
Computing and Informatics, Vol. 26, 2007, 345–366

DRAP-INDEPENDENT: A DATA DISTRIBUTION
ALGORITHM FOR MINING FIRST-ORDER
FREQUENT PATTERNS

Jan Blaťák, Luboš Popeĺınský

KD Group at Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno, Czech Republic
e-mail: xblatak@mail.muni.cz, popel@fi.muni.cz

Revised manuscript received 8 December 2006

Abstract. In this paper we present dRAP-Independent, an algorithm for indepen-
dent distributed mining of first-order frequent patterns. This system is based on
RAP, an algorithm for finding maximal frequent patterns in first-order logic. dRAP-
Independent utilizes a modified data partitioning schema introduced by Savasere
et al. and offers good performance and low communication overhead. We analyze

the performance of the algorithm on four different tasks: Mutagenicity prediction –
a standard ILP benchmark, information extraction from biological texts, context-
sensitive spelling correction, and morphological disambiguation of Czech. The re-
sults of the analysis show that the algorithm can generate more patterns than the
serial algorithm RAP in the same overall time.

Keywords: Frequent patterns, inductive logic programming, parallel and distribu-
ted data mining, propositionalization

1 INTRODUCTION

Frequent pattern mining is one of the most important data mining tasks [1, 29].
A frequent pattern is a conjunction of literals that covers at least n instances,
where n is a threshold value called the minimal frequency threshold, which is given
by the user. The number of covered instances is usualy called the support. Frequent
patterns have many potential applications, e.g. mining association rules [1], feature

346 J. Blaťák, L. Popeĺınský

construction [6, 16, 17, 40], propositionalization [27], and classification [28]. Because
of the fact that the number of frequent patterns can be huge, several techniques have
been developed to condense the theory. The two most important are closed [34, 42]
and maximal [29] frequent patterns. Closed frequent patterns are the most specific
patterns from classes obtained by splitting the set of all patterns frequent in a data
set according to their support such that each class contains only those patterns
which have the same support. In this paper we deal with the latter. A maximal
frequent pattern is a frequent pattern which cannot be specialized (i.e., enlarged by
adding a literal) without decreasing the coverage under the given threshold. Every
frequent pattern is a sub-pattern of some maximal frequent pattern and therefore the
number of maximal patterns is much lower than the number of all frequent patterns.

Many algorithms for finding frequent patterns from attribute-value or transac-
tional data – propositional data – have been developed since the introduction of
the Apriori algorithm [3], the first efficient algorithm for mining frequent patterns
and assocation rules. The algorithms utilize different search strategies and intro-
duce improvements that decrease the amount of memory used, the I/O operations
performed, and the computer time needed.

For more complex data, e.g. multi-relational, object-oriented data – otherwise
known as relational data [18] – only a few systems have been proposed, although
mining in such data has recently become more important. In most situations the
propositional representation is not expressive enough for describing complex data
such as molecules, DNA strings, spatio-temporal data, and texts. The first algorithm
for mining frequent patterns in relational data was Warmr [15] which was based
on the Apriori algorithm [3]. Although Warmr used several enhancements (e.g.,
query packs [7] for pattern evaluation), it was inadequate for mining in really large
or complex data (see, e.g., [12]). After Warmr, two new algorithms were presented
that tried to solve the bottlenecks of Warmr. The first, Farmr [32], uses a tree-
like data structure for storing patterns together with special data representation to
speed up coverage computation. The second, radar [12], solves the problems with
exorbitant memory requirements of both Warmr and Farmr. All these systems
search for all frequent patterns.

In previous work [5, 6] we presented RAP, a system for mining first-order ma-
ximal frequent patterns. RAP exploits the fact that many frequent patterns are
redundant, i.e. cover the same instances, and therefore are not important for the
user. RAP mines “interesting” maximal first-order frequent patterns (i.e. patterns
that are as different as possible) at first by utilizing different search strategies and
several pruning methods. By relaxing the pruning criteria the user can obtain all
frequent patterns.

Regardless of the search method or data structures used, no serial algorithm is
able to cope with really large amounts of data in reasonable time. This is because of
the limitations of computers, such as lack of operational memory or computational
power of current processors. Moreover, with the systems mentioned above it is
not possible to mine frequent patterns in distributed databases, e.g., data stored
in several different branches of a company. Therefore a great deal of attention has

dRAPi: A Data Distribution Algorithm for Mining First-Order Frequent Patterns 347

been paid recently to efficient parallel and distributed data mining algorithms.

In this paper dRAP-Independent (distributed RAP with independent compu-
tation), an algorithm for mining first-order frequent patterns in distributed data,
is presented. A “distributed” environment or system denotes a parallel system –
a collection of computers (computational nodes) which do not share any resources
(e.g., memory, bus, hard drives, or time). We have two objectives: to speed up
computation when a large amount of data is processed and to decrease the com-
munication overhead. We show that dRAP-Independent can find more frequent
patterns than RAP in the same overall time while the system uses only two rounds
of communication.

The task of frequent pattern mining is outlined in the next section. Parallel and
distributed algorithms for mining frequent patterns are described in Section 3. In
Section 4 the dRAP-Independent algorithm is introduced. Section 5 gives informa-
tion about experiments. A detailed analysis of dRAP-Independent performance is
given in Section 6. Summary and directions of future research are in Section 7.

2 FREQUENT PATTERN MINING

Frequent pattern mining was introduced by Agrawal et al. [1] as a problem to find
all subsets of I that are frequent. The symbol I denotes the set of all items that
can occur in a transactional database DT . A subset of I is frequent if is subsumed
by at least σ transactions from DT . The value σ is the minimal frequency threshold,
which is given by the user. This definition is appropriate only for data represented
as a transactional database or as a single relation. There are many problems, e.g.
data in chemistry describing the structure of organic molecules, that are difficult
to represent in this way. To be able to mine frequent patterns from such data it
is necessary to utilize more complex schema for representing and accessing data
and knowledge mined. Many techniques for processing complex data are already
available, e.g. relational, object-relational, object-oriented, and deductive databases.
The situation is more difficult in the case of the knowledge that is to be mined,
because database systems use different techniques for accessing data, e.g., SQL or
Datalog queries.

Mannila and Toivonen [29] defined frequent pattern mining as a theory extrac-
tion problem. For a given database D, a language L for expressing the properties
or defining subgroups of the data, and an interestingness predicate q for evaluat-
ing whether a sentence ϕ ∈ L defines an interesting subclass of D, the task is to
extract a theory, T h(L,D, q), such that T h(L,D, q) = {ϕ ∈ L | q(ϕ,D) is true}.
This definition is general enough for describing many data mining tasks. Frequent
pattern mining from a relational database may be defined as the task of finding
all SQL queries that select at least σ instances from a relational database D (the
criterion q).

