taken by Xj (ω) is called the modality of the attribute Xj for ω. In our
case the exogenous variables are summarized in Table 1.

Updating ϕ requires two samples denoted Ωa and Ωt, which are subsets of Ω. The
first one, Ωa, used for training, will serve for the construction of ϕ. The second one,
used for test, will serve for testing the validity of ϕ. For all patients ω ∈ (Ωa ∪ Ωt)
we assume that both the values X (ω) and the class C (ω) are known.

We also define Ωe, the set of individuals in Ωt (patients) not correctly classified
during the test of the symbolic training.

Knowledge Discovery in Database: Induction Graph and Cellular Automaton 175

Exogenous Var Semantics Values

X1 Seniority > 35; ≥ 15 and < 30; unspecified

X2 How revealed Spontaneous; Infectious;
Glycemy unbalance; Recent

X3 Weight Normal; Skinny; Obese;
Overweight

X4 Viral Infection Yes; No

X5 State Weight loss; No Weight loss

X6 Association Relation with auto-immune illness;
No relation

X7 Circumstance of discovery Diabetic feet; Fortuitous; Infection;
Retinopathy; Comas; Inaugural;
Cetosic coma

X8 Asthenia Yes; No

X9 Antecedent Family; Personal; No Antecedent

X10 Sex Feminine, Masculine

Table 1. Exogenous variables, semantics and possible answers

4 GENERAL PROCESS OF TRAINING

The general process of training followed by our cellular system CASI (Cellular Au-
tomaton for System Inference) is organized in five stages:

1. Symbolic training by the SIPINA method;

2. Induction graph generation by the cellular automaton;

3. Induction graph optimization;

4. Conjunctive rules generation by the cellular automaton;

5. Validation by the cellular automaton.

Figure 1 summarizes the general diagram of our system.

4.1 Symbolic Training by the SIPINA Method

With the help of the sample Ωa we start the symbolic treatment for the construction
of the induction graph (SIPINA method) [35]:

1. Set the measure of uncertainty;

2. Set parameters: λ, µ and the initial partition S0;

3. Apply the SIPINA algorithm for going from partition Si to Si+1 and generate
induction graph;

4. Generate prediction rules [27] [28].

The parameters λ, µ, the partitions and all other notions used in this process
are introduced by means of examples and defined in the following paragraphs.

176 B. Atmani, B. Beldjilali

CASI

COG

=
Cellular

Optimization
and Generation

CIE

=
Cellular

Inference
Engine

CV
=

Cellular
Validation

SIPINA

Automatic
Symbolic
Training

User Interface

Human Expert User

Knowledge Base
Facts and Rules

1

2
3

4 5

aΩ
tΩ

eΩ

Fig. 1. General diagram of our system

4.1.1 Definition of a Partition Through an Example

The SIPINA method is a heuristic for the construction of a non arborescent induction
graph [36]. Its principle consists in performing a succession of stages of fusion and/or
splitting of nodes in the graph. Let us suppose that our training sample is composed
of 15 diabetic patients belonging to two classes 1 and 2 (Table 2).

The initial partition S0 includes only one element denoted s0 that contains the
sample, with 10 individuals belonging to class 1 and 5 belonging to class 2. The
next partition S1 = (s1, s2, s3) is generated by the variable X1. The individuals in
node si are defined as follows: s1 = {ω ∈ Ωa|X1 (ω) = 0}, s2 = {ω ∈ Ωa|X1 (ω) = 1}
and s3 = {ω ∈ Ωa|X1 (ω) = 2}.

As in s0, one distinguishes in s1, s2 and s3 individuals of classes 1 and 2 respec-
tively. Figure 2 summarizes the construction stages of s0, s1, s2 and s3.

From partition S1, the process is iterated looking for a partition S2 that would
be better according to some criteria.

4.1.2 Measure of Quality of a Partition

The objective of the SIPINA method is to optimize a criteria τλ, called variation of

uncertainty, during the transition from Si to Si+1, defined by ∆τ
(i+1)
λ = τ

(Si)
λ −τ

(Si+1)
λ .

Let λ be a positive and non zero parameter. For the calculation of τ
(Si)
λ , one can

use several functions constructed from uncertainty measures, like:

Knowledge Discovery in Database: Induction Graph and Cellular Automaton 177

Ωa CLASS X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

ω1 1 0 2 2 0 0 0 1 0 2 1

ω2 1 2 2 0 1 0 0 1 0 2 0

ω3 1 2 2 0 0 1 0 1 0 2 0

ω4 1 0 2 0 0 1 0 1 0 2 0

ω5 1 0 0 2 0 0 0 1 0 2 0

ω6 1 0 2 0 0 0 0 1 0 2 0

ω7 1 0 2 0 0 0 0 1 0 2 0

ω8 1 0 2 0 0 0 0 1 0 2 1

ω9 1 0 1 0 0 0 0 1 0 2 0

ω10 1 0 1 0 0 0 0 1 0 2 0

ω11 2 1 0 1 1 0 1 6 1 2 0

ω12 2 1 3 1 1 0 1 6 1 2 0

ω13 2 1 0 1 1 1 1 6 1 2 0

ω14 2 1 2 0 0 1 0 6 0 2 0

ω15 2 1 0 1 0 1 1 6 1 2 0

Table 2. Example of training sample

Partition S0

Partition S1

10

5

s0

 Class 1

 Class 2

X1 =2

s3

X1 =0

s1

8

0

2

0

 Class 1

Class 2

 Class 1

 Class 2

X1 =1

s2

0

5

 Class 1

 Class 2

Fig. 2. The construction stages of s0, s1, s2 and s3

• the Shannon entropy:

τ
(Si)
λ =

K
∑

j=1

n.j

n

(

−
m
∑

i=1

nij + λ

n.j +mλ
log2

nij + λ

n.j +mλ

)

• or the Quadratic entropy:

τ
(Si)
λ =

K
∑

j=1

n.j

n

(

−
m
∑

i=1

nij + λ

n.j +mλ

(

1−
nij + λ

n.j +mλ

))

where:
nij: size of the population coming from class ci, which is at node sj;
ni.: total size of the class ci;

178 B. Atmani, B. Beldjilali

n.j: total size of node sj;
n: total size of Ωa;
m: number of classes;
K: number of nodes sj .

In our example, the distribution T1 of individuals for K = 3 and m = 2 in
partition S1 (Table 2) is represented in Table 3. We can deduce, for n11 = 8 and
n21 = 0, that the majority class of the node s1 is c1.

