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Abstract. The growing importance of security operations in urban terrain has
triggered many attempts to address the perceived gaps in the readiness of security
forces for this type of combat. One way to tackle the problem is to employ simulation
techniques. Simulations are widely used to support both mission rehearsal and
mission analysis, but these two applications tend to be seen as distinctly separate.
We argue that integrating them in a unified framework can bring significant benefits
for end-users. We perform a structured walk-through of such a unified system, in
which a novel approach to integration through the behaviour cloning enabled the
system to capture the operational knowledge of security experts, which is often
difficult to express verbally. This capability emerged as essential for the operation
of the integrated system. We also illustrate how the interplay between the system
components for the mission analysis and mission rehearsal is realized.
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1 INTRODUCTION

The growing urbanisation and industrialisation of the world implies that future
conflicts “will not just spill over into the conurbations, but will in fact be centred
on the cities” [4]. There is already a noticeable tendency for militarily weaker
enemies “to utilise the complex urban environment to generate a combat power,
especially when dealing with an opposing force which possesses more sophisticated
technological weapon systems” [5]. Industrially developed countries are targeted too,
most recently by various forms of terrorism. In a sense, they are victims of their
own success, since few adversaries will be tempted to engage them in conventional
warfare [16].

Urban combat is both difficult and dangerous. Dense networks of buildings,
walls and other obstacles obstruct the view and isolate combat units, sometimes
even individual soldiers [11]. At the same time, dense civilian populations and hu-
manitarian concerns hamper the application of their superior military power. The
adversary is often highly camouflaged or mingles with the civilian population and
prefers sudden engagements at a very short range [4]. These are some of the reasons
why urban combat “has been expensive in deaths of soldiers and non-combatants,
destruction of infrastructure, consumption of military logistics resources, and of-
ten also in political terms” [5]. Most contemporary theorists agree that security
forces face significant challenges in this respect [21, 8]. Regarding the perceived
gaps in their preparedness, Worley, Wahlman and Gleeson in their extensive sur-
vey [21] listed a number of issues, of which the most relevant for our present purpose
are

e the inadequacy of training facilities;

e the nature of operations being determined as much by human occupants as by
physical structures;

e the need for rules of engagement to be simple, dynamic, and tailored to specific
situations.

In this article, which is related to our conference poster [13], we deal with these
issues from the point of view of asymmetric urban security threats. These are con-
frontational situations or open conflicts in urban areas in which the opponents of
security forces are not regular military forces but rather civilian rioters (as in the
case of 2001 Gothenburg riots') or insurgents (as in the case of the recent ISAF
mission? in Afghanistan). Typically, security forces are trained for such scenarios
through live training (also termed live simulation) in which real people operate real
equipment in specialized training centres like CENZUB? in France or STANTA? in

! http://en.wikipedia.org/wiki/Gothenburg Riots

2 http://en.wikipedia.org/wiki/ISAF

3 https://en.wikipedia.org/wiki/Centre_d’entra\’C3\/,AEnement_aux_
actions_en_zone_urbaine

4 https://en.wikipedia.org/wiki/Stanford_Training_Area
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UK [17]. The main disadvantages of this training modality are that the repertoire
of available urban settings is limited, trainings with large number of participants
are costly, and certain scenarios cannot be trained adequately due to the physi-
cal danger they entail. These problems can be overcome, at the cost of somewhat
decreased realism, by wvirtual trainings (or wvirtual simulations) in which real peo-
ple representing security forces operate simulated equipment in a simulated world
which includes their simulated opponents (rioters and insurgents), as well as other
participants (casual bystanders, etc.). Virtual and live training together comprise
mussion rehearsal.

In contrast, by the mission analysis we mean a detailed investigation of the
properties of the preferred and alternative courses of action stipulated by the mission
guidelines. These properties are usually expressed in the form of various measures of
effectiveness (MoE), such as the number of injured persons at the end of a scenario.
They help mission planners assess the mission guidelines and their robustness with
respect to potentially varying behaviour by the opponents of security forces. Such
investigations typically require a larger number of scenario replays than can be
handled in live or even virtual trainings. In consequence, they are performed through
constructive simulations or data farming in which both security forces and their
opponents are simulated.

The main thesis of our paper is that an integrated approach linking the mission
rehearsal with the mission analysis through behaviour cloning can bring significant
benefits for end-users. We argue our case in the context of project EUSAS (“Eu-
ropean Urban Simulation for Asymmetric Scenarios”) financed by 20 nations under
the Joint Investment Program on Force Protection of the European Defence Agency.
The system that we designed and prototyped in this project addressed the first is-
sue — the inadequacy of training facilities — by offering a mission rehearsal capability
in a highly realistic 3-D cyber environment VBS2. The second issue — the role of
human participants — was addressed by modelling human behaviour on the basis
of latest findings in psychology. In this respect, the PECS reference model [20, 18]
served as a solid modelling basis. Finally, the third issue — the flexibility of rules
of engagement — was addressed by behaviour cloning in combination with a break-
down of high-level scenarios into smaller units, so-called vignettes. These represent
dynamic and adaptable micro-scenarios and each can be associated with a different
“optimal” approach.

The main benefits of the integrated system can be summarized as follows:

1. It captures the security expert knowledge through behaviour cloning and uses
it for realistic simulation of security personnel.

2. It guarantees that the mission rehearsal is consistent with the mission analysis
since both are based on the same simulation scenario and share the executable
code driving the behaviour of simulated human characters.

3. Optimizations found in the mission analysis can be quickly validated in a new
training session.
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In all of these benefits, behaviour cloning acts as a kingpin tying together the
mission analysis and the mission rehearsal components of the system.

