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Abstract. Software testing takes a considerable amount of time and resources spent

on producing software. Therefore, it would be useful to have ways to reduce the
cost of software testing. The new concepts of spanning sets of entities suggested by
Marré and Bertolino are useful for reducing the cost of testing. In fact, to reduce
the testing effort, the generation of test data can be targeted to cover the entities
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in the spanning set, rather than all the entities in the tested program. Marré

and Bertolino presented an algorithm based on the subsumption relation between
entities to find spanning sets for a family of control flow and data flow-based test
coverage criteria. This paper presents a new general technique for the automatic test
data generation for spanning sets coverage. The proposed technique applies to the
algorithm proposed recently by Marré and Bertolino to automatically generate the
spanning sets of program entities that satisfy a wide range of control flow and data
flow-based test coverage criteria. Then, it uses a genetic algorithm to automatically
generate sets of test data to cover these spanning sets. The proposed technique
employed the concepts of spanning sets to limit the number of test cases, guide the
test case selection, overcome the problem of the redundant test cases and automate
the test path generation.

Keywords: Genetic algorithms, automatic test-data generation, subsumption,
spanning sets

1 INTRODUCTION

Software testing is a main method for improving the quality and increasing the re-
liability of software now and thereafter the long-term period future. It is a kind of
complex, labor-intensive, and time consuming work; it accounts for approximately
50% of the cost of a software system development. Increasing the degree of automa-
tion and the efficiency of software testing certainly can reduce the cost of software
design, decrease the time period of software development, and increase the quality
of software significantly. The critical point of the problem involved in automation
of software testing is of particular relevance of automated software test data gene-
ration. Test data generation in software testing is the process of identifying a set of
program input data, which satisfies a given testing criterion.

For solving this difficult problem, random, symbolic, and dynamic test data
generation techniques have been used in the past. Recently, genetic algorithms have
been applied successfully to generate test data.

Random test data generation: It consists of generating inputs at random until
a useful input is found [1, 2, 3]. The problem with this approach is clear with
complex programs or complex adequacy criteria, where an adequate test input
may have to satisfy very specific requirements. In such a case, the number of
adequate inputs may be very small compared to the total of inputs, so probability
of selecting an adequate input by chance can be low.

Symbolic test data generation: There are many test data generation methods
that use symbolic execution to find inputs that satisfy a test requirement [4–8].
Symbolic execution of a program consists of assigning symbolic values to vari-
ables in order to come up with an abstract, mathematical characterization of
what the program does. Thus, ideally, test data generation can be reduced
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to a problem of solving an algebraic expression. A number of problems are
encountered in practice when symbolic execution is used. One such problem
arises in indefinite loops, where the number of iterations depends on a non-
constant expression, and the index of array, where data is referenced indirectly
as a = B[c + d]/10. Pointer references also present a problem because of the
potential for aliasing.

Dynamic test data generation: This paradigm is based on the idea that if some
desired test requirement is not satisfied, data collected during execution can
still be used to determine which tests come closest to satisfying the requirement
[9, 10]. With the help of this feedback, test inputs are incrementally modified
until one of them satisfies the requirement. Two limitations are commonly found
in dynamic test data generation systems. First many systems make it difficult
to generate tests for large programs because they only work on simplified pro-
gramming languages. Second, many systems use gradient descent techniques
to perform function minimization and, therefore, they can stall when they en-
counter local minima.

Test data generation based on genetic algorithms (GAs): Recently some
techniques have been proposed which are based on genetic algorithms to generate
test data [11–16]. The new features of GAs make these techniques capable to
find the nearly global optimum. All these techniques use genetic algorithms
to generate test suites that cover all entities of the tested program which are
required by a control flow or data flow coverage criterion.

In [17] Marré and Bertolino introduced the concepts of spanning sets of entities
for a coverage criterion which can help reduce the cost of testing without impairing
testing efficacy. A spanning set is a minimum subset of entities with the property
that any set of test cases covering this subset cover every entity in the program.
In addition, they have suggested several applications of spanning sets such as eva-
luating the ratio between the covered entities and the total number of entities in
the tested program, estimating the number of test cases needed to satisfy a selected
coverage criterion, preventing redundant test cases, guiding test case selection to
cover untested entities, and automating test path generation.