T1 s1 s2 s3 Total

c1 n11 = 8 n12 = 0 n13 = 2 n1. = 10

c2 n21 = 0 n22 = 5 n23 = 0 n2. = 5

Total n.1 = 8 n.2 = 5 n.3 = 2 n = 15

Table 3. The distribution T1

Setting the parameter λ. The parameter λ of the uncertainty measure controls
the construction of the graph by penalizing partitions having many nodes with low
population, thus favoring the fusion of such nodes.

The value of λ can be set arbitrarily to 1 or 2, but it can also be determined
in an optimal way. The solution proposed by Zighed [36] is to define a node of low
size. The value of λ is such that among all possible distributions Tk of µ individuals
on m classes we have:

λ = max

(

λ (m− 1)
2µ2 + 2µ+mλ+ 2µmλ

(µ+mλ)2 (µ + 1 +mλ2)

)

.

For a simple example m = 2 and µ = 2, the optimal value will be λ = 0, 61098.

Setting the value of µ. There exist two strategies to determine the minimal size
µ of a node. The first one consists in asking the user to give the minimum number of
individuals that every node should include. The second one consists in calculating
this number while adopting a statistical view point.

The size of the training sample is n = ne + nc where ne is the number of
individuals in the class of examples, and nc the number of individuals in the class
of counter examples. Let s be a terminal node of the induction graph whose total
size is ns = nse + nsc. The value of µ for a critical threshold α0 = 0.05 is then:

µ = ns = − log (α0)×
(

n

nc

)

4.1.3 How to Go from Partition Si to Si+1

Let us consider the example of Figure 2. Partition S1 includes three elements s1, s2
and s3. Going from partition S1 to partition S2 is done in three phases:

Knowledge Discovery in Database: Induction Graph and Cellular Automaton 179

Fusion. One can note that from S1 we can generate only one partition by fusion.
This phase consists in gathering the nodes belonging to S1 for generating only

one node in S2 while optimizing the criteria τ
(S2)
λ .

If the gain on the uncertainty τ
(S2)
λ − τ

(S1)
λ is positive, then S2 is generated.

Otherwise, go to phase 2. Note that the fusion is always done between two nodes:
if there were three nodes s1, s2 and s3, three partitions could be generated by
fusion (two by two) and we would choose the one that maximizes τλ.

Fusion-splitting. As in phase 1, fusions are done between all pairs of nodes. On
every node produced by a fusion we search for the best admissible partition by
splitting all variables Xi.

For example, with three nodes in S1 and three variables, we generate three
different partitions for each of the three nodes coming from the fusion in S2,
which gives nine possible partitions. Among all admissible partitions, we then
keep those that lead to the best gain on the uncertainty.

Splitting. On every s ∈ Si, we look for the best admissible partition by splitting
all exogenous variables, and we keep the one that optimizes τλ.

Figure 3 summarizes the different phases.

 Splitting 10

5

s0

X1 =2

s3

X1 =1

s2

X1 =0

s1

X4 =0

s4

X4 =1

s5

s6

X5 =0

s8

X5 =1

s9 s7

s10

X10 =0

s11

X10 =1

s12

 Fusion

 Fusion-splitting

Fig. 3. Going from partition Si to Si+1

180 B. Atmani, B. Beldjilali

4.1.4 Generation of Rules

At the end of the symbolic treatment, we can generate the rules coming from the
decision tree (graph). Let us consider the graph of Figure 3 as if it was a final
induction graph, without worrying about checking the details of all calculations
that lead to this graph. At that point, we can deduce three prediction rules R1,
R2 and R3 that have the form if condition then conclusion, where condition is
a logical expression in disjunctive-conjunctive form and conclusion is the majority
class in the node reached by the condition. For example, in Figure 2, the majority
class of s1 is 8 (class 1), but the majority class of s2 is 5 (class 2).

R1: if ((X1 = 1) or (X1 = 2)) and (X5 = 1) then majority class of s9.

R2: if (((X1 = 1) or (X1 = 2)) and (X5 = 0) and (X10 = 0)) or ((X1 = 0)
and ((X4 = 0) or (X4 = 1)) and (X10 = 0)) then majority class of s11.

R3: if (((X1 = 1) or (X1 = 2)) and (X5 = 0) and (X10 = 1)) or ((X1 = 0)

and ((X4 = 0) or (X4 = 1)) and (X10 = 1)) then majority class of s12.

4.2 Induction Graph Generation by the Cellular Automaton

4.2.1 Definition of the Cellular Automaton [33, 34]

A cellular automaton is a grid of cells which change their state in discrete steps.
After each step, the state of each cell is modified according to those of its neighbours
before that step. The cells are updated in a synchronous way and the transitions are
carried out, in theory, simultaneously [29]. By observing simple rules and specific
transitions, a cellular automaton can carry out, in a global way, rather complex
operations [5, 13, 23, 31, 32]. Some of the key concepts for cellular automata are
the following:

Configuration: The global state of the cellular automaton is composed of the
states of all its cells and is called the configuration of the cellular automaton.

Vicinity: The next state of each cell depends on the current state of its neighbours.
The transition from one configuration of the automaton to the next is the con-
sequence of the local transitions of all cells. The vicinity of a cell defines the set
of its neighbours whose states are taken into consideration for each transition.

Parallelism: All the cells constituting the cellular automaton are updated in a si-
multaneous and synchronous way.

Determinism: For each cell, the new state is determined by the state of its vicinity
only.

Homogeneity: All cells use the same transition rule to determine their next state.

Discretization: A cellular automaton behaves in discrete time steps from one state
to the next.

Knowledge Discovery in Database: Induction Graph and Cellular Automaton 181

A cellular automaton can be described by the following four components:

Dimension: There is no limit to dimensions, but in practice one uses automatons
with 1, 2 or, 3 dimensions.

Vicinity of a cell: This defines the set of neighbour cells whose state will be taken
into consideration for deciding on the next state of each cell.

State space: This is the finite set of states that a cell can be in.

Transition function: This is the set of rules which determine the new cell state
according to its preceeding state and the preceeding states of the cells in its
vicinity.

4.2.2 Cellular Inference Engine (CIE)

We consider a cellular automaton made of two finite arbitrary long layers of finite-
state machines (cells), all identical. The operation of the system is synchronous,
and the state of each cell at time t+1 depends only on the state of its vicinity cells,
and on its own state at time t.