The rest of the article is structured as follows. Part 2 deals with the structure
and workflows of the EUSAS system. In Section 2.1 we introduce its main operation
modes; in Section 2.2 we describe its core component — our agent-based simulator;
in Section 2.3 we briefly explain how users can define and calibrate new agent types.
Section 2.4 then presents the basic ideas and principles underlying the core activity
of the EUSAS system — the behaviour cloning algorithm CMASDA. Sections 2.5
and 2.6 conclude the overview with salient aspects of data farming, data analysis and
mission rehearsal. Part 3 is dedicated to experimentation and validation activities.
In Section 3.1 we briefly reiterate our early experiments and results, most of which
were already published. In Sections 3.2 and 3.3 we present, for the first time, the
comprehensive verification and validation results for our behaviour cloning approach
and the final project demonstration of the EUSAS system. Finally, in the conclusion,
we summarise our findings and directions for the future work.

2 THE EUSAS SYSTEM
2.1 Main Operation Modes

Activities in the integrated EUSAS system can be broadly grouped into two main
operation modes — preparation and regular use — as shown in Figure 1. Dashed line
arrows indicate the preparation, standard arrows the regular use. Dotted line arrows
correspond to calibration feedback leading to agent model adjustments. Preparation
and calibration comprise “the training of the system”, while the regular use can be
viewed as “the training of trainees”. Numbering of activities suggests their natural
sequence, but there is no hard and fast rule about it, and some activities, e.g.
calibration, can be performed more than once during one cycle.

The following enumeration provides an overview of activities in their natural
order.

1. Mission guidelines creation: drawing on their previous experience, mission
planners formulate a first draft of new mission guidelines. These specify rules
and procedures for security forces in order to cope with specific security threats
and situations.

2. Adapting agent models: based on the intended training situation, civilian
agents with scenario related characteristics are defined and assembled from pre-
defined model components. At this stage, the agents representing security forces
consist of simple scripts where the main purpose is to help in calibrating the
civilian models.

3. Adapting simulation scenarios: A map of terrain for the desired vignette

(micro-scenario) is selected, agent instances are placed in appropriate starting
positions and their initial parameter values are set.
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Figure 1. Main phases and activities in the EUSAS system

4. Calibration (constructive simulation with simplified security personnel agents):
Its primary purpose is to calibrate civilian models e.g. by face validation through
a simplified 2-dimensional visualization of their behaviour. The resulting model
adjustments are indicated in Figure 1 by the feedback arrow 2-D calibration.

5. Expert behaviour recording session: Calibrated civilian models are coupled
with a 3-D virtual rendering engine VBS2, so that experienced security personnel
can “play against” them and find effective strategies for handling the situation.
At the same time, 3-D visualization may reveal deficiencies in civilian models
that went unnoticed during 2-D calibration. Figure 1 indicates such subsequent
model adjustments by the second feedback arrow 3-D calibration. When the
security experts feel the civilian models are adequate and find effective strategies
for handling them, the logs of such “successful” games are passed on to CMASDA
algorithm for behaviour pattern extraction.

6. Behaviour analysis and pattern extraction: CMASDA algorithm processes
the logs and creates the so-called abstract action graph. This graph is mined
for behaviour patterns capturing significant aspects of expert strategies; these
patterns are then transferred to the simulated security personnel agents. 2-D
calibration is repeated again, this time with the focus on the adequacy of the
cloned security personnel behaviours. This step concludes the preparation; the
system is ready for regular use.

7. Data farming and mission rehearsal: It is advisable to commence the reg-
ular use of the system with data farming, where a number of constructive simu-
lations of the same scenario are run in parallel, each with slightly different input
parameters. Analysis of their results helps determine the robustness of the
cloned strategies, i.e. their resilience to the change of model parameters. Once



Simulations for Urban Security Operations 1207

their robustness for the intended training situation is confirmed, the system can
be used for the mission rehearsal (virtual training).

8. Data analysis: Both the data farming and mission rehearsal rely on data
analysis tools for evaluation. The analysis typically starts with statistical tech-
niques, such as regression trees and histograms. They represent each simulation
run by one data point associating one input vector of parameter values with
its corresponding output value. The output value is usually one of predefined
measures of effectiveness, such as the number of injured persons at the end of
a scenario. In order to understand the reasons behind specific results (e.g. why
a particular parameter setting led to an extreme number of injuries), more spe-
cialized tools may be needed. Logs of mission rehearsals can also be analyzed in
this way or through the standard after-action review tool included in the VBS2
package.

An insight gained through data analysis may trigger adjustments to the mission
guidelines, and the whole workflow may be repeated as many times as necessary. In
the following sections we elaborate on key components and activities of this iterative
process, broadly following the natural sequence of steps listed above.

2.2 Agent-Based Models and the Simulator

Adjustments to agent models and scenarios, as well as their calibration (activities 2—4
in Figure 1) are typically performed in the environment of ABS, our agent-based
simulator, and related tools. ABS was built by extending the MASON simulation
library®, which the project team selected through an evaluation by implementation
exercise reported in [15]. MASON’s modularity and flexibility helped us efficiently
implement the human behaviour models designed and developed in project EUSAS.
These models incorporate the latest findings in psychology and are expressed in
the so-called PECS reference model [20]. The acronym PECS stands for Physical
conditions, Emotional state, Cognitive capabilities and Social status. According
to [18], “PECS is a multi-purpose reference model for the simulation of human be-
haviour in a social environment,” with the emphasis on the “emergent behaviour. . .
typical for groups and societies formation.” The outer context in PECS is pro-
vided by a so-called “agent world,” which comprises the environment, connector
and agents.

Our current version of the agent world implemented in ABS is shown in Figure 2.
The figure also shows the steps comprising a typical simulation cycle: In step 1, each
agent reads relevant messages and events from the connector and updates its internal
state accordingly. In step 2, each agent notifies the connector about its own actions
and significant internal changes so that these can be noticed and acted upon by
other agents, as well as logged. Step 3 includes direct queries to the environment
during the behaviour planning process, e.g. an angry protester agent may ask the

5 http://www.cs.gmu.edu/~eclab/projects/mason/
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environment for the location of the closest security person in order to attack him or
her. Step 4 represents the events generated by the objects in the environment (e.g.
explosions) and system broadcasts, which in this way become “visible” to agents. In
step 5, the connector logs all the received events and messages for subsequent data

analysis.