In this work we use this definition. In our case the database D is a deductive
database. We define the language L as a subset of first-order logic. It consists of

348 J. Blaťák, L. Popeĺınský

conjunctions of atoms without function symbols. Each conjunction ϕ can be seen
as a Datalog query and we say that ϕ covers an example e ∈ D (denoted as
covers(ϕ, e)) if ϕ can be proved from D. Further, we define support of the query ϕ
as sup(ϕ,D) = |{e ∈ D | covers(ϕ, e)}|, i.e., the number of examples covered by ϕ.
The evaluation criterion q is satisfied for ϕ if support of the query is at least as high
as a given value σ.

We define a specialization/generalization relation between patterns in accord
with [29] and [15] as a partial order � on the patterns in L. We say that ϕ1 is
more general than the pattern ϕ2, if ϕ1 � ϕ2. We also say that ϕ2 is more specific
than ϕ1. In this paper the relation is defined as the θ-subsumption [31] and we
say that ϕ1 subsumes ϕ2 or ϕ1 is sub-pattern of ϕ2. The relation � is a monotonic
specialization relation with respect to q, i.e., if for a database D and ϕ, ψ ∈ L
is q(ψ,D) true and ϕ � ψ, then q(ϕ,D) is also true. This allows us to prune the
search space by not considering any specialization of patterns which are not frequent
(infrequent patterns). Finally, we can define maximal frequent pattern as a pattern
whose specializations are not frequent. Each frequent pattern is subsumed by some
maximal frequent pattern.

customer (allen). parent(allen, bill). buys(allen,wine).
customer (bill). parent(allen, carol). buys(bill , cola).
customer (carol). parent(bill , zoe). buys(bill , pizza).
customer (diana). parent(carol , diana). buys(diana, pizza).

Fig. 1. An example of a Prolog database

Example 1. Let D be a database as in Figure 1 ([15]) and the argument of the
predicate customer be an example (instance) identifier in D. The meaning of
the predicate parent(X, Y) is that X is mother or father of Y , and buys(X, Y)
means that X buys an item Y . Let us have a pattern ϕ defined as the formula
customer (X), parent(X, Y), buys(Y, pizza)1. This pattern succeeds for each cus-
tomer who is parent of the person Y that buys pizza. There are two such customers
in D (allen and bill), such that support of ϕ is 2. As an example of a specialization of
ϕ we can consider pattern customer (X), parent(X, Y), buys(Y, pizza), parent(Y, Z).
Its support is 1, because it holds only for customer allen.

3 PARALLEL AND DISTRIBUTED FREQUENT PATTERN MINING

Parallel and distributed algorithms for mining frequent patterns can be categorized
into three different groups, algorithms for distributing data, algorithms for distribut-
ing frequent patterns, and those which distribute both data and patterns. Another

1 The symbol “,” is used instead of ∧.

dRAPi: A Data Distribution Algorithm for Mining First-Order Frequent Patterns 349

criterion is the communication schema and the architecture of the system. The great
majority of systems use the master-worker architecture, in which a master assigns
work to workers. In the rest of this section we give an overview of the principal
algorithms for mining frequent patterns in propositional data. Further details can
be found in [24]. We pay special attention to the Partition algorithm of Savasere et
al. [38], which we have adapted for relational data. Then we describe the most im-
portant parallel ILP systems. Finally we describe the PolyFARM algorithm of Clare
and King [11], the only algorithm for parallel minig of relational frequent patterns.

Agrawal and Schafer [2] adapted the Apriori algorithm [3] for mining association
rules over distributed data and designed a Count Distribution (CD) algorithm. The
idea is that the computation of coverage can be done very efficiently if the data is
stored in the main memory. CD iterates candidate generation and evaluation steps
until no frequent pattern found in a previous iteration can be specialized without
decreasing its support under σ. In step k ∈ N each worker i ∈ {1, . . . , P}, where
P is the number of computational nodes, generates patterns of length k that are
frequent in Di. Subsequently, each node sends its patterns to each other node,
global support of all candidates is computed, and pruning is performed. Global
support of a pattern ϕ is computed as sup(ϕ,D) =

∑P

i=1
sup(ϕ,Di). Several variants

that slightly improve performance of CD have been proposed. None of them is
appropriate for mining in dense data (data with enormous number of non-maximal
frequent patterns), because all candidates have to be stored in the memory of each
worker. It is also difficult to achieve high workload balance.

In order to cope with memory problems Agrawal and Shafer [2] designed a Data
Distribution (DD) algorithm and Han et al. [23] proposed IDD (Intelligent Data
Distribution) which addresses the main problems of DD. Instead of splitting data
horizontally each computational node processes only a part of the set of candidates.
In the first step of each iteration k the candidates of length k are distributed among
nodes. Each node computes support of all its candidates and sends the information
to the other nodes. Subsequently, pruning is performed and frequent patterns are
processed in the next iteration. Good workload balance is achieved by assigning
an equal number of candidates to each node. The algorithm performs much better
than the CD algorithm when the number of computational nodes increases and very
fast communication is available. For long patterns the communication overhead
increases, which significantly decreases the performance of the algorithm.

Han et al. [23] developed a Hybrid Distribution (HD) algorithm which combines
both strategies, distributing the data and the candidates. Nodes are split into
several groups and the database is distributed over these groups. The candidates
are partitioned and processed by one node in a group. The HD algorithm achieves
much better performance than pure IDD and CD algorithms.

Konstantopoulos [26] adopted the ideas of the CD algorithm for learning first-
order classification rules. He implemented a parallel version of the Aleph2 classifier.
This algorithm performs – when a simple background knowledge is used – better

2 http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

350 J. Blaťák, L. Popeĺınský

than the serial one. The ILP classifier which distributes the database and also the
hypothesis space was proposed by Dehaspe and De Raedt [14]. Fonseca et al. [19]
implemented and compared several strategies for parallel rule learning, e.g., parallel
coverage testing (by analogy with CD), parallel exploration of search space (IDD),
and data parallel algorithm. They proposed a new algorithm, a pipelined data-
parallel algorithm [20], which achieved an excellent speed increase when it was used
for classification of three benchmark data.

3.1 Partition

Partition [38] is an algorithm for mining in horizontally fragmented data. The algo-
rithm splits data into partitions such that each partition can fit into main memory
and exploits the property that each pattern that is frequent in the entire database
has to be frequent in at least one partition.