The behavior of a knowledge base can be represented by such a cellular au-
tomaton with two layers. A first layer, called CELFACT, represents the fact base,
and a second layer, called CELRULE, represents the rule base. In each layer, the
contents of a cell determines whether and how it participates in each inference step:
at every step, a cell can be active or passive, can take part in the inference or not.
We assume that there are l cells in the layer CELFACT, and r cells in the layer
CELRULE.

Notations and definitions. The states of cells are composed of three parts: EF ,
IF and SF , and ER, IR and SR which are the input, internal state and output
parts of the CELFACT cells, and of the CELRULE cells, respectively. The internal
state of a CELFACT cell indicates the fact role: in our example IF = 0 corresponds
to a fact of the form si, IF = 1 corresponds to a fact of the form Xi = k. In
a CELRULE cell, IR can be used as a probability coefficient. We will not use it in
our example.

Any cell i in the CELFACT layer with input EF (i) = 1 is regarded as repre-
senting an established fact. If EF (i) = 0, the represented fact has to be estab-
lished. Any cell j of the CELRULE layer with input ER(j) = 0 is regarded as
a candidate rule. When ER(j) = 1, the rule should not take part in the infer-
ence.

In order to illustrate the cellular automaton architecture and operation, let us
consider the part of the graph (see Figure 4) obtained using the partitions S0 = (s0),
S1 = (s1, s2, s3) and S2 = (s4, s5) of Figure 3. Figure 5 shows how the knowledge
base extracted from this graph is represented by the automaton layers CELFACT
and CELRULE.

Initially, all the cell inputs in the CELFACT layer are passive (EF = 0), except
those which represent the initial fact base (EF (1) = 1).

182 B. Atmani, B. Beldjilali

10

5

s0

X1 =2

s3

X1 =1

s2

X1 =0

s1

X4 =0

s4

X4 =1

s5

Fig. 4. The partitions S0, S1 and S2

Rule j : Premise : Conclusion :
Rule 1 if s0 then (X1= 0) and s1
Rule 2 if s0 then (X1= 1) and s2
Rule 3 if s0 then (X1= 2) and s3
Rule 4 if s1 then (X4= 0) and s4
Rule 5 if s1 then (X4= 1) and s5

a)

Fact i EF IF SF Rule j ER IR SR
Fact 1 s0 1 0 0 Rule 1 R1 0 1 1
Fact 2 X1= 0 0 1 0 Rule 2 R2 0 1 1
Fact 3 s1 0 0 0 Rule 3 R3 0 1 1
Fact 4 X1= 1 0 1 0 Rule 4 R4 0 1 1
Fact 5 s2 0 0 0 Rule 5 R5 0 1 1
Fact 6 X1= 2 0 1 0
Fact 7 s3 0 0 0
Fact 8 X4= 0 0 1 0
Fact 9 s4 0 0 0
Fact 10 X4= 1 0 1 0
Fact 11 s5 0 0 0
 CELFACT CELRULE

b)

Fig. 5. a) Knowledge base; b) Initial cellular automaton configuration

Let RE and RS be the input and the output incidence matrices, respectively:

• the input relation, noted iREj, is formulated as follows: ∀i ∈ [1, l], ∀j ∈ [1, r],
if (fact i ∈ Premise of rule j) then RE(i, j)← 1.

• the output relation, noted iRSj, is formulated as follows: ∀i ∈ [1, l], ∀j ∈ [1, r],
if (fact i ∈ Conclusion of rule j) then RS(i, j)← 1.

The incidence matrices RE and RS represent the input/output relation of the
facts and are used in forward chaining. One can also use RE as output relation
and RS as input relation for backward chaining. Notice that no cell in the vicini-

Knowledge Discovery in Database: Induction Graph and Cellular Automaton 183

ty of a CELFACT (or CELRULE) cell belong to the CELFACT (or CELRULE)
layer.

RE R1 R2 R3 R4 R5 RS R1 R2 R3 R4 R5
s0 1 1 1 s0
X1= 0 X1= 0 1
s1 1 1 s1 1
X1= 1 X1= 1 1
s2 s2 1
X1= 2 X1= 2 1
s3 s3 1
X4= 0 X4= 0 1
s4 s4 1
X4= 1 X4= 1 1
s5 s5 1

Fig. 6. Input/output incidences matrices

Finally, since there are l cells in the layer CELFACT, EF , IF and SF will
be considered as l-dimensional vectors (EF , IF , SF ∈ {0, 1}l). Similarly, since
there are r cells in the layer CELRULE, ER, IR and SR will be considered as
r-dimensional vectors (ER, IR, SR ∈ {0, 1}r). Figure 7 shows the general outline
of our cellular automaton.

RE RS

Facts layer Rules layer

CELFACT CELRULE

Input vicinity Output vicinity

Facts layer

Fig. 7. Cellular automaton for systems of inference

4.2.3 CIE Transitions Functions

Given a goal fact, the basic cycle of an inference engine, in forward chaining, tradi-
tionally operates as follows:

1. Search for applicable rules (evaluation and selection);

2. Choose one of these rules, for example R (filtering);

3. Apply and add the conclusion part of R to the fact base (execution).

184 B. Atmani, B. Beldjilali

The cycle is repeated until the goal fact is added to the fact base, or stops when no
rule is applicable.

The cellular automaton dynamics implements the CIE module (see Figure 1)
as a cycle of an inference engine made up of two local transitions functions δfact
and δrule, where δfact corresponds to the evaluation, selection and filtering phases,
and δrule corresponds to the execution phase.

• δfact transition function:

(EF, IF, SF, ER, IR, SR)→ δfact(EF, IF, EF, ER+ (RT
E · EF), IR, SR)

• δrule transition function:

(EF, IF, SF, ER, IR, SR)→ δrule(EF + (RS · ER), IF, SF, ER, IR,ER)

where the matrix RT
E is the transpose of RE.

We consider G0 as the initial cellular automaton configuration (see Figure 5) and
the ∆ = δrule ◦ δfact, as a global transition function: ∆(G0) = G1 if G0 → δfactG

′

0

and G′

0 → δruleG1. Let G = {G0, G1, . . . , Gq} be the configuration set of our cellular
automaton. The automaton evolution in discrete time steps from one generation to
the next is defined by the configuration sequence G0, G1, . . . , Gq, where Gi+1 =
∆(Gi).

As an example, let us try first to establish the fact s4 with the knowledge base
of Figure 5 and without using the cellular principle. Figure 8 unrolls the forward
chaining according to various modes:

• width synchronous mode, where all the candidate rules are triggered;

• width asynchronous mode;

• depth asynchronous mode.