Agent-Based Simulation Component

ﬁ Connctr :>
ogs

Agent Collection

‘ Agent 1 ‘ ‘ Agent 2

&I Environment

‘ AgentN ‘

Figure 2. A simplified view of the internal structure of our agent-based simulator (ABS)

The internal structure of PECS agents follows general systems theory and com-
prises input, internal state and output. Each subsystem is further subdivided. The
internal state, for example, consists of Social Status, Cognition, Emotion and Physi-
cal conditions components. Components are interconnected by an intricate network
of causal dependencies and information flows, and each is represented by its own in-
ternal state variables and their state transition functions. The global state transition
function of a PECS agent consists of a collection of state transition functions of all
its state variables. Their mathematical form is not constrained, giving the modeller
an almost total freedom in shaping the agent behaviour. A more detailed description
of the PECS reference model is provided in [20, 18]. Based on these ideas, we de-
signed and developed a generic agent structure shown in Figure 3. Although at first
sight it might look different from the “canonical” PECS agent structure provided
e.g. in [18], it is nevertheless compatible.

Human behaviour modelling is a large topic and the scope of this article does not
permit its full elaboration. Instead, we shall briefly introduce the main agent com-
ponents depicted in Figure 3. Sensory perception of our agents is implemented in the
form of reading filtered messages from the connector, with filters representing their
sensory limitations. The middle part of the figure shows the components represent-
ing their internal state. The collection of motives and states on the right contains
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Behaviour Patterns PECS Motives and
States
Pattern 1 Component 1
Behavioural
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Connector
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/ |

Environment
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Figure 3. A simplified view of the internal structure of our generic agents used in ABS

factors that either drive the agent to action (e.g. emotions, such as fear or anger),
or modulate it (e.g. physical energy the lack of which may slow down or immobilize
the agent). Their dynamics may combine a continuous part (differential equations)
with a discrete part (typically capturing sudden impacts of external events, such
as gun shots). The motives have to be numerically comparable; therefore they
are normalized to the percentage scale, with 0% representing their minimum and
100 % their maximum intensity. The behaviour patterns on the left represent “goal-
achieving” mechanisms and incorporate elements of protocol memory and planning
of the canonical PECS model. Behaviours are conceptualized as sequences of atomic
and uninterruptible elementary actions, such as one step in a certain direction, one
gun shot or one stone-throw. The “Behavioural Cognition” component in the middle
selects the “right” behaviour pattern to be activated at suitable points in time on
the basis of the agent’s strongest motive. The “Behaviour and Action” component
then starts executing that pattern in a stepwise fashion, verifying the feasibility of
each elementary action before its execution.

ABS is in many respects the core component of the EUSAS system. In Data
Farming, for example, it is the many instances of ABS that run in parallel (with
visualization components switched off) and simulate the behaviour of both the se-
curity staff and the civilian participants. In mission rehearsals, ABS simulates “the
brains of the civilians” and is used as a plug-in for the 3-D visualization environ-
ment VBS2, while the real security personnel (trainees) interact with VBS2 through
the mouse and keyboard. ABS is also crucial in model calibration, where its 2-D
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graphical user interface comes to the fore — a topic that we elaborate on in the next
subsection.

2.3 User-Defined Agent Types and Their Calibration

Calibration of agents is typically performed in the context of a specific scenario
stipulated by the mission guidelines. For illustration, we shall use the “vignettes”
(micro-scenarios) of project EUSAS, which are broadly inspired by the recent ISAF
Mission in Afghanistan. These vignettes fall into two groups: entrance control and
patrol. One representative of the first group is Vignette 1.1, which models turmoil
in front of a pedestrian entrance to a military base, and which we used in [9] to
describe the first version of the EUSAS system (V1). In the second group there are
two vignettes — 2.1 and 2.2 — and both deal with a crowd looting a shop. While in
the first case the looting is genuine and the patrol stands a good chance of dispersing
the crowd, in the second case the looting has been staged as a trap and the real
intention is to attack the approaching patrol from flank and rear with cold weapons.
We concentrated on vignettes 2.1 and 2.2 while building the second version of the
EUSAS system (V2) and we shall use Vignette 2.2 here to illustrate the process of
calibration.

In the EUSAS system, new agent types can be defined by choosing their desired
behaviour patterns, the motives that trigger them and their default parameter val-
ues. We have developed a prototype of a web-based tool which would guide users
through this process and also check the consistency of the new types. The same
tool would then be used to define simulation scenarios, i.e., to choose the map of
the environment, place the agent instances in their starting positions and, if needed,
further adjust their individual parameter values. These agent and scenario defini-
tions are stored in dedicated XML files which our simulator loads at the beginning
of the simulation. Based on them, the simulator creates the desired environment
and agent instances, and then executes the simulation. We illustrate this process in
a simplified fashion in Figures 4 and 5.