The algorithm first splits the database D into P partitions. In the second step,
each node utilizes a level-wise algorithm (e.g., Apriori) for finding all patterns such

that sup(ϕ,Di) ≥ σ · |Di|
|D|

in partition Di, where i ∈ {1, . . . , P} and |Di| denotes the

number of instances in partition i. These patterns are denoted as locally frequent
patterns. After all locally frequent patterns are mined (all partitions are processed)
the set of all potentially frequent patterns (globally frequent patterns) is generated.
Lastly, a second pass over the database is performed to compute the support of these
patterns.

The advantage of Partition is that only two passes over data are needed. High
speed up can be obtained because the first step has no additional communication
overhead. Moreover, any algorithm for mining locally frequent patterns can be
utilized in Partition. To achieve the best performance it is necessary to minimize
the effect of data skew across the partitions. Also the size of partitions plays an
important role. Finding locally frequent patterns in a small data is fast, but a large
number of patterns that are not globally frequent can be generated.

3.2 PolyFARM

PolyFARM (Poly-machine First-order Association Rule Miner3) by Clare and
King [11] is a system for distributed mining in horizontally partitioned data. It
utilizes the same strategy as the CD algorithm and unfortunately inherits also its
disadvantages. PolyFARM is a prototype system written in the functional language
Haskell and uses Datalog for representing both the data and the found rules. It
allows the definition of Is-A hierarchies for values. A Beowulf4 cluster is utilized as
an underlying parallel environment.

The patterns are generated in three steps – generation of candidate patterns,
computation of local support of candidates in each data partition and merging the

3 http://www.aber.ac.uk/compsci/Research/bio/dss/polyfarm/
4 http://www.beowulf.org/

dRAPi: A Data Distribution Algorithm for Mining First-Order Frequent Patterns 351

information about support to obtain global support for all patterns. Each step is
performed by an independent module. There is one instance of a module Farmer for
generating candidate patterns and one module Merger for merging local supports.
The module Farmer acts as a master in the master-worker architecture. Merger
communicates with nodes running a Worker module that computes coverage of
candidates in a data partition. It prunes infrequent rules and sends the frequent
ones back to the node running the Farmer module.

4 dRAP FRAMEWORK

Relational data mining has become more important in recent years, because we need
to deal with very complex data which cannot be analyzed by propositional data
mining tools. Great attention is therefore paid to the design of efficient algorithms
for mining in multi-relational data. Nevertheless, there are still several problems
that serial systems have not yet been able to solve. In fact, there is no efficient
solution for mining long relational frequent patterns in large amounts of data or in
dense data (data containing many frequent patterns) because:

• processing candidates and auxiliary information exhausts all accessible resources,
especially memory.

• evaluation of candidates (coverage computation) consumes a great deal of time
by testing all possible instantiations of variables (especially if the tested candi-
date does not cover the tested example).

Another problem is that data may be stored in a distributed database and cannot
be stored on one node, e.g., data from several branches of some organization. In
that case no serial algorithm can be used directly.

In Section 1 we described RAP, an any-time algorithm for mining maximal
frequent patterns in first-order logic. RAP solves the first problem and can be
used for finding long patterns in dense data, but it cannot mine in really large
amount of data (gigabytes of data) in reasonable time. In the rest of this section
we propose a solution to the second problem, an efficient evaluation of candidates.
We describe dRAP-Independent an algorithm for distributed finding of maximal
first-order frequent patterns. It is based on the Partition algorithm of Savasere et
al. (cf. Section 3.1) and utilizes RAP for finding locally frequent patterns. dRAP-
Independent is also intended for searching interesting patterns like the RAP system
but by relaxing the pruning criteria it can generate all frequent patterns.

4.1 The dRAP-Independent Algorithm

The dRAP-Independent algorithm (cf. Figure 2) finds maximal frequent patterns
in three steps. In the first step the database is split into partitions. The obtained
partitions are used as input data for the serial RAP algorithm running on each
worker, and locally frequent maximal patterns (LFMP) are generated. The main

352 J. Blaťák, L. Popeĺınský

difference between Partition and dRAP-Independent lies in the last step. While the
former is designed to find all frequent patterns, the latter is intended to generate
only the maximal ones.

There may be two problems with a pattern from LFMP – 1) it is not globally
frequent, or 2) it is globally frequent but not maximal. Omitting the infrequent
patterns, as it is done in Partition, would decrease performance. Therefore, each
globally infrequent pattern generated in the second step is generalized – its longest
frequent sub-pattern is found. Because of the incomplete search used it is not possi-
ble to decide whether the found pattern is maximal or not. Additional specialization
steps need to be performed before the pattern is added to the set of globally frequent
maximal patterns (GFMP).

Algorithm: dRAP-Independent
Input: database D, list of computational nodes Nodes and the threshold σ

Structures: set of locally frequent maximal patterns (LFMP), set of globally
frequent maximal patterns (GFMP)
Output: the set of globally frequent maximal patterns GFMP

for each i ∈ Nodes do
generate partition Di of D and determine σi

end for

for each i ∈ Nodes do
generate locally frequent maximal patterns LFMP
(run the serial RAP algorithm on Di and σi)

end for

wait until all the nodes finish computation
for each pattern ϕ ∈ LFMP do

compute global support sup(ϕ,D) of ϕ
while sup(ϕ,D) < σ do

generalize pattern ϕ
(remove last literal from ϕ)
compute sup(ϕ,D)

end while

if (ϕ 6∈ GFMP) then

generate maximal pattern ϕs from ϕ
(run RAP system on D, σ and ϕ)
add ϕs into GFMP

end if

end for

Fig. 2. The dRAP-Independent algorithm

dRAPi: A Data Distribution Algorithm for Mining First-Order Frequent Patterns 353

4.2 Partitioning the Data

The information related to an example in relational data can be spread over several
relations, which makes splitting the data more difficult than in the propositional
case. Moreover, the examples may depend on each other. This means that for
counting coverage we need to process all examples. This setting is usually called
learning from entailment. An efficient method for splitting such data is not known.
Another setting is called learning from interpretations [13, 8]. Each example is
seen as an independent part of the database. In this setting it also may be quite
complicated to separate out all the information related to a particular example.
This is because new complex intensional predicates can be defined in the given
background knowledge. Therefore partitioning is often performed only on example
identifiers. An example of such an identifier is primary key in a relational database
(e.g., the predicate customer (X) in Example 1). This solution is not appropriate
for data which cannot fit into main memory.

In the past, it was believed that assigning examples into partitions randomly
would be sufficient and that it would not be necessary to pay special attention to the
method used for splitting data. This was because of the fact that by mining in large
volume of data it was expected each partition would contain a similar sample of data.
Cheung et al. [10] showed that this is not true. They presented the first in-depth
study of the impact of the method utilized for partitioning data on performance of
distributed frequent pattern mining. They defined two metrics for measuring dis-
similarity of generated partitions (skewness and a workload balance). High skewness
and workload balance resulted in higher performance of their Count Distribution
like algorithm, because a much smaller number of candidate patterns that cannot
be frequent were generated. They developed a fast simple algorithm which splits
data into partitions such that skewness and workload balance are maximized.