Using our cellular automaton principle now, Figure 9 presents the two layers,
CELFACT and CELRULE, after evaluation, selection and filtering in synchronous
mode with the first transition law, δfact. After the application of the second transi-
tion law, δrule, we obtain the configuration G1(see Figure 10).

∆ constitutes a forward total transition law which transforms iteratively our
cellular automaton from an initial configuration into a final configuration (see Figu-
re 11).

Similarly, and with the same transition functions, our cellular machine can carry
out inferences in backward chaining. The only modification which should be made
consists in permutating, in the transition laws, the incidences matrices RE and RS.

4.2.4 Induction Graph Initialization by Cellular Automaton (COG)

For the construction of the induction graph, with the SIPINA method, and using
sample Ωa, we start the symbolic treatment of the CELFACT and CELRULE layers.

Knowledge Discovery in Database: Induction Graph and Cellular Automaton 185

Mode 1 : width synchronous
Cycle Set fact base evolution Rules

1 {s0} ∪∪∪∪ {(X1=0), (X1=1), (X1=2), s1, s2, s3} 1, 2, 3
2 {s0, (X1=0), (X1=1), (X1=2), s1, s2, s3} ∪∪∪∪ {(X4=0), (X4=1), s4, s5} 4, 5

Mode 2 : width asynchronous
Cycle Set fact base evolution Rules

1 {s0} ∪∪∪∪ {(X1=0), s1} 1
2 {s0, (X1=0), s1 } ∪∪∪∪ {(X1=1), s2} 2
3 {s0, (X1=0), s1, (X1=1), s2 } ∪∪∪∪ {(X1=2), s3} 3
4 {s0, (X1=0), s1, (X1=1), s2, (X1=2), s3} ∪∪∪∪ {(X4=0), s4} 4

Mode 3 : depth asynchronous
Cycle Set fact base evolution Rules

1 {s0} ∪∪∪∪ {(X1=0), s1} 1
2 {s0, (X1=0), s1} ∪∪∪∪ {(X4=0), s4} 4

Fig. 8. Forward chaining with various modes

Fact i EF IF SF Rule j ER IR SR
Fact 1 s0 1 0 1 Rule 1 R1 1 1 1
Fact 2 X1= 0 0 1 0 Rule 2 R2 1 1 1
Fact 3 s1 0 0 0 Rule 2 R3 1 1 1
Fact 4 X1= 1 0 1 0 Rule 4 R4 0 1 1
Fact 5 s2 0 0 0 Rule 5 R5 0 1 1
Fact 6 X1= 2 0 1 0
Fact 7 s3 0 0 0
Fact 8 X4= 0 0 1 0
Fact 9 s4 0 0 0
Fact 10 X4= 1 0 1 0
Fact 11 s5 0 0 0
 CELFACT CELRULE

Fig. 9. Configuration obtained with δfact

Fact i EF IF SF Rule j ER IR SR
Fact 1 s0 1 0 1 Rule 1 R1 1 1 0
Fact 2 X1= 0 1 1 0 Rule 2 R2 1 1 0
Fact 3 s1 1 0 0 Rule 2 R3 1 1 0
Fact 4 X1= 1 1 1 0 Rule 4 R4 0 1 1
Fact 5 s2 1 0 0 Rule 5 R5 0 1 1
Fact 6 X1= 2 1 1 0
Fact 7 s3 1 0 0
Fact 8 X4= 0 0 1 0
Fact 9 s4 0 0 0
Fact 10 X4= 1 0 1 0
Fact 11 s5 0 0 0
 CELFACT CELRULE

Fig. 10. Configuration G1 = ∆(G0) obtained with δfact(G0) and δrule(G0)

186 B. Atmani, B. Beldjilali

Fact i EF IF SF Rule j ER IR SR
Fact 1 s0 1 0 1 Rule 1 R1 1 1 0
Fact 2 X1= 0 1 1 1 Rule 2 R2 1 1 0
Fact 3 s1 1 0 1 Rule 2 R3 1 1 0
Fact 4 X1= 1 1 1 1 Rule 4 R4 1 1 0
Fact 5 s2 1 0 1 Rule 5 R5 1 1 0
Fact 6 X1= 2 1 1 1
Fact 7 s3 1 0 1
Fact 8 X4= 0 1 1 0
Fact 9 s4 1 0 0
Fact 10 X4= 1 1 1 0
Fact 11 s5 1 0 0
 CELFACT CELRULE

Fig. 11. Final configuration G2 after two synchronous iterations

To initialize the cellular automaton, the COG module (see Figure 1) uses three
procedures and proceeds as follows:

• set the measure of uncertainty (Quadratic or Shannon);

• set the parameters: λ, µ and the initial partition S0;

• i← 2; (row index)

• j ← 1; (column index)

• (EF, IF, SF)[1]← (0, 0, 0); (s0 initialization, see Figure 13)

• use the SIPINA method to go from partition Si to Si+1.

For going from partition Si to Si+1 the algorithm proceeds as follows:

Repeat

If Fusion possible then Fcell

else

if Fusion-splitting possible then FScell

else

if Splitting then Scell

else stop

In order to define the Fcell, FScell and Scell procedures, let us consider the
part of the induction graph (Figure 12) obtained using the partitions S0 = (s0),
S1 = (s1, s2, s3), S2 = (s4) and S3 = (s5, s6, s7).

Scell: The partition S0 includes one element s0. Assuming that splitting S0 is
possible, the Scell procedure finds in CELFACT the index of root s0, noted iroot
(iroot = 1 in this case) for initializing the input incidence matrix (RE[iroot, j]←
1), and repeats, for each modality of the attribute X1, the following steps:
create two cells in the CELFACT layer, create one cell in the CELRULE layer,
and initializes the output incidence matrix RS; for example (see Figure 13),
(EF, IF, SF)[2] ← (0, 1, 0) for a fact of the form X1 = 0, (EF, IF, SF)[3] ←

Knowledge Discovery in Database: Induction Graph and Cellular Automaton 187

X1 =2

s3

X1 =1

s2

X1 =0

s1

s4

s0

s5

X4 =0

s6

X4 =1

s7

Fig. 12. The partitions S0, S1, S2 and S3

(0, 0, 0) for a fact of the form s1 and (ER, IR, SR)[1] ← (0, 1, 1) for a rule
of the form if s0 then (X1 = 0) and s1. For each new cell creation in the
CELRULE layer, Scell initializes the output incidence matrix (RS[2, 1]← 1 and
RS[3, 1]← 1).