The simplified XML fragment in the right part of Figure 4 defines a new agent
type called Looter. This is one of two civilian types participating in Vignette 2.2
(the other being the “violence-prone” civilians). The <Components> part of the
definition is meant primarily for motives and state variables. Here we see that
Looters are endowed with simulated emotion Fear whose default initial value is
set to 30 % of maximum intensity. This emotion is implemented as an executable
Java class package.Fear specified in the <Class> element. When instantiating
an agent of this type, our simulator loads the Java classes specified in the <Class>
section of each <Component> element, places them in the agent’s internal collection of
motives and states, and initializes their internal variables to values specified in their
respective <Override> sections. Behaviour patterns are specified analogously in the
<Behaviours> part of the definition and Java classes implementing them are loaded
into the agent’s second internal collection meant for behaviours. Once the user has
defined all needed agent types, he or she can include them in simulation scenarios.
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<?xml version="1.0" ... ?>
Sensory Input and Perception <AgentType xmins="..." >
<Name>Looter</Name>

! Behaviour ' PECS Motive s
Patterns & States : <Components>
| Behavioural <Component>
Cognition <Class>package.Fear</Class>
<Override>
<Variable>F ear</Variable>
<Value>30.0</Value>

Behaviour and Action

</Components>

<Behaviours>
<Behaviour>
<Class>package.Loot</Class>
</Behaviour>
<Behaviour>
<Class>package.Attack</Class>
</Behaviour>

</Behaviours>
</AgentType>

Figure 4. Creating an executable instance of a user-defined agent type from its XML def-
inition

<?xml version="1.0" ... 7>
<Scenario ... >
<Name=>Vignette 2</Name>

<Environment>location_map.xmil
</ Environment >

<Agents>
[ <Agentinstance><ID>6</ID>
<AgentType>
package.Looter.xml
</AgentType >
<Parameters>
<Parameter>
<Value>50</Value>
<Reference>Fear</Reference>
</Parameter>

</Parameters>

—1 </Agentinstance>

</Agents>
</Scenario>

Figure 5. Positioning and configuring agent instances through a scenario definition
XML file
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A simplified XML fragment of Vignette 2.2 definition is shown in the right part
of Figure 5. The <Environment> element refers to the physical environment (geo-
graphical map) in which the agents will move. This map is displayed in the left part
of the figure and captures a bird’s eye view of the initial setting of Vignette 2.2.
Black areas represent buildings and barriers unreachable to agents, while the rect-
angle with gray interior near the top is the shop being looted. It is surrounded by
dots, each representing one agent. The dark dots are looters; the light-coloured ones
are violence-prone individuals, whose intention is to attack soldiers. The soldiers
comprising the security patrol are represented by the three medium gray dots in the
bottom part of the figure.

The <Agents> part of the scenario definition enumerates all the participating
agent instances. Each instance declares its type and any parameters for which its
agent type defaults are to be overridden. Thus we see, for example, that the agent
instance with ID = 6 is of the type Looter, but instead of simply inheriting the
default initial value of Fear from its agent type (30 %) it overrides it to 50 %.

The “map” in the left part of Figure 5 is in fact a greyscale reproduction of
MASON?’s full colour 2-D interface (apart from the agent type and the shop labels
which we added for clarity). In this interface we use colour to convey important
information for calibration and validation teams. For example, agents dynamically
change colours depending on their current strongest motive (fear, anger, etc.), thus
revealing their intentions. Likewise, we use dashed coloured lines with textual labels
(not shown in Figure 5) to indicate interaction between two agents, with both the
colour and the label helping to distinguish peaceful negotiation from provocative
gesticulation or attack. These enhancements of MASON’s GUI were triggered by
the feedback from our modellers who had difficulty calibrating and face validating
agent models without visual cues of their motives and interactions.

All civilian agents in Vignette 2.2 are endowed with one “default” motive and
a matching behaviour by which they try to satisfy it. For looters this leads to
“looting” and for the violence-prone individuals to stone-pelting the soldiers. Ad-
ditionally, the agents monitor what happens around them, which may excite fear
or anger, in which case they start behaving fearfully (i.e. run away) or aggressively.
As the patrol nears, this may induce fear in some looters who then start leaving
the scene. The violence-prone individuals, however, do not get afraid but attack
the patrol. The resulting violence may impact the remaining looters in two possible
ways: they may either get afraid and leave, or get angry and join the attack. How
many get afraid and how many get angry depends on their parameter settings, and
to determine the right settings is precisely the purpose of calibration.

It was an important calibration task in Vignette 2.2 to set the parameters of the
looters in such a way that the proportion of those who joined the attack to those who
ran away felt “right” from the point of view of scenario validators. These parameters
could be set either globally in the Looter agent type definition or individually in
the Vignette 2.2 scenario definition. However, due to an element of uncontrolled
randomness in MASON, the desired proportion of angry and fearful looters could
not be achieved fully deterministically: it differed even for simulation runs with the
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same initial parameter settings. Here we need to clarify that our civilian agents are
not scripted, so the users by adjusting their parameters do not rigidly enforce on
them certain behaviours, but rather increase the probability that the desired kind of
behaviour (default, fearful, aggressive) will be autonomously chosen by the agents.
This is in line with the PECS modelling methodology and with our goal to create
highly realistic and autonomous, yet flexible and adjustable civilian agents.

The situation was different regarding the security personnel agents. At this
stage, they only possessed some very basic scripted de-escalate and self-defence
behaviours. These enabled them to perform simple actions helping us assess the
adequacy of our civilian models. In Vignette 2.2, for instance, we programmed
the soldiers to pass by the shop being looted, but it was left to the civilians to
initiate the interaction. Soldiers only reacted to them on the basis of their scripted
behaviours. Alternatively, it would also have been quite easy to program the soldiers
to come close to the shop and perform a series of warning shots or other actions in
order to gauge the reaction of the civilians and adjust their parameters accordingly.
More sophisticated behaviours for security personnel agents were to be obtained
through behaviour cloning (see next section), for which calibrated civilian models
are a precondition.

Overall, the calibration functionality of the EUSAS system was achieved by en-
hancing the MASON’s Java classes and GUIs in combination with our web-based
agent and scenario definition tool as well as our hierarchy of agent and scenario def-
inition XML files. For correct loading and processing of these multiple parameter
overriding options we resorted to semantic aspects of Java language, namely reflec-
tion and annotations. Parameter overriding is our key calibration tool and, behind
the scenes, it also powers our data farming experiment definition and execution.

2.4 Behaviour Cloning Basics

If ABS is the core component of the EUSAS system, behaviour cloning is its core
activity: it makes mission analysis possible by using mission rehearsal components to
capture the operational knowledge of security experts. Their knowledge is captured
in the form of behaviour patterns, which are then transferred to simulated security
personnel agents as a pre-requisite to mission analysis.