To our knowledge, until now the concepts of spanning sets have not been em-
ployed in the process of test data generation.

This paper presents a new general technique for the automatic test data gene-
ration for spanning sets coverage. This technique automatically generates spanning
sets of program entities that satisfy a family of control flow and data flow-based
test coverage criteria by applying the algorithm proposed by Marré and Bertolino.
Subsequently, it uses genetic algorithms to automatically generate sets of test data
to cover these spanning sets. This technique will be used to evaluate the effectiveness
of spanning sets and the subsumption relation between entities in coverage testing.

The paper is organized as follows: Section 2 gives some important definitions.
Section 3 describes the general algorithm to find spanning sets of entities. Section 4
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describes our proposed technique. Section 5 presents a case study for the proposed
technique. Section 6 presents the conclusions and future work.

2 BACKGROUND

2.1 The Ddgraph Model

Typically, in code-based testing strategies a program’s structure is analyzed on the
program flowgraph, i.e., an annotated digraph which represents graphically the in-
formation needed to select the test cases. A program control flow may be mapped
onto a flowgraph in different ways. We use a flowgraph representation called ddgraph
(decision-to-decision graph) [18].

Definition 1 (Ddgraph). A ddgraph is a digraph G = (N,A), where N is a set of
nodes and A is a set of arcs, with two distinguished arcs e1, ek (the unique entry
arc and the unique exit arc, respectively), such that any other arc in A is reached
by e1 and reaches ek, and such that for each node n ∈ N, n 6= TAIL(e1), n 6=
HEAD(ek), (indegree(n) + outdegree(n)) > 2, while indegree(TAIL(e1)) = 0 and
outdegree(TAIL(e1)) = 1, indegree(HEAD(ek)) = 1 and outdegree(HEAD(ek)) = 0.

An arc e in a ddgraph G is an ordered pair of adjacent nodes, called TAIL and
HEAD of e, respectively (i.e., e = (TAIL(e),HEAD(e)). A path p of length q in
a ddgraph G is a sequence p = e1, e2, . . . , eq, where TAIL(ei+1) = HEAD(ei) for
i = 1, 2, . . . , q − 1. A path p is simple if all its nodes, except possibly the first and
last ones, are distinct. A complete path in a ddgraph G is a path from the entry
node to the exit node of G. Given a path p = e1, e2, . . . , eq, then a path ′p = ei,
. . . , ej from ei to ej, with 1 ≤ i ≤ j ≤ q, is called a subpath of p.

Code Lines Ddgraph Component

1–9 e1
10 n2

11–12 e2
13 n3

14 n4

15–17 e4
18–19 e6
20–24 e7
25 e8

Table 1. Correspondence between instructions in SORT and arcs and nodes in ddgraph
GSORT

Figure 1 shows an example program SORT (adapted from [19]) and the corres-
ponding ddgraph GSORT . The distinguished arcs of GSORT are e1 (the entry arc)
and e8 (the exit arc). The correspondence between the instructions in the program
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e1 

e8 

void sort (a, n)  /*SORT program*/ 
1   int a[]; 
2   int n; 
3   { 
4     int sortupto; 
5     int maxpos; 
6     int mymax; 
7     int index;    
8     sortupto = 1; 
9     maxpos = 1; 
10    while(sortupto < n){ 
11      mymax = a[sortupto]; 
12      index = sortupto +1; 
13      while (index <= n) { 
14         if (a[index]> mymax){ 
15          mymax = a[index]; 
16          maxpos = index; 
17       } 
18       index = index +1; 
19    } 
20    index = a[sortupto]; 
21    a[sortupto] = mymax; 
22    a[maxpos] = index; 
23    sortupto = sortupto +1; 
24  } 
25 } 
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Fig. 1. Program SORT and ddgraph GSORT

(as numbered in Figure 1) and arcs and nodes in the ddgraph is shown in Table 1.
Note that arcs e3 and e5 and node n5 do not correspond to any program instruction.

2.2 Def-Use Ddgraph

The occurrences of a variable in a program can be associated with the following
events:

Def. A statement storing a value in a memory location of a variable creates a defi-
nition (def) of the variable.

Use. A statement drawing a value from the memory location of a variable is a use
of the currently active definition of the variable. In particular, when the va-
riable appears on the right-hand side of an assignment statement, it is called
a computational use (c-use); when the variable appears in the predicate of the
conditional control transfer statement, it is called a predicate use (p-use).