Fcell: The partition S1 includes three elements s1, s2 and s3. Assuming that the
fusion S1 into S2 is possible, the Fcell procedure, first searches the indices of s1
and s2 in CELFACT (or i1 and i2, i1 = 3 and i2 = 5 in Figure 13) and initializes
the input incidence matrix (for j = 4, RE[3, j] ← 1 and RE[5, j] ← 1). Then,
Fcell creates the s4 node in CELFACT with a new row index ((EF, IF, SF)[8]←
(0, 0, 0)), initializes the output incidence matrix (RS[8, j] ← 1) and creates a
new cell in CELRULE ((ER, IR, SR)[4]← (0, 1, 1)) for the rule if s1 and s2
then s4.

FScell: Using the Fcell and Scell procedures, FScell completes the CELFACT and
CELRULE layers and creates the S3 partition with nodes s5, s6 and s7. The
FScell procedure first uses Fcell for fusion and, then if splitting is possible, uses
Scell starting from the node obtained by fusion. In our case (see Figure 13),
Fcell first creates the s5 node in CELFACT with a new row index equal to
9 and the rule (ER, IR, SR)[5] ← (0, 1, 1) in CELRULE layer (for the rule if

s3 and s4 then s5). Then, Scell creates, stating from s5, four new cells in the
CELFACT layer (X4 = 0, s6, X4 = 1 and s7) and two cells in the CELRULE
layer ((ER, IR, SR)[6] for if s5 then (X4 = 0) and s6 and (ER, IR, SR)[7]
for if s5 then (X4 = 1) and s7.

188 B. Atmani, B. Beldjilali

CELFACT CELRULE CELFACT CELRULE CELFACT CELRULE CELFACT CELRULE
(0,0,0) [[[[1]]]] (0,0,0) [1] (0,1,1) [[[[1]]]] (0,0,0) [1] (0,1,1) [1] (0,0,0) [1] (0,1,1) [1]

 (0,1,0) [[[[2]]]] (0,1,1) [[[[2]]]] (0,1,0) [2] (0,1,1) [2] (0,1,0) [2] (0,1,1) [2]
 (0,0,0) [[[[3]]]] (0,1,1) [[[[3]]]] (0,0,0) [3] (0,1,1) [3] (0,0,0) [3] (0,1,1) [3]
 (0,1,0) [[[[4]]]] (0,1,0) [4] (0,1,1) [[[[4]]]] (0,1,0) [4] (0,1,1) [4]
 (0,0,0) [[[[5]]]] (0,0,0) [5] (0,0,0) [5] (0,1,1) [[[[5]]]]
 (0,1,0) [[[[6]]]] (0,1,0) [6] (0,1,0) [6] (0,1,1) [[[[6]]]]
 (0,0,0) [[[[7]]]] (0,0,0) [7] (0,0,0) [7] (0,1,1) [[[[7]]]]
 (0,0,0) [[[[8]]]] (0,0,0) [8]
 (0,0,0) [[[[9]]]]
 (0,1,0) [[[[10]]]]
 (0,0,0) [[[[11]]]]
 (0,1,0) [[[[12]]]]
 (0,0,0) [[[[13]]]]
Initialization S c e l l F c e l l F S c e l l

S0 S0

S1

S0

S1

S2

S0

S1

S2

S3

Fig. 13. Cellular automaton initialization

4.3 Induction Graph Optimization

In order to illustrate graph optimization and rules generation by the cellular method
using induction graphs, Figure 14 shows some possible useless splitting fusions cases.
The majority class is associated with each terminal node in the graphs of Figu-
re 14 a). We obtain as many rules as there are terminal nodes and, in each rule, as
many conjunctions as there are branches back to the root.

For example, the induction graph G3 of Figure 14 a) can be expressed by the
following set of rules:

R1: if ((X3 = 0) and (X2 = 0) and (X1 = 2)) or ((X3 = 1) and (X2 = 0)
and (X1 = 2)) then majority class of s8.

R2: if ((X2 = 1) and (X1 = 2)) then majority class of s5.

R3: if (X1 = 1) then majority class of s2.

R4: if (X1 = 0) then majority class of s1.

In knowledge discovery from database, the rules are generated from a training
sample and have a double objective of characterizing the classes of concepts, and
assigning a class to an example whose class is unknown. In the production rules
which we wish to generate, the condition is a conjunction of elementary propositions
made of an attribute, an operator (=, 6=, <, >, . . .) and an attribute value. The
conclusion consists of a particular proposition where the attribute relates to the class

Knowledge Discovery in Database: Induction Graph and Cellular Automaton 189

X1 =2

s3

X1 =1

s2

X1 =0

s1

s0

s6

X2 =1

s5

X2 =0

s4

X3 =1

s8

X3 =0

s7

s0

X1 =1

s2

X1 =0

s1

s3

X2 =2

s6

X2 =1

s5

X2 =0

s4

X3 =1

s8

X3 =0

s7

X1 =2

s3

X1 =1

s2

X1 =0

s1

s0

X2 =1

s5

X2 =0

s4

X3 =1

s7

X3 =0

s6

s8

G1 G2 G3

a)

X1 =2

s3

X1 =1

s2

X1 =0

s1

s0

X3 =1

s8

X3 =0

s7

s3

X2 =2

s6

X2 =1

s5

X2 =0

s4

X3 =1

s8

X3 =0

s7

X1 =2

s3

X1 =1

s2

X1 =0

s1

s0

X2 =1

s5

X2 =0

s4

G1 G2 G3

b)

Fig. 14. Some possible useless splitting-fusion cases

(for example diabetes I or II). It is possible to associate with each rule a coefficient
which defines the certainty, or probability, with which a class is predicted. After
data exploration, the cellular automaton assists the SIPINA method to generate
a decision graph. This graph is represented using only RE because, for such a type
of graph, the output matrix RS is elementary and does not even require an internal
representation.