In this work, we use learning from interpretations and we also split only the set
of key identifiers. The algorithm assigns a subset of key identifiers to each node
randomly such that it preserves the same class distribution in all partitions.

4.3 Finding LFMP

One of the advantages of the Partition algorithm is that an arbitrary system for
finding locally frequent patterns can be utilized. This version of dRAP-Independent
uses the serial RAP algorithm. Distributing the computation does not result in
additional restrictions on the search and pruning strategy, so that it is possible to
mine all frequent patterns in the same manner as in the case of RAP. For further
details see [5, 6].

4.4 Generating GFMP

Merging information about support and dealing with globally infrequent patterns
have a crucial impact on performance of the algorithm. As we mentioned in Sec-

354 J. Blaťák, L. Popeĺınský

tion 4.1 it is not a good idea to omit all globally infrequent patterns. The locally
frequent maximal patterns are usually very long – they may consist of ten or more
literals. To generate such patterns is quite expensive and finding them usually takes
the major part of the time. While a pattern from LFMP may be globally infrequent,
some of its generalizations can be frequent. It is often sufficient to remove just one
or two literals from the pattern to increase its support over the given threshold.
Another problem which makes the generation of GFMP difficult is that there are lo-
cally frequent maximal patterns that are not maximal in the whole data. Therefore
it is necessary to specialize such patterns.

To generate the set of globally frequent maximal patterns dRAP-Independent
performs both transformations – generalization and specialization of LFMP. In the
first step all globally infrequent patterns that were generated in the second step
of the algorithm are generalized (the set of patterns obtained is called GFMPc –
GFMP candidates). In the second step the GFMPc set is given as an input to the
serial RAP algorithm. It specializes all elements such that just one maximal frequent
pattern is generated from each candidate pattern. Finally GFMP is created. This
version of dRAP-Independent performs these two steps on a single node. This is
inefficient and it decreases performance. To overcome this obstacle it is necessary to
utilize a message-passing interface library for Prolog, which was not available in the
time when dRAP-Independent was implemented. To integrate such a library into
the algorithm is one of goals of our future work.

We should remark here that there are many tasks for which the maximality of
a pattern is not important. An example of such a task is feature construction for
classification. In this case shorter patterns would be more useful than maximal ones.
Similarly, we can use all the patterns generated, not only the maximal ones (i.e., we
relax the support constraint). For example, it is not crucial when a pattern covers
299 examples instead of 300 if it is used as a new feature for classification. Therefore
the algorithm can skip both the generalization and the specialization steps.

4.5 Controlling the Execution

Because no communication among nodes is possible when locally frequent maximal
patterns are generated a situation may arise in which almost all computational
nodes have finished their work but the systems is waiting for a single node. The
reason is that the node has to process more complex examples, so that much longer
patterns or more patterns are generated. Moreover, in the first case the patterns
found usually are not globally frequent.

To cope with such a situation the dRAP-Independent algorithm allows the user
to define additional constraints, such a maximal length and number of patterns,
or maximal execution time. These are adopted from the RAP system. We defined
a new constraint, which handles the problem mentioned above. The user can specify
the maximal number of waiting nodes. The execution of nodes running the RAP
system is aborted if as many nodes have finished their work as the given value.

dRAPi: A Data Distribution Algorithm for Mining First-Order Frequent Patterns 355

5 EXPERIMENTAL EVALUATION

We had two objectives in the experimental evaluation – to analyze performance of
dRAP-Independent and to check whether distributed processing is useful for solving
real-world problems. In the first step mutagenicity prediction [39], a well-known
benchmark data, was used to analyze the performance of the algorithm. In the se-
cond phase, we utilized dRAP-Independent for propositionalization (cf. Section 5.1)
of three text mining problems (cf. [4]). In the rest of this section the propositiona-
lization problem is stated, an appropriate metric for measuring performance of the
algorithm is defined, and the solved tasks are described. The results of the analysis
are in Section 6.

5.1 Propositionalization

Learning discriminant functions can be realized by reformulating the relational prob-
lem into an attribute-value form and then applying an efficient propositional learner.
This process is usually called propositionalization [27]. In the attribute-value repre-
sentation, examples are usually represented as feature-vectors of a fixed size in the
form f1 = v1 ∧ f2 = v2 ∧ . . . ∧ fa = va, where fi are the features and vi the values.
A new feature is defined [27] as a conjunction of (possibly negated) literals

fi(X) : − Liti,1, . . . , Liti,ni
(1)

where i, ni ∈ N, X refers to an individual (a line in a relational table or exam-
ple) and ∀k ∈ N literal Liti,k is defined in background knowledge B. Dehaspe et
al. [16] showed that frequent patterns, especially frequent Datalog queries, can be
successfully used as new Boolean features. In that work, the body of the clause (the
right-hand side) in Equation 1 was replaced with a frequent pattern. The value of
a new feature was set to 1 for those examples which were covered by the frequent
pattern used and to 0 for all others.

5.2 Evaluation Criteria

A number of metrics for measuring performance of parallel algorithms have been
proposed (cf. [22]). The most common one is speed up, which captures the relative
gain of solving the problem in parallel. This is defined as the ratio between the time
consumed to solve the problem on a single processor (denoted as serial runtime, Ts)
and the time taken to solve the same problem on p identical processors (parallel
runtime, Tp). For both serial and parallel system the time elapsed between the
beginning and the end of execution is measured.

This definition of speed up is not appropriate for this work, because it does not
take into account the fact that the number of patterns mined may differ. We define
the speed up as

S =
Ts

Tp

·
Cp

Cs

,

356 J. Blaťák, L. Popeĺınský

where Ts and Tp denote the serial and parallel runtime and Cs/Cp is the number of
patterns found by using the serial/parallel algorithm.

5.3 Task Descriptions

It is known that the quality of a model generated by any ILP system strongly
depends on the background knowledge used. If the background knowledge is too
simple it is not possible to describe all the data dependencies well. Conversely, too
complex background knowledge can slow down the execution and make the system
unusable. We used different types of background knowledge to observe if and how
the performance of dRAP-Independent depends on its complexity. In this section
the data, background knowledge, and settings used are described.