Killing. A statement kills the currently active definition of a variable when the
value associated with it becomes unbound.
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Data flow testing considers the possible interactions between definitions and uses
of variables. To analyze these interactions, programs are represented as annotated
flowgraph called def-use ddgraph [17].

Given a ddgraph corresponding to a program, for every variable in the program,
a def-use ddgraph is derived, in which each arc is annotated with a sequence (which
may be empty) of the symbols d or u, to represent that the variable of interest
is defined or referenced in the program block represented by such arc. Note that
for a predicate use (which occurs in this ddgraph model at a decision node) each
arc leaving the node at which the predicate occurs is labeled with a use symbol u.
Figure 2 shows two def-use ddgraphs corresponding to the occurrences of variable
index and variable a in program SORT.
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Fig. 2. a) The def-use ddgraph for variable index, b) The def-use ddgraph for variable a,
in Program SORT

Given a def-use ddgraph G for variableX, a def-clear path with respect to X is a
path p = e, e1, e2, . . . , eq, é on G, with q ≥ 0, such that X may be defined in e, and is
not redefined or killed in any of the arcs e1, e2, . . . , eq. For example, p1 = e2, e3, e5, e6
is a def-clear path for variable index in GSORT (because index is defined in e2 and
is not redefined or killed on e3 or e5). On the other hand, p2 = e2, e3, e4, e6, e7 is not
a def-clear path for index in GSORT (since index is redefined in e6).

Definition 2 (Dua). Let d and u be two arcs in G, and X be a variable. The
triple [d, u,X] is said to be a definition-use association or a dua if X has a global
definition in d, a global use in u, and there is a def-clear path wrt X from d to u.
For example, T1 = [e1, e7, index] and T2 = [e6, e4, index] are duas in GSORT . On the
other hand, T3 = [e7, e4, index] is not a dua, since index is defined in e7, index is
used in e4, but there is no a def-clear path wrt index from e7 to e4.

2.3 Coverage Testing Criteria

Coverage criteria require a set of entities of the program flowgraph to be covered
when the tests are executed. A set of complete paths satisfy a criterion if it cov-
ers the set of entities associated with that criterion. Depending on the criterion
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selected, the entities to be covered may be derived from the program control flow
or form the program data flow. In [17], Marré and Bertolino re-defined a family of
popular control flow and data flow test coverage criteria ([20–22]) and denoted the
corresponding set Ec(G) of entities of G for each test coverage criterion c. Table 2
shows some of these coverage criteria and identifies the entities of the program flow-
graph that are associated with them. In this table, G = (N,A) denotes a ddgraph,
and ℘ denotes the set of all complete paths in G.

Coverage Criterion c Set Ec(G) of entities for ddgraph G and coverage criterion c

All-Paths {p ∈ ℘ : p is a complete path in G}

All-k-Paths {p ∈ ℘ : p is a complete path in G

and no loop in p is iterated more than k times}

All-Branches A

All-Statements {e ∈ A : e is associated with at least one instruction}

All-Du-Paths {p ∈ ℘ : ∃T = [d, u,X ] ∈ D(G) such that
p is a simple def-clear path wrt X from d to u}

Table 2. Coverage criteria and entities to be covered to satisfy these criteria

For example:

• The set of entities for the ddgraph GSORT = (NSORT , ASORT ) and All-Branches
criterion is EAll−Branches(GSORT ) = ASORT = {e1, e2, e3, e4, e5, e6, e7, e8}.

• The set of entities for the ddgraph GSORT and All-Statements criterion is
EAll−Statements(GSORT ) = ASORT = {e1, e2, e3, e4, e6, e7, e8}.