The algorithm we use for behaviour cloning is called “Cognitive Multi-Agent
Strategy Discovering Algorithm” (CMASDA), originally developed in the robotic
soccer domain, as described in [6, 3, 2]. It was designed for advanced data analysis
and extraction of behaviour patterns from low-level observations of two opposing
groups of agents. In principle, CMASDA is domain independent — not in the sense
that it could work without domain knowledge, but that it accepts it as input. In [19],
for example, we demonstrated how CMASDA could be used in a simplified security
domain.

In this article we use “behaviour cloning” as an umbrella term comprising two
phases:
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e behaviour analysis, in which CMASDA algorithm processes the low-level logs of
human behaviour and extracts representative patterns into a cloned behaviour
pattern library;

e behaviour replication, which deduces the next action for agents reproducing
human behaviour by matching the patterns in the library to the current state
of the simulation.

Our design of behaviour cloning was inspired by the human cognitive process [10]:
reasoning in humans is based on memories and a set of assertions (rules). The
whole process, including learning, is illustrated in Figure 6. First, the logs of the
experts successfully playing the desired scenario in VBS2 are given to CMASDA for
analysis and pattern extraction. These are denoted as “Expert Behaviour Logs” in
the bottom right of Figure 6. CMASDA then processes them and extracts strategic
behaviour patterns into a “Cloned Behaviour Pattern Library”. These patterns can
be inspected and edited by experts in a tool provided along with CMASDA. Finally,
during subsequent simulations, the “CMASDA Behaviour Replicator” inside each
cloned agent analyses the log of the ongoing simulation, compares it against the
“Cloned Behaviour Pattern Library” and deduces the optimal next action.

Security Staff Agent (SASM)
Current
Simulation Sensory Input and Perception
Log
m \j Behaviour Patterns PECS Motives and
Human Cloned i States
Expert Editing Behaviour | CMASDA .
Tool Pattern C——" | Behavi ¢ Cognitive
U Library Replicator
Behaviour and Action

CMASDA Expert
Behaviour - Behaviour (
Analyser Logs
N
N

Figure 6. Behaviour cloning in project EUSAS

In the remainder of this section we provide some illustrative examples of patterns
extracted by CMASDA in the context of Vignette 1.1 and Vignette 2.2.

A behaviour pattern is a sequence of actions (graphical part), in which tran-
sitions from one action to the next are “guarded” by logical conditions (symbolic
part). Thus, a behaviour pattern can be expressed as a sequence of IF <condition>
THEN <action> rules, as illustrated in Figure 7. When replicating the cloned be-
haviour, the selection of appropriate pattern is performed in two steps. First, all
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the patterns in the library are matched against the action graph constructed from
the current simulation data using sub-graph matching algorithms. Next, the logical
conditions of each matched pattern are interpreted and evaluated. If the logical
condition guarding the currently triggered action concept is satisfied, the entire pat-
tern is stored as a candidate for execution. Among all the candidate patterns, the
longest and most informative one is scheduled for execution first, followed until the
next one-step sub-pattern is mismatched or a longer candidate pattern appears. This
process is repeated forming a sequence of actions, effectively executing appropriate
strategies until the end of simulation.

@ Number of actions: 17
@ Abstracted action: gun_shot_warning_event
® Rule:
IF evalution_level >= 62.5 THEN gun_shot_warning_event
IF evalution_level == 55 AND SASM HasLoadedGun THEN gun_shot_warning_event
@ Actions:

© 17 x gun_shot_warning_event

Figure 7. A soldier behaviour pattern extracted by CMASDA in the context of Vignette 1.1

The example pattern in Figure 7 was abstracted in the context of Vignette 1.1
and demonstrates how machine learning approximates the rules of human behaviour.
The extracted rules are perhaps not exactly as humans would have put them, but
they do seem to capture correctly the two “self-defence” situations in which, accord-
ing to our rules of engagement, soldiers are permitted to use a warning shot in the air:
there was an aggressive action by a civilian, for which it is a standard response (the
first rule in the figure), or there was a less aggressive action which was repeated (the
second rule, in which the attribute HasLoadedGun indicates the soldier’s previous re-
action to some previous aggressive civilian act). The evaluation_level parameter
in both conditional clauses refers to the perceived level of civilian aggressiveness.

The next pattern shown in Figure 8 relates to the behaviour of security personnel
in Vignette 2.2. It describes the situation when the soldier moves towards the civilian
who is looting the shop. The approaching_civilian action is not an atomic agent
action, but composed of several moving events towards a civilian agent. The created
rules explain when the soldier close to the shop usually approaches the civilian:

1. if the soldier is close to the looted shop and the average civilian anger is rather
high;

2. the soldier is at the right side of the shop where the entry is and the civilian is
looting;

3. if the soldier has been attacked close to the shop.
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e Number of actions: 213
e Abstracted action: moving

e Rule:
IF SASM soldier_is_close_to_shop AND average_civilian_anger > 51 THEN approaching_civilian
IF SASM RightCorner AND CAO looting THEN approaching_civilian
IF SASM HasBeenAttacked THEN approaching_civilian

e Actions
87 x approaching_looting_civilian

2 x protecting_object

7 x moving_event

37 x moving_event_SA

80 x approaching_civilian

Figure 8. Symbolic part of a soldier behaviour pattern extracted by CMASDA in the
context of Vignette 2.2

The patterns that can be discovered by CMASDA are not limited to those of
security personnel. The example shown in Figure 9 describes the situation when a
civilian agent of the type Looter starts looting (atomic take_event action). Looting
usually starts close to the shop when his internal looting motive is higher than anger
or fear and his energy level is high. This properly describes the behaviour provided
to the simulated civilian agents, thus confirming the effectiveness of the CMASDA
algorithm. Since the behaviour of civilian agents is known beforehand and stored in
simulation models, these patterns were excluded from the pattern library.