5.3.1 Mutagenicity Prediction

The mutagenicity prediction task [39] is a well-known ILP benchmark used to mea-
sure and compare the performance of ILP systems. The goal is to build a model for
predicting whether a given chemical compound causes mutagenicity or not. Such
a model is usually called SAR (Structure-Activity Relationships). In our experiments
we used B4 – the most complex type of background knowledge for mutagenicity pre-
diction data. This contains information about atoms and their properties (partial
charges, values of ǫLUMO and LogP), bonds, definition of 2-D structures (rings)
and predicates for testing the connections between 2-D structures and atoms which
does not belong to any structure. We generated patterns that cover at least 25%
(43 from 169) molecules. The best-first search was utilized and each candidate pat-
tern ϕ was pruned whether a maximal pattern ψ such that ϕ was the prefix of ψ
was found already. The continuous values were discretized with equal frequency
discretization built in RAP.

5.3.2 Information Extraction from Biomedical Text

The information extraction (IE) task we solved was proposed at the Learning Lan-
guage in Logic 2005 (LLL055) workshop. The aim is to generate patterns which
describe gene-protein interactions from biomedical text. The dataset consists of
words, their lemmas, lists of morpho-syntactic relations in a sentence, agents, targets
and lists of interactions (pairs agent-target6). The data also contains a dictionary
of all named entities, i.e. candidate agents and targets. An example of a typical
sentence analysed is: “GerE stimulates cotD transcription and inhibits cotA tran-
scription in vitro by sigma K RNA polymerase, as expected from in vivo studies,
and, unexpectedly, profoundly inhibits in vitro transcription of the gene (sigK) that
encode sigma K.” It contains the following interactions: GerE-cotD, GerE-cotA,

5 http://www.cs.york.ac.uk/aig/lll/lll05/
6 http://genome.jouy.inra.fr/texte/LLLchallenge/

dRAPi: A Data Distribution Algorithm for Mining First-Order Frequent Patterns 357

sigma K-cotA, GerE-SigK and sigK-sigma K. There are 576 examples (103 positive,
473 negative interactions) in the data.

Each generated pattern begins with a literal that introduces two entities (genes
or proteins). The rest of the pattern consists of predicates for exploring words
which are syntactically related to these genes. The value of the minimal frequency
was 10% and the best-first search was employed. All frequent patterns up to the
length of four literals which were subsumed by some known maximal pattern were
pruned. The time of execution was limited to 15 minutes. The tests were performed
on 660 gene-protein pairs.

5.3.3 Context-Sensitive Text Correction

Classical spell checkers do not use context and therefore are not able to detect errors
such as a correct word being used in the wrong place. For example, in the sentence
“I’d like a peace of cake.”, the word peace is a correct English word but the intended
word was piece. The goal is to generate patterns which describe the context of
the misspelled words. We used a variant7 of the TDT28 corpus morphologically
tagged by Carlson et al. [9] with the SNoW-based part-of-speech tagger. The
whole corpus consists of about one million English sentences from six news sources.
For our experiments we selected the words among (7 119 occurrences) and between
(13 378 occurrences). The generated patterns consisted of literals which describe
properties (morphological category, etc.) of the five nearest words to the left and
right of the keyword. Two kinds of background knowledge were tested. In the
first (B1) the absolute position of the words from context was considered. The second
introduces words regardless of the absolute position of the word in the sentence.
Defined predicates represent the relative relation between two words (e.g., a word w1

is on the left/right of the word w2). The latter background knowledge (B2) is more
general, but computing the support of patterns is more time-consuming. Before
finding patterns we split the data into a training set (16 398 examples) and a test
set (4 999 examples). We set the minimal frequency threshold to the value of 10%
of the training set and restricted the mining time to 90 minutes.

5.3.4 Morphological Disambiguation of Czech

The last task we tackled was the morphological disambiguation of Czech [36]. For
purposes of testing and explanation, only the word je was processed. This word
has two readings9, which are: the pronoun them (e.g. “Vid́ım je.”, “I see them.”)
and the verb to be (e.g. “On je řidič.”, “He is a driver.”). For classifying we used
sentences from DESAM [33], an annotated corpus of Czech. Unambiguous data was
used for mining of frequent patterns and two versions of this data – unambiguous

7 http://l2r.cs.uiuc.edu/~cogcomp/Data/Spell/
8 http://www.ldc.upenn.edu/Projects/TDT2/
9 There is in fact a third reading of je – it can be an interjection. We ignore this, as it

does not occur in our data.

358 J. Blaťák, L. Popeĺınský

and ambiguous – were used for evaluating patterns. The second one was generated
by adding all possible grammatical readings to each word. We used the full range of
tags from the tagged DESAM corpus, which covers part-of-speech, gender, number,
and case. The contexts consisted of the two words closest to the word je to the left
and right.

The value of the minimal frequency threshold was set to 10% of the size of the
learning set and all prefixes of frequent patterns which had already been shown to be
frequent were pruned. We used 50 examples from each class (noun – k3, verb – k5)
when RAP was used and 200 examples when distributed mining on 4 nodes was
performed. Pruning criterion was relaxed for distributed mining. The pruning was
applied only to the patterns which consisted of 5 or more literals. The time of
execution of dRAP was shortened to be the same as in the serial case. None of the
training data contained any ambiguity. The evaluation of the generated models has
been performed on 300 unseen examples from each class. This data was ambiguous.

6 RESULTS

6.1 Mining Maximal Frequent Patterns

The experiments with mutagenicity prediction data were performed on 2, 4, 8
and 16 AMD AthlonTMXP 1600+ computers with 512MB of memory. The nodes
were connected with a one-hundred megabit Ethernet. We tested the impact of ad-
ditional time constraint to the speed up measure. The execution time was restricted
to 10, 20, . . . , 100% of the time consumed by the serial RAP algorithm for mining
patterns from the whole data.

The serial RAP system found 9 maximal patterns (3 of the length 4, 5 of the
length 5 and 1 pattern containing 7 literals) with the given settings. It performed
155 discretization steps, which consumed 20% of the execution time. The com-
putation of support of the candidate patterns took 76% of execution time. The
rest 4% were consumed by specialization of patterns (2%), pruning the candidate
set (1.2%), and loading the data. The whole execution took 53 seconds.

of patterns Speed up
Limit Interrupted LFMP GFP GFFPc gLFMP gGFMP

10% 8 30 16 (13) 6 18 6.7
20% 8 43 24 (20) 7 13 4.4
30% 8 54 29 (25) 9 11 3.1

40–50% 6 62 32 (27) 11 9–7 2.9–2.8
60–100% 2 73 35 (29) 12 6–4 2.6–2.2

Table 1. The results for mutagenicity prediction task solved on 8 nodes

The results obtained by running on 8 nodes are shown in Table 1. The first
column (Limit) shows the given value of the time limit. In the second column
the number of nodes constrainedly interrupted when the locally frequent maximal

dRAPi: A Data Distribution Algorithm for Mining First-Order Frequent Patterns 359

patterns were generated is given. The number of locally generated maximal frequent
patterns is in the column headed LFMP. The GFP column shows how many LFMP
patterns were globally frequent and maximal (the number in brackets). By genera-
lizing patterns from LFMP GFFPc patterns were obtained. All patterns found by
the serial and distributed algorithmwere different except for one. This was due to the
built-in discretization method. There were many common patterns that covered the
same structure of molecules, but they differed in the interval boundaries generated
for continuous values. The last two columns show the speed up obtained. Its value
for mining globally frequent maximal patterns – all the steps of dRAP-Independent
performed – is in the gGFMP column. When the last phase of the algorithm –
generalization and specialization steps – is omitted the speed up is much higher (see
column gLFMP).