• The set of entities for the ddgraph GSORT and All-Uses criterion is
EAll−Uses(GSORT ) = D(GSORT ) = {[e1, e8, n], [e1, e2, n], [e1, e7, n], [e1, e3, n],
[e1, e2, a], [e1, e7, a], [e7, e2, a], [e7, e7, a], [e7, e4, a], [e7, e5, a], [e1, e4, a], [e1, e5, a],
[e6, e6, index], [e1, e2, sortupto], [e1, e7, sortupto], [e7, e8, sortupto],
[e1, e8, sortupto], [e7, e2, sortupto], [e7, e7, sortupto], [e1, e7, maxpos],
[e4, e7, maxpos], [e2, e7, mymax], [e2, e4, mymax], [e4, e7, mymax],
[e4, e4, mymax], [e2, e5, mymax], [e4, e5, mymax], [e2, e3, index], [e6, e7, index],
[e2, e7, index], [e2, e4, index], [e6, e4, index], [e6, e3, index], [e2, e5, index],
[e6, e5, index], [e2, e6, index]}.

2.4 Spanning Sets

A selected coverage criterion c determines for a given ddgraph G a set Ec(G) of
entities to be covered. In general, it is possible to derive a subset of Ec(G) with the
property that a set of complete paths covering all the entities in it will cover every
c-entity in Ec(G) [17]. For instance, for the ddgraph GSORT , any set of complete
paths covering the set of arcs: {e3, e4, e5, e6}⊆ EAll−Branches(GSORT ) will cover every
arc in EAll−Branches(GSORT ). This happens because any complete path that exercises
these arcs must evidently exercises arcs e1, e2, e7, and e8 as well.
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In other terms, for a selected criterion c the coverage of some c-entities automa-
tically guarantees the coverage of other c-entities. This property implies a natural
ordering between c-entities, according to how easily they can be covered. This
ordering relationship between entities is called a subsumption [17]. The intuitive
underlying idea is that if c-entity E1 subsumes c-entity E2, then one can forget
about E2 provided that one cares about E1.

Definition 3 (Subsumption). Let G be a ddgraph, c be a coverage criterion, and
E1 and E2 be two entities in Ec(G). Then, E1 subsumes E2 if every complete path
that covers E1 covers E2 as well.

The entities that are not subsumed by other entities are said to be “uncon-
strained” (i.e., “not guaranteed”): the coverage of an unconstrained entity is not
guaranteed by the coverage of any other entity. More precisely, an entity E is said
to be unconstrained entity if there exists no other entity É that subsumes E without
being itself subsumed by E. A smallest subset of c-entities with such a property is
called a spanning set.

Definition 4 (Spanning set of entities). Let G be a ddgraph and c be a coverage
criterion. A subset U of Ec(G) is said to be a spanning set of entities for G and c if
a set of paths ℘ that covers every entity in U covers all the entities in Ec(G); and
if there is any other set Ú ⊆ Ec(G) such that any set of paths covers every entity
in Ú covers all the entities in Ec(G), then |U | ≤ |Ú |.

2.5 Genetic Algorithms (GAs)

Genetic algorithms (GAs) are commonly applied to a variety of problems involving
search, optimization and machine learning within the AI domain. The principle
behind GAs is that they create and maintain a population of individuals repre-
sented by chromosomes. In GAs each of a problem’s parameters is represented as
a binary string. Borrowing from biology, an encoded parameter can be thought
of as a gene, where the parameter’s values are the gene’s alleles. The string pro-
duced by the concatenation of all the encoded parameters forms a genotype (chro-
mosome). Each genotype specifies an individual which is in turn a member of
a population.

The GAs starts by creating an initial population of individuals, each represented
by randomly generated genotype. The fitness of individuals is evaluated in some
problem-dependent way, and the GAs tries to evolve highly fit individuals from the
initial population.

The genetic search process is iterative: evaluating, selecting, and recombining
strings in the population during each iteration (generation) until reaching some
termination condition.

The basic algorithm of GAs, where P (t) is the population strings at generation
number t, is as follows:
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1. initialize P (t)
2. evaluate P (t)
3. while (termination condition not satisfied) do

{
4. select P (t+ 1) from P (t);
5. recombine P (t+ 1);
6. evaluate P (t+ 1);
7. t = t+ 1;

}

In the evaluation step, the fitness of each individual is determined. Evaluation
of each string (individual) is based on a fitness function that is problem-dependent.

The selection step is used to find pairs of individuals that will be mated to
contribute to the next generation. Selection of a string depends on its fitness relative
to that of other strings in the population. Most often, the two individuals are selected
at random, but each individual’s probability of being chosen is proportional to its
fitness. Thus, selection is done on the basis of relative fitness.