Now, our simplification process is based on elementary propositional calculus
and uses the matrix RE . We show here the rules generation with detection of useless
splitting-fusion operations. This corresponds to seeking and eliminating propositions
of the from (A+A). By exploring RE our algorithm seeks the columns with a sum
greater than 1 (fusion rules). For each fusion rule, the algorithm checks if the nodes
taking part in this fusion were produced from the same node. Figure 15 shows the G3

190 B. Atmani, B. Beldjilali

RE R1 R2 R3 R4 R5 R6 R7 R8 RS R1 R2 R3 R4 R5 R6 R7 R8
s0 1 1 1 s0
s1 s1 1
s2 s2 1
s3 1 1 s3 1
s4 1 1 s4 1
s5 s5 1
s6 1 s6 1
s7 1 s7 1
s8 s8 1

a)

RE R1 R2 R3 R4 R5 RS R1 R2 R3 R4 R5
s0 1 1 1 s0
s1 s1 1
s2 s2 1
s3 1 1 s3 1
s4 s4 1
s5 s5 1

b)

Fig. 15. RE and RS of G3 graph before and after optimization

graph matrices RE and RS before and after the optimization procedure. We notice
that the algorithm has detected and eliminated the proposition (X3 = 0)+(X3 = 0)
which is equivalent, according to the RE matrix, to s4 = s6+s7, s6 = s8 and s7 = s8,
that is s4 = s8.

4.4 Generation of Conjunctive Rules

To automatically generate conjunctive rules we use same δfact and δrule transition
functions with the permutation of RE and RS. We suppose that all the facts of the
form Xi = k are established (EF=1). Going from the terminal nodes back to the
root, s0, and launching the cellular inference engine (CIE) in back chaining with
a depth asynchronous mode imposed by the form of RS, we follow the steps shown
in Figure 16.

We proceed in the same way with the graph of Figure 3 and after the elemination
of the X4 variable, we obtain the following conjunctive rules:

R1: if (X1 = 1) and (X5 = 1) then majority class of s9

R2: if (X1 = 2) and (X5 = 1) then majority class of s9

R3: if (X1 = 1) and (X5 = 0) and (X10 = 0) then majority class of s11

R4: if (X1 = 2) and (X5 = 0) and (X10 = 0) then majority class of s11

R5: if (X1 = 0) and (X10 = 0) then majority class of s11

Knowledge Discovery in Database: Induction Graph and Cellular Automaton 191

Cycle number Fact base evolution Rule number
1 {s5, (X2=1)} ∪∪∪∪ {s3} 5
2 {s5, (X2=1), s3, (X1=2)} ∪∪∪∪ {s0} 3
3 {s4, (X2=0)} ∪∪∪∪ {s3} 4
4 {s4, (X2=0), s3, (X1=2)} ∪∪∪∪ {s0} 3
5 {s2, (X1=1)} ∪∪∪∪ {s0} 2
6 {s1, (X1=0)} ∪∪∪∪ {s0} 1

Rule base :
if (X2=1) and (X1=2) then majority class of s5
if (X2=0) and (X1=2) then majority class of s4

if (X1=1) then majority class of s2
if (X1=0) then majority class of s1

Fig. 16. Generation of conjunctive rules

R6: if (X1 = 1) and (X5 = 0) and (X10 = 1) then majority class of s12

R7: if (X1 = 2) and (X5 = 0) and (X10 = 1) then majority class of s12

R8: if (X1 = 0) and (X10 = 1) then majority class of s12

The representation of this knowledge base by the cellular machine is illustrated
in Figure 17. Upon completion of this process, the cellular machine is ready to
launch the validation phase. By using the same guiding principle of an inference
engine and the same δfact and δrule transition functions, the cellular automaton
advances from a configuration to the next, for finally generating the set Ωe.

4.5 Validation Using the Cellular Automaton

Let us suppose that our test sample Ωt (Table 4) is composed of 10 diabetic patients
belonging to two classes 1 and 2, where class 1, diabetes of type I, is the majority
class of s9 and s11, and class 2, diabetes of type II, is the majority class of s12.
Figure 18 summarizes the validation of individual ω1.

After the rules optimization and generation by the cellular machine (SIPINA
coupled with CASI) and using the same δfact and δrule transition functions, the vali-
dation has been tested on several data bases of larger sizes: one with 150 individuals
containing only continuous variables, a second one of 2201 individuals containing
only discrete variables, and a third one of 2000 individuals containing the two types
of variables.

These experimentations have shown that the new graph representation and op-
timization leave the classification success unchanged, with a success rate of appro-
ximately 85%, whereas this reduces the graph size by more than 50%, as well as
the validation time and the number of descriptive variables. These results show not
only that one can generate in an optimal way the simple conjunctive production
rules starting from an induction graph, but also encourage the exploitation of this

192 B. Atmani, B. Beldjilali

Fact i EF IF SF Rule j ER IR SR
Fact 1 X1=0 0 1 0 Rule 1 R1 0 1 1
Fact 2 X1=1 0 1 0 Rule 2 R2 0 1 1
Fact 3 X1=2 0 1 0 Rule 3 R3 0 1 1
Fact 4 X5=0 0 1 0 Rule 4 R4 0 1 1
Fact 5 X5=1 0 1 0 Rule 5 R5 0 1 1
Fact 6 X10=0 0 1 0 Rule 6 R6 0 1 1
Fact 7 X10=1 0 1 0 Rule 7 R7 0 1 1
Fact 8 Class s9 0 1 0 Rule 8 R8 0 1 1
Fact 9 Class s11 0 1 0
Fact 10 Class s12 0 1 0
 CELFACT CELRULE

RE R1 R2 R3 R4 R5 R6 R7 R8 RS R1 R2 R3 R4 R5 R6 R7 R8
X1=0 1 1 X1=0
X1=1 1 1 1 X1=1
X1=2 1 1 1 X1=2
X5=0 1 1 1 1 X5=0
X5=1 1 1 X5=1
X10=0 1 1 1 X10=0
X10=1 1 1 1 X10=1
Class s9 Class s9 1 1
Class s11 Class s11 1 1 1
Class s12 Class s12 1 1 1

Fig. 17. Knowledges base of the figure 3 induction graph

new technique to optimize the size and time. This cellular automaton is now inte-
grated with the SIPINA method in order to have a complete autonomous device for
automated retrieval and validation of knowledge starting from data.