By partitioning the data, almost twice as many globally frequent patterns (the
GFP column in Table 1) were found as by the serial algorithm in 10% of the serial
execution time. This means that the speed up factor is 18 for mining locally frequent
maximal patterns. The speed up decreases when all the steps are performed. Non-
linear speed up was achieved because the value of S is less than 8. The reason is
that the serial RAP is used for generalization and specialization of LFMP. Also,
by relaxing the time limit the speed up decreases. This is a result of the pruning
criteria used. Almost all nodes generate all the allowed patterns in the given time
and are left waiting for nodes processing dense data. By interrupting execution if
at least 6 nodes finish finding LFMP or by relaxing the pruning criteria the speed
up can increase.

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

limit (%)

RAP (GMFPc)

2
4
8

16

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

limit (%)

RAP (GMFP)

2
4
8

16

Fig. 3. The dependency of speed up S on the time limit

The dependency of the speed up on the time limit is shown in Figure 3. As we
can see, the first phase (generating LFMP) speeds up linearly if the execution time
is less than 30% of the serial time. If less than 16 nodes were used linear speed
up was obtained also for a 40% time limit. The whole execution speeds up linearly
only for two and four nodes (see the right graph in Figure 3). For large number of
nodes it is lower than 8 because of serial processing of the second phase and the
higher overhead of merging the patterns and their characteristics.

360 J. Blaťák, L. Popeĺınský

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8 9

node id

-- LFMP -- 8 nodes --

serial
loading

gen. refinements
discretizing

selecting ref.
chck. infreq

chck. known
comp. coverage

all

 0

 50

 100

 150

 200

 250

 300

 350

no100908070605040302010

limit (%)

-- GFMP -- 8 nodes --

Fig. 4. The relative time of the single steps of RAP measured for mining LFMP (left) and
GFMP (right) on 8 nodes. The value is compared to the time consumed by the serial
execution (denoted as 100).

In Figure 4 the time consumed by each step of RAP algorithm is shown. Its value
is relative to the time taken by the serial execution. The results given are for 8 nodes
with no time limit. The results obtained by generating LFMPs are on the left side.
We can see that both the most time-consuming steps (discretization and selecting
refinement) are performed much faster on 7 of the 8 nodes. The explanation for the
fact that the execution on the last node took so much longer is that a dense data
set was assigned to this node. The second phase consumed the same or more time
than the serial algorithm. This is as expected because all the data was analyzed on
a single node and very long patterns (patterns containing more than 8 literals) were
processed. As the execution time increased (because the limit was relaxed) a longer
time for generating GFMPs was required. This is due to the large number of locally
frequent candidate patterns.

To summarize these experiments, we can say that the first phase (generating
locally frequent maximal patterns) speeds up linearly; but the performance of the
system is not optimal because of the second phase, in which the patterns found are
firstly generalized and then specialized.

6.2 Propositionalization with dRAP

As we remarked in Section 4.5, there are many tasks for which it is not important
or convenient whether patterns are maximal or not. An example of such a task
is propositionalization. dRAP-Independent allows the user to skip the second step
(generalization and specialization of locally frequent maximal patterns); this results
in better performance. The locally maximal frequent patterns were found and used
directly for feature construction.

The experiments were performed on AMD AthlonTM XP 2500+ computers
with 756MB of memory. The classifiers SMO (support vector machines [25]),
J48 (an implementation of the Quinlan’s decision trees algorithm C4.5 [37]), Näıve

dRAPi: A Data Distribution Algorithm for Mining First-Order Frequent Patterns 361

Bayes (NB) [30], and instance-based learner (IB1) [30] from the Weka10 system [41]
were used with default parameters. An accuracy metric [21] is used for measuring
quality of generated models. Distributed mining of frequent patterns was performed
on four computers. A time limit was set to 90 and 15 minutes for the text correction
task and to 15 minutes for information extraction.

Table 2 displays the speed up of the first phase (finding LFMP) achieved by
using distributed processing on four nodes with a given maximal time (see the co-
lumn called Limit). We can see that the algorithm speeds up linearly only for text
correction task with B2 background knowledge. Its value is about 3.5 for three of
four tasks and lower than three for two settings. On the other hand, the real speed
up for the disambiguation of Czech is much higher than 3.4, because 400 examples
and relaxed pruning were used for the distributed algorithm, while for the serial
algorithm the data consisted of only 100 examples. For other tasks a small value of
speed up was achieved because of the length of generated locally frequent patterns.
For example, the serial algorithm created only four patterns containing more than
four literals, while distributed algorithm processed ten such patterns. This was for
text correction with B1 background knowledge, but the same holds for other data
too.

of patterns Time (s)
Task Limit (s) RAP dRAP RAP dRAP Speed up
LLL05 900 10 22 901 901 2.2
Spell (B1) 900 2 8 938 907 2.1

5400 18 40 5 438 3 608 3.4
Spell (B2) 900 2 16 938 907 4.1

5400 15 55 5 438 5 438 3.7
Disamb11 no 42 72 234 119 3.4

Table 2. The speed up obtained by mining locally maximal frequent patterns on 4 nodes

The impact of distributed mining on the accuracy of propositional learners is
shown in Table 3.

The accuracy increased for the text correction task and morphological disam-
biguation when distributed mining and SVM and J48 learners were used. The accu-
racy of classification by the Näıve Bayes classifier was higher for disambiguation, but
lower for text correction. When the patterns found were used for solving informa-
tion extraction task, the precision, recall, and F1 increased when dRAP-Independent
was used. We used not only the frequent patterns, but also the infrequent patterns
generated by the RAP system, because the frequent patterns were not sufficient for
learning a reasonable model. This resulted in an increase of all three measures. For
more details see [35].

10 http://www.cs.waikato.ac.nz/~ml/weka/
11 We used 400 examples instead of 100 for distributed mining.