The crossover (or recombination), fills the role played by sexual reproduction in
nature. The process of crossover involves two chromosomes swapping chunks of data
(genetic information). Mutation introduces slight changes into a small proportion
of population and is representative of an evolutionary step.

The above algorithm will iterate until the population has evolved to form a so-
lution to the problem, or until a termination condition is satisfied. In our case the
chromosome represents test data to satisfy the given criterion.

3 FINDING SPANNING SETS

In [17], Marré and Bertolino presented a technique to find a spanning set of entities
for a given ddgraph G and a given coverage criterion c. For a given ddgraph G and
a coverage criterion c, one can construct a digraph that represents the subsumption
relationship. In this ddgraph, the nodes are the entities for G and c, and there is
an arc from node E2 to node E1 if and only if E1 subsumes E2. The digraph thus
obtained is called the c-subsumption digraph of G and is denoted by Sc(G).

Clearly, if a c-subsumption digraph includes a strongly connected componentM ,
whenever an entity in M is covered by a test path, then all entities in M are covered
by this same test path (i.e., each entity in M subsumes every other entity in M).
Hence, any entity in a strongly connected component M of Sc(G) may be chosen to
represent the whole set of entities in M . The entity represents a strongly connected
component M called representative of that component and is denoted by rep(M).

By reducing the strongly connected components of a subsumption digraph, we
could obtain a directed acyclic graph by merging all nodes in each strongly connected
component M to a single node nM . The digraph obtained is called a reduced c-sub-
sumption digraph and is denoted by Rc(G).
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Let U be the set of all the leaves of the reduced c-subsumption digraph (i.e.,
the nodes with no exit arc) and take one representative for each. It can be proved
that U is a spanning set of (unconstrained) entities.

Procedure FIND-A-SPANNING-SET-OF-ENTITES(G: ddgraph; Ec(G):
set of entities): set of entities;

1. for each E1, E2 ∈ Ec(G), E1 6= E2, do SUBSUMPTION(E1, E2, G);
2. construct Sc(G) = (VSc(G), ESc(G));
3. construct Rc(G) = (VRc(G), ERc(G)) ;
4. U = {rep(M): M is a leaf of Rc(G)};
5. return(U).

Fig. 3. The procedure FIND-A-SPANNING-SET-OF-ENTITIES

In the procedure FIND-A-SPANNING-SET-OF-ENTITIES (Figure 3), steps 2,
3, and 4 do not depend on the type of entities manipulated, and rep(M) denotes the
entity chosen to represent the strongly connected componentM . On the other hand,
evaluating whether entity E1 subsumes entity E2 (step 1) depends on the notion of
“coverage” associated with the particular type of entities considered. Thus, there
is a specific SUBSUMPTION (E1, E2, G) procedure for each possible type of entity
(arc, dua, class of duas, and path).

4 THE PROPOSED TECHNIQUE

This section describes our proposed technique to test C++ programs. This tech-
nique incorporates Marré and Bertolino’s spanning sets-based techniques into testing
processes and using these techniques with genetic algorithms techniques to solve the
problem of deriving test data that covers the spanning sets. Figure 4 shows the
overall diagram of our proposed technique.

It performs the following tasks:

• Analysis and reformatting of source code.

• Generating spanning sets of program entities to be covered.

• Generating a test data using genetic algorithms.

The technique performs these tasks in three stages. We give a detailed descrip-
tion of these three stages of the technique in the following subsections.

4.1 Analysis Phase

The analysis and reformatting module, shown in Figure 5, has been built to perform
the following tasks:

1. Classify program statements and reformat some of them to facilitate the con-
struction of the program flow graph.
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 Fig. 4. The block diagram of the proposed technique

2. Construct the control flow graph CFG of the reformatted version of the program.

3. Reduce the control flow graph to obtain the program ddgraph G using the
algorithm proposed by Bertolino and Marré in [18].

4. Produce the set Ec(G) of entities to be covered that satisfy a coverage criterion c
(e.g. the set of duas).
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Fig. 5. Analysis phase

4.2 Spanning Set Generation Phase

Now, we describe how our proposed technique finds a spanning set of entities for
a given program and a given coverage criterion c.

We use the algorithm of Marré and Bertolino [17] to find the spanning set of
entities that satisfy the given coverage criterion c. Figure 6 shows the overall diagram
of the spanning set generation phase.