Ωt CLASS X1 X5 X10

ω1 1 1 1 0

ω2 1 2 1 1

ω3 1 1 0 0

ω4 1 2 0 0

ω5 1 0 1 0

ω6 1 1 1 1

ω7 2 1 0 1

ω8 2 2 0 1

ω9 2 0 0 1

ω10 2 0 1 1

Table 4. Example of test sample

Knowledge Discovery in Database: Induction Graph and Cellular Automaton 193

ωωωω10 ωωωω9 ωωωω8 ωωωω7 ωωωω6 ωωωω5 ωωωω4 ωωωω3 ωωωω2 ωωωω1 ���� ���� EF IF SF ER IR SR
1 1 0 0 0 1 0 0 0 0 X1=0 0 1 0 0 1 1

0 0 0 1 1 0 0 1 0 1 X1=1 0 1 0 0 1 1

0 0 1 0 0 0 1 0 1 0 X1=2 0 1 0 0 1 1

0 1 1 1 0 0 1 1 0 0 X5=0 0 1 0 0 1 1

1 0 0 0 1 1 0 0 1 1 X5=1 0 1 0 0 1 1

0 0 0 0 0 1 1 1 0 1 X10=0 0 1 0 0 1 1

1 1 1 1 1 0 0 0 1 0 X10=1 0 1 0

0 0 0 0 1 1 1 1 1 1 Class 1 0 1 0

1 1 1 1 0 0 0 0 0 0 Class 2 0 1 0

 CELFACT CELRULE

ωωωω10 ωωωω9 ωωωω8 ωωωω7 ωωωω6 ωωωω5 ωωωω4 ωωωω3 ωωωω2 ωωωω1 ���� ���� EF IF SF ER IR SR
1 1 0 0 0 1 0 0 0 0 X1=0 0 1 0 11 1 0
0 0 0 1 1 0 0 1 0 1 X1=1 11 1 11 0 1 1

0 0 1 0 0 0 1 0 1 0 X1=2 0 1 0 0 1 1

0 1 1 1 0 0 1 1 0 0 X5=0 0 1 0 0 1 1

1 0 0 0 1 1 0 0 1 1 X5=1 11 1 11 0 1 1

0 0 0 0 0 1 1 1 0 1 X10=0 0 1 0 0 1 1

1 1 1 1 1 0 0 0 1 0 X10=1 0 1 0

0 0 0 0 1 1 1 1 1 1 Class 1 11 1 0

1 1 1 1 0 0 0 0 0 0 Class 2 0 1 0

 CELFACT CELRULE

Fig. 18. Validation of ω1 by the cellular automaton

5 CONCLUSION

In the context of our guiding example, the diabetes data base, our results confirm our
assumption that it is possible to determine the relevant exogenous variables which
characterize the various types of diabetes. In this context, with a confirmation of
these results on larger examples, we could contribute to the construction of a cellular
expert system for the monitoring of diabetics patients and the prediction of diabetes
types.

Our new principle of representation also enabled us to test the performance of
our cellular automaton within the framework of real applications and not only on
artificial problems. We have shown that the induction graphs, illustrated by the
SIPINA method, constitute a very satisfactory tool for the extraction of knowledge
starting from data, by proposing a function of effective and explanatory classifica-
tion. The graph optimization and the automatic rules generation, by our automaton,
highlighted the possibility of feeding the knowledge base of a cellular expert system
and raised the problem of rules formalization and simplification.

Two competing objectives led us to propose a cellular automaton for the opti-
mization, generation, representation and use of a knowledge base. Indeed, we not
only wished to have an optimal knowledge base, but we also wished to improve
the construction of an expert system by proposing a new cellular technique. The

194 B. Atmani, B. Beldjilali

advantages of our method based on cellular automaton can be summarized as fol-
lows:

• Information-gathering and ordering is simple, in the form of binary matrices
requiring minimal pre-processing.

• The transition functions are easy to use, of low complexity, effective and robust
regarding extreme values. Moreover, they are well adapted to situations with
many attributes.

• The results are simple to include in and use by an expert system.

• The cellular model amounts to a simple set of transition functions and produc-
tion rules, which not only make it possible to describe the problem at hand but
also to build a classification function for class prediction.

• The incidence matrix, RE, facilitates the rules transformation into Boolean
equivalent expressions and makes it possible, thereafter, to rely on elementary
boolean algebra to test other simplifications.

In order to make the SIPINA method more general, by taking into account all
the data types, our cellular machine makes it possible to extend it and to take into
account the degree of certainty of a rule. This could be given either in a possibilist
way by experts of the field, or by an automatic calculation, and would be represented
in our machine by the rule internal state IR. Moreover, in order to use the SIPINA
method as a KDD method on gigantic size data bases, it appears interesting to use
the cellular automaton principle in order to take advantage of the possibilities of
parallelism within the SIPINA algorithms.

Taking into account the incremental and evolutionary character of the knowledge
extraction, in many fields, in particular in that of the diabetes characterization, it
appears necessary to equip the same device with rules inference, with capacities to
build its own expertise using various types of numerical tools and symbolic systems.
We think that a prospect for the current and future developments is the construction
of cellular expert systems, allowing the direct introduction of rules given by the
expert as well as their production starting from a data base, by symbolic training
systems containing induction graphs. Such systems would make it possible to benefit
from all the knowledge sources and forms available, by handling various knowledge
representations through several reasoning modes (front, back or mixed chaining).

Acknowledgements

I would like to express my gratitude to Philippe Jorrand who has significantly and
decisively contributed to improving the written presentation of this work.

Knowledge Discovery in Database: Induction Graph and Cellular Automaton 195

REFERENCES

[1] Atmani, B.—Beldjilali, B.: The Invocation of Front and Back Chaining Rules on
Cellular Automaton for Inference Systems Containing Rules. International conference
in data processing, University Of Amman, Jordani, July 8–9, 1997.

[2] Breiman, L.—Friedman, J.H.—Olshen, R.A.—Stone, C. J.: Classification
and Regression Trees. Technical report. Wadsworth International, Monterey, CA,
1984.

[3] Buen-Rodriguez, P.R.—Morales, E. F.—Vadera, S.: RuLess: A Method for
the Acquisition and Simplification of Rules. Proceedings of the Mexican International
Conference on Artificial Intelligence: Advances in Artificial Intelligence, Springer-
Verlag, London, UK, 2000, pp. 272–283.

[4] Cantu-Paz, E.—Kamath, C.: Induction Oblique Decision Tree with Evolutionary
Algorithms. IEEE Transaction on Evolutionary Computation, Vol. 7, 2003, No. 1,
pp. 54–69.

[5] Chopard, B.—Luthi, P. O.—Queloz, P.A.: Cellular Automata Model of Car
Traffic in a Two-Dimensional Street Network. Physica A. May 1996.

[6] Denis, F.—Gilleron, R.: Apprentissage Partir d’Exemples. Technical report.
Grappa – University of Lille 3, 1999.