362 J. Blaťák, L. Popeĺınský

SVM J48 NB
Task RAP dRAP RAP dRAP RAP dRAP
Spell (B1) 75.0% 79.0% 75.6% 80.7% 74.0% 72.6%
Spell (B2) 80.2% 80.4% 80.2% 80.9% 76.8% 73.5%
Disamb 76.0% 83.5% 73.0% 73.8% 77.5% 83.0%

Table 3. Accuracy obtained by propositionalization with the serial (RAP) and distributed
(dRAP) mining

7 CONCLUSION

We described dRAP-Independent, a system for distributed mining of first-order
frequent patterns in horizontally partitioned data. The algorithm adopts the ideas
of the well-known propositional algorithm Partition. The main advantages of dRAP-
Independent are its minimal communication overhead and the possibility to utilize
any system for mining locally frequent patterns. The system has been shown to be
very useful for solving several data mining tasks, e.g., information extraction from
biological texts, context-sensitive text correction or morphological disambiguation.

We analyzed the performance of the algorithm in two ways – the speed up of
the generation phase was measured and the usefulness of the generated patterns
was studied. The experimental results showed that by distributed mining a large
number of patterns can be found in the same overall time. We showed that the
new patterns improve performance (precision, recall and accuracy) of propositional
learners when used as new features.

We plan to integrate a message-passing interface for solving problems with the
last two steps of dRAP-Independent. We would like to implement another parallel
strategy for mining frequent patterns, e.g., those which distribute both data and
hypothesis space. Because the strategy used for splitting the data plays a crucial
role, we plan to pay special attention to adapting Cheung’ algorithm for relational
data and to desining new strategies for partitioning the data.

Acknowledgement

We are grateful to Patrick Hanks and anonymous referees for their comments. This
work has been partially supported by the Faculty of Informatics, Masaryk University
and by the Grant Agency of the Czech Republic under the Grant
No. MSM0021622418 Dynamic Geo-visualization in Crisis Management.

REFERENCES

[1] Agrawal, R.—Imielinski, T.—Swami, A.N.: Mining Association Rules Between
Sets of Items in Large Databases. In Proceedings of the 1993 ACM SIGMOD Inter-

dRAPi: A Data Distribution Algorithm for Mining First-Order Frequent Patterns 363

national Conference on Management of Data, Washington, D.C., May 26–28, 1993,

P. Buneman and S. Jajodia, Eds., ACM Press, pp. 207–216.

[2] Agrawal, R.—Shafer, J. C.: Parallel Mining of Association Rules. IEEE Trans-
actions on Knowledge and Data Engineering, Vol. 8, 1996, No. 6, pp. 962–969.

[3] Agrawal, R.—Srikant, R.: Fast Algorithms for Mining Association Rules in
Large Databases. In VLDB ’94, Proceedings of 20th International Conference on Very
Large Data Bases, September 12–15, 1994, Santiago de Chile, Chile, 1994, J. B. Bocca,
M. Jarke, and C. Zaniolo, Eds., Morgan Kaufmann, pp. 487–499.

[4] Blaťák, J.: First-Order Frequent Patterns in Text Mining. In Proceedings of
the 12th Portuguese Conference on Artificial Intelligence, EPIA ’05, (December 2005),
Institute of Electrical and Electronics Engineers, Inc., pp. 344–350.

[5] Blaťák, J.—Popeĺınský, L.: Feature Construction with RAP. In Proceedings of
the Work-in-Progress Track at the 13th International Conference on Inductive Logic
Programming, (September 29–October 1, 2003), T. Horváth and A. Yamamota, Eds.,
University of Szeged, pp. 1–11.

[6] Blaťák, J.—Popeĺınský, L.: Mining First-Order Maximal Frequent Patterns.
Neural Network World 5, 2004, pp. 381–390.

[7] Blockeel, H.—Dehaspe, L.—Demoen, B.—Janssens, G.—Ramon, J.—

Vandecasteele, H.: Executing Query Packs in ILP. Lecture Notes in Computer
Science, Vol. 1866, 2000.

[8] Blockeel, H.—Raedt, L.D.—Jacobs, N.—Demoen, B.: Scaling Up Inductive

Logic Programming by Learning From Interpretations. Data Mining and Knowledge
Discovery, Vol. 3, 1999, No. 1, pp. 59–93.

[9] Carlson, A. J.—Rosen, J.—Roth, D.: Scaling Up Context-Sensitive Text Cor-
rection. In Proceedings of the Thirteenth Conference on Innovative Applications of
Artificial Intelligence Conference, 2001, AAAI Press, pp. 45–50.

[10] Cheung, D.W.-L.—Lee, S.D.—Xiao, Y.: Effect of Data Skewness and Work-
load Balance in Parallel Data Mining. IEEE Transactions on Knowledge and Data
Engineering, Vol. 14, 2002, No. 3, pp. 498–514.

[11] Clare, A.—King, R.D.: Data Mining The Yeast Genome in a Lazy Functional
Language. In Practical Aspects of Declarative Languages, 5th International Sym-
posium, PADL 2003, New Orleans, LA, USA, January 13–14, 2003, Proceedings,
V. Dahl and P. Wadler, Eds., Vol. 2562 of Lecture Notes in Computer Science,
Springer, pp. 19–36.

[12] Clare, A.—Williams, H. E.—Lester, N.: Scalable Multi-Relational Association
Mining. In ICDM, 2004, IEEE Computer Society, pp. 355–358.

[13] de Raedt, L.—Džeroski, S.: First-Order jk-Clausal Theories are Pac-Learnable.
Artif. Intell., Vol. 70, 1994, No. 1–2, pp. 375–392.

[14] Dehaspe, L.—De Raedt, L.: Parallel Inductive Logic Programming. In Proceed-
ings of the MLnet Familiarization Workshop on Statistics, Machine Learning and

Knowledge Discovery in Databases, 1995.

[15] Dehaspe, L.—Toivonen, H.: Discovery of Relational Association Rules. In Re-
lational Data Mining, S. Džeroski and N. Lavrač, Eds. Springer-Verlag, 2001,
pp. 189–212.

364 J. Blaťák, L. Popeĺınský

[16] Dehaspe, L.—Toivonen, H.—King, R.D.: Finding Frequent Substructures in

Chemical Compounds. In 4th International Conference on Knowledge Discovery and
Data Mining, 1998, R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro, Eds., AAAI
Press., pp. 30–36.

[17] Deshpande, M.—Karypis, G.: Using Conjunction of Attribute Values for Classi-
fication. In Proceedings of the eleventh International Conference on Information and
Knowledge Management, 2002, ACM Press, pp. 356–364.