o Number of actions: 76
e Abstracted action: take_event

e Rule:
IF anger_level > 24 AND CAQ LootingMotiveHigherThanAnger AND fear_level > 25 THEN take_event
IF CAO LootingMotiveHigherThanFear AND energy_level = 99 THEN take_event
IF CAO LootingMotiveHigherThanFear AND fear_level > 26 AND CAO looting THEN take_event

e Actions
76 x take_event

Figure 9. Symbolic part of a civilian behaviour pattern extracted by CMASDA in the
context of Vignette 2.2

The success of behaviour cloning in capturing the security expert strategies
(where by a strategy we mean a collection of behaviour patterns along with logical
conditions guarding their execution) depends primarily on three factors. The first
refers to the <action> part of the behaviour rules: the 3-D visualization environment
(VBS2) must provide a sufficiently rich repertoire of actions required for the execu-
tion of a successful strategy. The second refers to the <condition> part of the rules:
the logs of successful games must faithfully reproduce (or reasonably approximate)
all the important factors that experts take into account when deciding what to do in
a given scenario. Thirdly, machine learning algorithms need a sufficient number of
repetitions of each behaviour pattern in order to infer the rules correctly. Without
these preconditions it is extremely unlikely that machine learning algorithms would
extract useful rules.
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2.5 Data Farming and Data Analysis

Once the simulated security personnel agents are equipped with expert strategies
through behaviour cloning, it is possible to verify the robustness of those strategies
through data farming and data analysis.

Data farming may be thought of as a kind of ANOVA (analysis of variance),
during which a number of simulations run in parallel, each with slightly different
input parameters [12]. The success or failure of the analyzed strategy is determined
by referring to various measures of effectiveness, such as the number of injured
soldiers and civilians, etc. In this way, data farming helps to determine the subset of
all possible input vectors in which the analyzed strategy can be considered adequate.
This evaluation is performed by various data analysis tools.

Both data farming and data analysis are typically performed on a high-per-
formance computing infrastructure that can be of several types, as illustrated in
Figure 10.

Physical worker nodes

Ry

s
N &
s s

&

DF experiment
execution requests

Dispatching } é j DF experiment
experimen = 3
instances :} 4

Computing Clouds

Simulation Manager

frontend Shared storage

Figure 10. An overview of data farming infrastructure

Data farming experiments are defined through user interfaces that currently
support three methods of experiment design: 2*, full factorial, and Near Orthogonal
Latin Hypercube. Our flexible and scalable management of infrastructure permits
adding new computing resources to the experiment even while the experiment is
running. The results of experiments are typically analyzed first by statistical tech-
niques, such as the regression tree shown in Figure 11.

This particular regression tree has been constructed for MoE (measure of effec-
tiveness) “Global Anger” in Vignette 1.1 and lends further support to the validity of
our model for the emergence of collective aggression described in [9]. Each branch of
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Mean(globalAnger) = 25.75

n =55
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Figure 11. Part of a regression tree for “Global Anger” in a Vignette 1.1 data farming
experiment

the tree represents a group of simulation runs: the parameter n gives their number
and the parameter mean the mean value of the chosen measure of effectiveness. At
the top of the tree we start with a group of 55 simulations which sample a subset
of the overall input vector space. The mean value of “Global Anger” for all the
simulation runs was 25.75. Our goal in constructing the regression tree is to explain
the variance of “Global Anger” by the variance of input parameters. At the root of
the tree, which represents the most significant factor explaining the greatest part of
the observed variance, we see the prestige of agent No. 6. This agent happens to be
the group leader and his prestige is a measure of his social influence over the mem-
bers of his group, i.e. their tendency to adjust their emotional mood to his mood.
Therefore, a logical condition involving his prestige Agent (6) .prestige < 50 was
able to split the simulations into two groups with the largest possible difference in
the mean value of Global Anger.

Another regression tree is shown in Figure 12. It was constructed for MoE
“Global Escalation” (number of aggressive acts, such as stone throws) in Vignet-
te 2.2. At first sight it might look rather trivial, but in reality it conveys a surprising
and counterintuitive result. While the overall aggressiveness of the crowd did indeed
increase with the number of aggressive individuals (as expected), it did not do so
smoothly but in a highly nonlinear fashion. There appears to be a certain criti-
cal number of aggressive individuals (25.5), and the scenarios below this threshold
exhibited very low levels of aggression (about 6 aggressive acts on average), while
the scenarios above it exhibited very high levels (hundreds of aggressive acts). This
seems to indicate that the tactics used by the simulated security personnel could
effectively manage looting crowds with up to 25 aggressive individuals.

Besides regression trees, there are other statistical tools available, e.g. his-
tograms®, but they all treat one simulation run as one data point associating one
input vector with its corresponding output value. In order to investigate what has

6 check www.scalarm.com with Massively Self-Scalable Platform for Data Farming
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Figure 12. Regression tree for “Global Escalation” (number of aggressive acts) in a Vi-
gnette 2.2 data farming experiment

happened inside a particular simulation run other tools are needed. We shall briefly
mention three that we explored or prototyped in the EUSAS project: CMASDA
Pattern Viewer, Graph Inference Tool and causal partitioning.

CMASDA Pattern Viewer is able to re-play the simulation scenario from logs
and visually match the identified behaviour patterns on the screen against a pat-
tern library. The colouring of matched patterns indicates whether the pattern was
marked in the library as a success or a failure.

Graph Inference Tool is meant for open-ended exploration of simulation logs on
the basis of spreading activation algorithm. It can operate in two modes: there is
a text-based search interface, where the user first specifies the starting-point of the
search (nodes that receive initial activation), and then gets the result list (related
nodes). If the user wishes, it is possible to explore the result list interactively in
a graphical form. This makes sense because the result list is typically just a small
sub-graph of the complete graph constructed from the full simulation log. It requires
certain expertise but it can lead to unexpected insights — it helped us, for example, to
discover errors in our initial implementation of the soldiers’ self-defence behaviour.
A more detailed description of this tool can be found in [19].