It performs the following tasks to find a spanning set:

1. Construct the subsumption digraph Sc(G) that represents the subsumption re-
lationship between the entities.
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Fig. 6. Spanning set generation phase

2. Reduce the subsumption digraph Sc(G) to obtain the reduced c-subsumption
digraph Rc(G).

3. Produce the spanning set of entities U which consists of the leaves of the reduced
EcE-subsumption digraph Rc(G).

4.3 Test Data Generation Phase

This phase uses a genetic algorithm to generate test data that will execute a set of
paths that covers the spanning set. It performs the following tasks to find a set of
test data:

1. Find the set of test data that form the initial population.

2. Determine the fitness of each individual which is based on a fitness function that
is problem-dependent.

3. Select two individuals that will be mated to contribute to the next generation.

4. Apply the crossover and mutation processes.

The above algorithm will iterate until the population has evolved to form a so-
lution to the problem, or until a termination condition is satisfied. Figure 7 shows
the flowchart of the above algorithm.

Now, we present the whole algorithm of our proposed technique as follows:

Algorithm: Generate test data using a GA to cover the spanning set of entities
that satisfy a given coverage criterion c.

Input: Prog := tested program, c := a coverage criterion.

Output: Test cover := set of test data that cover the entities of the spanning set
of the given coverage criterion c.

Declare:
CFG: the control flow graph of Prog.
G: ddgraph (the reduced graph of CFG).
Ec(G): the set of all entities that satisfy criterion c.
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Sc(G): the subsumption digraph.
Rc(G): the reduced c-subsumption digraph.
U := list of test requirements(spanning set).
T : test requirement for which a test case is to be generated
InitialPopulation, NewPopulation: set of test cases
MaxAttempts(): function that returns true when maximum number of attempts
for target T has been exceeded and false otherwise.
TimeOver(): function that returns true when the time limit is exceeded and
false otherwise.
Begin
/* Step 1: Analysis the program under test */
[1] Classify the program’s statements
[2] Construct the program’s basic blocks
[3] Build the program’s control flow graph CFG
[4] Reduce CFG to obtain the ddgraph G
[5] Construct the set of entities Ec(G)
/* Step 2: Find the spanning set of entities that satisfy
the coverage criterion c */
[6] for each E1, E2 ∈ Ec(G), E1 6= E2, do SUBSUMPTION(E1, E2, G);
[7] construct Sc(G) = (VSc(G), ESc(G));
[8] construct Rc(G) = (VRc(G), ERc(G));
[9] U = {rep(M): M is a leaf of Rc(G)};
/* Step 3: Generate test */
/*step 3.1 Initialize and set up */
[10] Create and Initialize Test cover.
[11] Generate InitialPopulation of test cases.
/* Step 3.2: Generate test data */
[12] While (U not empty and not TimeOver()) do
[13] Select uncovered entity T from U .
[14] while (T not covered and not MaxAttempts()) do
[15] Evaluate fitness values of current population.
[16] Sort current population according to fitness.
[17] Select parents of NewPopulation.
[18] Apply genetic operators (crossover and mutation) on the

selected parents to generate NewPopulation.
[19] Execute tested program on each member of NewPopulation.
[20] Update Test cover and access U to delete targets that

are satisfied or have max attempts.
[21] Endwhile
[22] Endwhile
/* Step 3.3: Clean up and return */
[23] Test cover := test cases that satisfy U .
[24] Return(Test cover, U).
[25] End.
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Fig. 7. Test data generation phase

5 A CASE STUDY

In the following paragraphs, we give a detailed description of the technique as applied
to the example program given in Figure 1 to achieve all-use coverage criterion.
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In the analysis phase, our proposed technique uses a function, BUILDGRAPH(),
to construct the control flow graph CFG of the program. Then, it constructs the
reduced flow graph ddgraph of G according to Definition 1 in Section 2 by using the
procedure REDUCE given in [18]. Figure 1 shows the example program SORT and
the corresponding ddgraph GSORT .

Then, the technique produces the set EAll−Uses(GSORT ) of entities for the
ddgraph GSORT and All-Uses criterion. The elements of the set EAll−Uses(GSORT )
are given in Section 2.3.