[18] Džeroski, S.—Lavrač, N. eds.: Relational Data Mining. Springer-Verlag, Berlin,
September 2001.

[19] Fonseca, N.A.—Silva, F.—Camacho, R.: Strategies to Parallelize ILP Systems.
In Proceedings of the 15th International Conference on Inductive Logic Programming
(ILP 2005) (Bonn, Germany, August 2005), S. Kramer and B. Pfahringer, Eds.,
Vol. 3625 of Lecture Notes in Artificial Intelligence, Springer-Verlag, pp. 136–153.

[20] Fonseca, N.A.—Silva, F.—Costa, V. S.—Camacho, R.: A Pipelined Data-
Parallel Algorithm for ILP. In Proceedings of 2005 IEEE International Conference on
Cluster Computing, (Boston, Massachusetts, USA, September 2005), IEEE.

[21] Forman, G.: An Extensive Empirical Study of Feature Selection Metrics for Text
Classification. Journal of Machine Learning Research, Vol. 3, 2003, pp. 1289–1305.

[22] Grama, A.—Gupta, A.—Karypis, G.—Kumar, V.: An Introduction to Parallel
Computing: Design and Analysis of Algorithms. Second ed., AddisonWesley, January
2003.

[23] Han, E.-H.—Karypis, G.—Kumar, V.: Scalable Parallel Data Mining for Asso-
ciation Rules. In SIGMOD 1997, Proceedings ACM SIGMOD International Con-
ference on Management of Data, May 13–15, 1997, Tucson, Arizona, USA, 1997,
J. Peckham, Ed., ACM Press, pp. 277–288.

[24] Joshi, M.V.—Han, E.-H.—Karypis, G.—Kumar, V.: Efficient Parallel Al-
gorithms for Mining Associations. In Large-Scale Parallel Data Mining, 1999,
pp. 83–126.

[25] Keerthi, S. S.—Shevade, S. K.—Bhattacharyya, C.—Murthy, K.R.K.:
Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Com-
putation, Vol. 13, 2001, No. 3, pp. 637–649.

[26] Konstantopoulos, S. T.: A Data-Parallel Version of Aleph. In Parallel and Dis-
tributed Computing for Machine Learning. In conjunction with the 14th Euro-
pean Conference on Machine Learning (ECML ’03) and 7th European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD ’03), Cavtat-
Dubrovnik, Croatia, September 2003, Springer.

[27] Kramer, S.—Lavrač, N.—Flach, P.: Propositionalization Approaches to Re-
lational Data Mining. In Relational Data Mining, S. Džeroski and N. Lavrač, Eds.
Springer-Verlag, September 2001, pp. 262–291.

[28] Liu, B.—Hsu, W.—Ma, Y.: Integrating Classification and Association Rule Min-
ing. In Knowledge Discovery and Data Mining, 1998, pp. 80–86.

[29] Mannila, H.—Toivonen, H.: An Algorithm for Finding All Interesting Sen-
tences. In Proceedings of the 6th Internation Conference on Database Theory, 1996,
pp. 215–229.

dRAPi: A Data Distribution Algorithm for Mining First-Order Frequent Patterns 365

[30] Mitchell, T.M.: Machine Learning. McGraw Hill, 1997.

[31] Nienhuys-Cheng, S.-H.—de Wolf, R.: Foundations of Inductive Logic Program-
ming. Springer-Verlag, 1997.

[32] Nijssen, S.—Kok, J. N.: Efficient Frequent Query Discovery in Farmer. In 7th Eu-
ropean Conference on Principles and Practice of Knowledge Discovery in Databases,
2003, N. Lavrac, D. Gamberger, H. Blockeel, and L. Todorovski, Eds., Vol. 2838 of
Lecture Notes in Computer Science, Springer, pp. 350–362.

[33] Pala, K.—Rychlý, P.—Smrž, P.: DESAM – Annotated Corpus for Czech. In
Proceedings of SOFSEM 97, 1997, Springer Verlag, pp. 523–530.

[34] Pasquier, N.—Bastide, Y.—Taouil, R.—Lakhal, L.: Discovering Frequent
Closed Itemsets for Association Rules. In ICDT, 1999, C. Beeri and P. Buneman,
Eds., Vol. 1540 of Lecture Notes in Computer Science, Springer, pp. 398–416.

[35] Popeĺınský, L.—Blaťák, J.: Learning Genic Interactions without Expert Domain
Knowledge: Comparison of different ILP Algorithms. In Proceedings of the 4th Learn-
ing Language in Logic Workshop (LLL 05), 2005, Fraunhofer Institute, pp. 21–30.

[36] Popeĺınský, L.—Pavelek, T.: Mining Lemma Disambiguation Rules from Czech
Corpora. In PKDD, 1999, J.M. Zytkow and J. Rauch, Eds., Vol. 1704 of Lecture
Notes in Computer Science, Springer, pp. 498–503.

[37] Quinlan, J. R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[38] Savasere, A.—Omiecinski, E.—Navathe, S. B.: An Efficient Algorithm for Min-
ing Association Rules in Large Databases. In VLDB, 1995, U. Dayal, P.M.D. Gray,
and S. Nishio, Eds., Morgan Kaufmann, pp. 432–444.

[39] Srinivasan, A.—Muggleton, S.—King, R.—Sternberg, M.: Theories for Mu-
tagenecity: A Study of First-Order and Feature Based Induciton. Tech. rep., PRG-
TR-8-95 Oxford University Computing Laboratory, 1995.

[40] Terabe, M.—Washio, T.—Motoda, H.—Katai, O.—Sawaragi, T.: At-
tribute Generation Based on Association Rules. Knowledge and Information Systems,
Vol. 4, 2002, No. 3, pp. 329–349.

[41] Witten, I. H.—Frank, E.: Data Mining: Practical Machine Learning Tools and
Techniques. second ed., Morgan Kaufmann, June 2005.

[42] Zaki, M. J.: Generating Non-Redundant Association Rules. In KDD ’00: Proceed-
ings of the sixth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, New York, NY, USA, 2000, ACM Press, pp. 34–43.

Jan Bla�t�ak is a Ph.D. student at Faculty of Informatics,
Masaryk University, Brno, Czech Republic. He is concerned with
Relational Data Mining (RDM), especially Inductive Logic Pro-
graming (ILP) and its use in text mining tasks. He is developing
serial and parallel methods for finding long first-order frequent
patterns and for utilizing found patterns in data preprocessing
and classification tasks.

366 J. Blaťák, L. Popeĺınský

Luboš Popel��nsk�y is an Associated Professor at the Faculty of

Informatics, Masaryk University. He is concerned with machine
learning, data and text mining and logic.