Causal partitioning is a technique based on nonlinear structural causal analysis.
It is applied to model variables, such as simulated emotions anger or fear, in order
to quantify the proportion in which various influencing factors (their “causes”) con-
tributed to their actual numerical values. Interested readers may refer to [14] for
a more detailed account.

Overall, data analysis tools verify the robustness of the cloned strategies and
help to identify the reasons behind particular results of interest (especially outliers,
i.e. simulation runs with extreme output values). Only when a particular strategy
proves to be sufficiently robust in the context of the intended training situations, it
should be used for mission rehearsal.

2.6 Mission Rehearsal

The EUSAS system provides mission rehearsal capability in virtual training mode,
in which real people (security staff) operate simulated equipment and try to prevail
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over simulated opponents in a simulated world. Our virtual training setup involves
a well-known third-party product VBS27 coupled with our ABS through a CORBA-
based interface, which is also a well-known technology. Therefore we focus here on
how a sequence of vignettes (micro-scenarios) might be logically combined for the
purposes of mission rehearsal.

The starting point is Vignette 1.1, where a tussle develops in front of the pedes-
trian entrance to the military base. Depending on how well the trainees manage
this tussle, either Vignette 2.1 or 2.2 is assigned to them, but without their knowing
which one. This would reflect real life: if there was a lot of resentment generated
among the civilians in the first vignette, later when the soldiers encounter the same
civilians again during patrol, it might lead to an increased level of aggressiveness,
or even to an attempt to trap the soldiers, as in Vignette 2.2. So the trainees have
to recognize the kind of situation they are facing (is the looting of the shop genuine,
or is it just a trap?) on the basis of indirect symptoms, and then react accordingly.
This principle can be generalized: mission rehearsal consists of a sequence or a “mo-
saic” of vignettes, where the results achieved in earlier vignettes influence the type
as well as the initial settings of the subsequent ones.

Validation activities and results for mission rehearsal are reported in Section 3.3.

3 EXPERIMENTATION AND VALIDATION

The EUSAS project employed an iterative approach in which design and develop-
ment were interwoven with verification and validation phases. The project consisted
of two iterations producing two versions of the EUSAS system (V1 and V2), but
we started with a “zero” iteration where the purpose was to choose a suitable simu-
lation platform and tentatively propose a generic and modular agent architecture
that would accommodate the project needs. We have sketched this architecture and
its salient features in Sections 2.2 and 2.3. In the next section we briefly reiterate
our early experimentation and validation results, most of which were already pub-
lished. In Section 3.2 we present, for the first time, comprehensive verification and
validation results for our behaviour cloning approach. Section 3.3 describes the final
project demonstration of the EUSAS system, which took place in the premises of
the project partner Cassidian (now Airbus Defence and Space) in Elancourt, France.

3.1 Early Experimentation and Validation Results

At the start of the project we considered various multi-agent simulation platforms
on the basis of information gleaned from published surveys. Two most promising
candidates (NetLogo and MASON) were then compared by means of a practical
implementation experiment that we reported in [15]. The evaluation criteria cov-
ered environment representation (e.g. support for GIS — geographic information sys-
tem data), means to create, represent and implement agents and their behaviours,

7 https://www.bisimulations.com/



Simulations for Urban Security Operations 1221

as well as support for logging, model check-pointing, physical movement (flocking,
steering, etc.) and agent standards (e.g. HLA® or FIPA?). Additionally, data farm-
ing required flexible parameterization and visualisation that could be switched off.
Finally, we also considered development environments, in-built analytical tools and
performance. We subsequently implemented the first version of the EUSAS system
(V1) in the winning simulation platform (MASON), and described some of its fea-
tures and early validation results in [9]. The first significant result was the successful
(albeit partial) face validation of our computational model for the emergence of col-
lective aggression in the context of Vignette 1.1. This also validated our choice of
the simulation platform and our agent architecture: since we were able to implement
the requirements of V1 (and later also of V2), it proved to be the right choice and
the right design.

As the emotional dynamics of our agents was partly driven by differential equa-
tions, the need to solve them numerically led us naturally to the discrete time step
(DTS) approach. We retained DTS in spite of the fact that in mission rehearsal
our ABS is coupled with VBS2, which is essentially thread-based and event-based,
and both have to interoperate in real time. Regarding the potential disadvantages
of DTS raised by [1], such as the pressure for small time steps or the need for tie-
breaking mechanisms, we have found these relevant, but not blocking. When our
ABS interoperates with VBS2 in real time, we ensure that ABS is called at least
twice per second, which is feasible given the kind of micro-scenarios that we deal
with in the EUSAS project. We also slightly randomize the duration of agent ac-
tions so as to limit the number of simultaneous state transitions (such as emitting
events to the connector at the end of each action) that occur during one time step.
Thanks to the cumulative way in which external events are processed in our models,
we have not felt any need for special tie-breaking mechanisms beyond a relatively
simple provision for a consistent update of state variables independent of the or-
der in which they are called for update. Moreover, our later experiments reported
in [14] indicated that varying the time step did not have a significant impact on the
emergent behaviour of the system or the simulation outcome.

On the other hand, we did feel a distinct need to add new visual features to
MASON’s 2-D interface for the purposes of face validation of our models, notably the
dynamic colouring of agents depending on their leading motive and the visualization
of their interactions. In this respect we would like to emphasize that MASON’s neat
structure greatly simplified our task.