[7] Duch, W.—Adamczak, R.—Grabczewski, K.: Methodology of Extraction, Op-
timization and Application of Logical Rules. Intelligent Information Systems VIII
Proceedings of the Workshop held in Ustroń, Poland, June 14–18 , 1999.

[8] Duhamel, A.—Picavet, M.—Devos, P.—Beuscart, R.: From Data Collection
to Knowledge Data Discovery – A Medical Application of Data Mining. Studies in
Health Technology and informatics, Vol. 84, 2001, pp. 1329–1333.

[9] Fayyad, U.—Shapiro, G. P.—Smyth, P.: The KDD Process for Extraction Use-
ful Knowledge from Volumes Data. Communication of the ACM, 1996.

[10] Ganascia, J.G.: Charade - A Study of the Learning Bias Semantics. European
Conference on Artificial Intelligence, ECAI, Munich, 1988.

[11] Herr, A.—Klomp, N. I.—Atkinson, J. S.: Identification of Bat Echolocation
Calls Using a Decision Tree Classification System. Complexity international, Vol. 4,
1997.

[12] Glymour, C.—Madigan, D.—Pregibon, D.—Smyth, P.: Statistical Inference
and Data Mining. Communication of the ACM, Vol. 39, 1996, No. 11, pp. 35–41.

[13] Kernerl, B. S.—Klenov, S. L.—Wolf, D.E.: Cellular Automata Approach to
Three-Phase Traffic Theory. Physica A. Nov. 2002.

[14] Kodratoff, Y.: The Extraction of Knowledge from Data, A New Topic for the
Scientific Research. Magazine electronic READ, 1997.

[15] Kohavi, R.—Quinlan, J.: Decision Tree Discovery. In Handbook of Data Mining
and Knowledge Discovery, Klosgen and Zytkow, Editors, 2002, pp. 267–276.

[16] Lebart, L.—Morineau, A.—Piron, M.: Statistique Exploratoire Multidimen-
sionnelle. Dunod, 2000.

[17] Lee, H.—Ong, H.: Visualization Support for Data Mining. IEEE Expert, Vol. 11,
1996, No. 5, pp. 69–75.

196 B. Atmani, B. Beldjilali

[18] Lee, I. N.—Lee, S. C.—Embrechts, M. J.: Important Variable Selection Tech-

niques with Multiple Solutions for Medical Information Applications. Medical Infor-
matics and the Internet in Medicine, Vol. 27, Dec. 2002, No. 4, pp. 253–266.

[19] Lee, S. J.—Sian, K.: A Review of Data Mining Techniques. MCB UP Ltd, Indus-

trial Management and Data Systems, Vol. 11, Feb. 2001, pp. 41–46.

[20] Lefebure, R.—Venturi, G.: Data Mining. Paris, EYROLLES, 2001.

[21] Liao, S. C.—Lee, I. N.: Appropriate Medical Data Categorization for Data Mining
Classification Techniques. Medical Informatics and the Internet in Medicine, Vol. 27,
Jan. 2002, No. 1, pp. 59–67.

[22] Lu, H.—Setiono, R.—Liu, H.: Effective Data Mining Using Neural Networks.
IEEE Transaction on Knowledge and Data Engineering, Vol. 8, 1996, No. 6,
pp. 957–961.

[23] Nandi, S.—Kar, B.K.—Chaudhuri, P. P.: Theory and Applications of Cellular
Automata in Cryptography. IEEE Transaction on Computers, Vol. 43, Dec. 1994,
No. 12, pp. 1346–1357.

[24] Olaru, C.—Wehenkel, L.: A Complete Fuzzy Decision Tree Technique. Fuzzy
Set and Systems, Vol. 138, 2003, No. 2.

[25] Quinlan, J. R.: Induction of Decision Trees. Machine Learning, 1986.

[26] Quinlan, J. R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

[27] Rabaseda, S.—Zighed, D.A.: Generation and Simplification of Rules in Graphs
of Induction. Acts of the 25th Symposium of the Economic Structures, Econometrics
and Data Processing, 1996, p. 7.

[28] Rakotomalala, R.—Zighed, D.A.: Feschet, Characterization of Production
Rules in a Process of Induction. Hermes Science Publication, Paris 1999.

[29] Schonfisch, B.—Roos, A.: Synchronous and Asynchronous Updating in Cellular
Automata. Biosystems, Vol. 51, 1999, No. 3, pp. 123–143.

[30] Sebban, M.—Mokrousov, I.—Rastogi, N.—Sola, C.: A Data Mining Ap-
proach to Spacer Oligonucleotide Typing of Mycrobacterium Tuberculosis, Bioinfor-
matics, Electronic Edition. Vol. 18, Feb. 2002, No. 2, pp. 235–243.

[31] Sirakoulis, G. C.—Karafyllidis, I.—Thanailakis, A.: A Cellular Automaton
Methodology for the Simulation of Integrated Circuit Fabrication Processes. Future
Generation Computer Systems, Vol. 18, Apr. 2002, No. 5, pp. 639–657.

[32] Wolf, D.E.: Cellular Automata for Traffic Simulations. Physica A, Vol. 263,
Feb. 1999, No. 1, pp. 438–451.

[33] Wolfram, S.: Theory and Application of Cellular Automata. World Scientific 1986.

[34] Wolfram, S.: Cellular Automata and Complexity. Perseus Books Group, 2002.

[35] Zighed, D.A.: SIPINA for Windows, ver 2.5. Laboratory ERIC, University of Lyon,
1996.

[36] Zighed, D.A. —Rakotomalala, R.: Graphs of Induction, Training and Data
Mining. Hermes Science Publication, 2000, pp. 21–23.

Knowledge Discovery in Database: Induction Graph and Cellular Automaton 197

Baghdad Atmani graduated in 1991 from the Department of

Computer Science in Oran (Algeria), and obtained his Master of
Science Degree in the same department in 1996. He is currently
a Ph.D. candidate in the Computer Science Department at the
University of Oran. His research interests include knowledge
discovery in databases, data mining, feature selection, neural
networks, and cellular automata. A substantial part of his recent
research was conducted in cooperation with the Laboratory of
Informatics of Grenoble, France.

Bouziane Beldjilali received his Ph.D. degree in computer

science from the University of Oran (Algeria), in 1996. He is
a professor in the Computer Science Department at the Univer-
sity of Oran. His research interests include formal specifications,
knowledge management, databases, artificial intelligence and au-
tomatic learning.