In the spanning set generation phase, the technique constructs the subsumption
digraph SAll−Uses(GSORT ) that represents the subsumption relationship between the
entities. Then, it reduces the subsumption digraph SAll−Uses(GSORT ) to obtain the
reduced c-subsumption digraph RAll−Uses(GSORT ), shown in Figure 8.
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[e7, e4, a] 

[e2, e4, index] 

[e4, e4, mymax] 

Fig. 8. Reduced subsumption digraph for GSORT and all-uses criterion

The technique produces the spanning set of entities UAll−Uses(GSORT ) =
{[e7, e4, a], [e7, e5, a], [e1, e4, a], [e1, e5, a], [e1, e8, sortupto], [e4, e4, mymax],
[e4, e5, mymax], [e2, e7, index], [e2, e4, index], [e2, e5, index]} which consists of the
leaves of the reduced c-subsumption digraph RAll−Uses(GSORT ).

In the test data generation phase, the proposed technique selects an element
of the spanning set of entities UAll−Uses(GSORT ). Then, the genetic algorithm is
used to generate a test data that will execute a path that covers the selected ele-
ment of the spanning set. This phase iterates for each element in the spanning
set. The parameters of the genetic algorithm can be adapted according to the
parameters suggested by Girgis in [16] (i.e., population size = 10, maximum number
of generation = 100, the probability of crossover operator = 0.8, the probability of
mutation operator = 0.15). The selection of the initial population for a subsequent
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run can be enhanced by using one of the previously generated data as part of the
new initial population, such that the program entity covered by this data and the
one to be covered have some common element. For example, the dua [e7, e5, a] and
[e7, e4, a] have the same definition point e7. So, the data generated to cover the first
dua can be used as part of the initial population for the second dua.

Theoretically, to cover n program entities we need n test cases. But our tech-
nique reduces this number of test cases to the number of elements in the spanning
set of the required entities which is less than the number of the required entities.

In the case study, the number of test cases is 10 (cardinality of the spanning
set) instead of 36 (the cardinality of the set of the required entities). Consequently,
the ratio of reducing the test cases is 72%.

6 CONCLUSIONS AND FUTURE WORK

Marré and Bertolino [17] have introduced the concepts of spanning sets of entities
for coverage testing. They have suggested several potential applications of spanning
sets as reducing and estimating the number of tests and evaluating test adequacy
more effectively. They have provided a method to derive a spanning set that is
parameterized in the subsumption relation between entities. This method does not
handle the problem of deriving test data.

In this paper, we presented a new general technique that combines the concept
of spanning set with a genetic algorithm to automatically generate test data for
spanning set coverage. Our proposed technique applies the algorithm introduced by
Marré and Bertolino to automatically generate the spanning sets of program entities
that satisfy a vast array of control flow and data flow-based test coverage criteria.
Then, it uses a genetic algorithm to automatically generate sets of test data to cover
these spanning sets. The proposed technique employed the concepts of spanning sets
to set a bound to the number of test cases; for example the bound of test cases is 10
in the case study. In addition, our technique overcomes the problem of the redundant
test cases and guides the test case selection by concentrating only on the elements
of the spanning set. The results of the case study are very encouraging because they
have shown that the cost of testing reduced by 72%.

Our future work will concentrate on developing a fitness function definition
for each one the family of coverage criteria that have been suggested by Marré
and Bertolino in [17]. In addition, the parameters of the genetic algorithms such
as chromosomes representation, genetic operators, and initial population will be
improved to be suitable for this family of criteria. A further work is also required
to determine the effect of the population size and control the genetic operators so
that they don’t destroy the data types of the program’s input. Also, the problems of
infeasible paths identification and stopping the system from trying to find solutions
in the presence of infeasible paths will be investigated in our future work.

Now, a software tool is being implemented to evaluate the efficiency of this
technique. This tool will be used to evaluate the effectiveness of the spanning sets
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and the subsumption relation between entities in coverage testing. Also, this tool
will be used to generate a set of test data to cover the selected spanning sets using
genetic algorithms. Experiments will be conducted using this tool to compare the
proposed technique with conventional techniques for automatic test data generation.
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[17] Marré, M.—Bertolino, A.: Using Spanning Sets for Coverage Testing. IEEE

Transactions on Software Engineering, Vol. 29, 2003, No. 11, pp. 974–984.
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