3.2 Verification and Validation of Behaviour Cloning

Besides the partial validation of our model for the emergence of collective aggression
reported in [9], probably the most impressive early result was the behaviour cloning
success in the context of Vignette 1.1. Figure 13 shows how closely CMASDA

8 http://en.wikipedia.org/wiki/High_Level_Architecture_(simulation)
9 http://en.wikipedia.org/wiki/FIPA
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was able to match the simulation statistics of the game that it was given to clone.
A closer examination reveals that the two sets of time-series are indeed not identical,
yet they are remarkably similar. The similarity was also evident when the project
team watched, side by side, the video recordings of the original simulation and that
of its cloned replica. Of course, there are also objective measures, such as those
designed on the basis of dynamic time-warping (DTW), and our behaviour cloning
group was using them as well.
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Figure 13. Comparison of simulation variables and statistics for one simulation run of
Vignette 1.1 (top) with its cloned reproduction by CMASDA (bottom)

Dynamic Time Warping (DTW) [7] is a well-known distance measure technique
that performs a mapping between two time series by minimizing the distance be-
tween them. The cumulative differences between the two series give a measure of
their similarity. The usability of this method derives from observations that humans
can compare time series that may vary in time or speed. DTW compares time series
in a flexible way and returns a real value from the interval [0,1], where 1 is returned
when comparing two identical and 0 when comparing two completely different se-
quences. In general, two time series can be deemed similar if their DTW similarity
measure is higher than 0.5. In this experiment we used a variation of the algorithms
that aligns multiple time series at the same time.
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For our experiments, 10 simulation logs were obtained for each of the following
simulation modes:

e constructive mode, in which the soldiers were simulated by agents using simple
scripted de-escalation and self-defence behaviours;

o virtual mode, in which the soldiers were played by real human beings;

e cloned constructive mode, in which the soldiers were simulated by agents using
cloned replicas of the simple de-escalate and self-defence behaviours from the
constructive mode;

e cloned virtual mode, in which the soldiers were simulated by agents using cloned
replicas of the strategies used by real humans in virtual mode.

One DTW comparison was performed by comparing each simulation log of one type
with all logs of a different type. At the same time, one simulation log contains
a number of time series (graphs) as shown in Figure 13. To compute the similarity
of different simulation modes, we have collected a representative subset of simula-
tion variables and statistics including Global Anger, Global Fear, Global Energy,
Global Looting Motive, Number Of Effective Shots, Global Injured, Global Killed.
These variables characterise the time evolution of simulation and agent parameters
throughout the scenario. As an example, the comparison of the simulation modes
shown in Figure 13 (constructive mode versus cloned constructive mode) yielded
0.591 in the third column of the first row of Table 1.

constructive  virtual cloned constructive cloned virtual

constructive 0.714 0.264 0.591 0.297
virtual 0.632 0.391 0.586
cloned constructive 0.788 0.382
cloned virtual 0.851

Table 1. Comparison of similarities between Vignette 1.1 simulation modes

The first row in Table 1 shows the results of comparing the original Vignette 1.1
simulations (constructive mode) to all the modes including itself. The result of
around 0.6 might appear low, but one should take a look at how similar are the con-
structive mode simulation logs when compared to themselves: the computed value of
0.714 in the first column represents the upper bound of what the cloning can possibly
achieve; it would only be reached if the cloning perfectly replicated the original logs.
The second number in the first row compares the constructive to the virtual mode.
As can be seen, the two modes are quite different since their similarity measure is
low (0.264), meaning that humans played the scenario differently than the computer.
The third number in the row, as mentioned, shows the cloning performance (0.591),
which is close to the upper bound (0.714). This confirms that cloning can credibly
reproduce the simulated soldier behaviour in Vignette 1.1. The low value of the last
comparison in the first row is another important indication, showing that the cloned
virtual mode still differs significantly from the constructive mode, as it should, since
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the wvirtual mode itself differed substantially from it. Therefore, we can conclude
that CMASDA is able to discover and clone different behaviours within the same
domain.

The second row of Table 1 compares the virtual and two cloned modes. Again,
the first number (0.632) is the upper bound for similarity that cloning can achieve.
The tactics used by humans in the wvirtual mode contain more internal variance
than the simulations in constructive mode, since the computed similarity of virtual
mode to itself is lower (0.632). The second number in this row confirms that the
cloned constructive mode differs from the virtual one. The last measure shows how
authentically CMASDA was able to extract the behaviour patterns of real human
players. Its value (0.586) is very close to the upper bound, which again confirms
that CMASDA can successfully discover different behaviours in the Vignette 1.1
domain.

The third row compares the cloned constructive and the cloned virtual modes.
While the cloned constructive mode is more similar to itself (0.788) than the con-
structive mode (0.714), the difference of 0.074 is reasonable. As we would expect,
the cloned constructive and the cloned virtual modes are quite dissimilar, as shown
in the last column of the third row. Finally, the last value in the fourth row means
that the simulations in the cloned virtual mode are internally more similar to each
other than their originals (i.e. tactics exhibited by real humans in the virtual mode),
indicating a space for further improvement.

Simulator adaptors and cloning modules were also developed for the Vignette 2.2
domain. As with Vignette 1.1, behaviour patterns discovered by CMASDA credibly
reproduced the behaviours exhibited in different simulation modes in Vignette 2.2.
Moreover, the patterns were rich enough to capture and then execute different
styles of plays. The performance of cloning on Vignette 2.2 is presented in Ta-
ble 2.

constructive  virtual cloned constructive cloned virtual

constructive 0.647 0.313 0.439 0.371
virtual 0.586 0.298 0.509
cloned constructive 0.523 0.351
cloned virtual 0.656

Table 2. Comparison of similarities between Vignette 2.2 simulation modes

Once it is determined that cloned agents credibly reproduce the behaviour of real
humans (security personnel), the next step would be to use these agent clones in the
data farming set-up. The idea is to test their behaviour on a representative sample
of permissible parameter settings in order to identify the most problematic ones.
The logs of such scenarios could then be further analyzed with the data analysis
tools presented in Section 2.5, with key findings taken into consideration during
subsequent rounds of mission rehearsal.
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3.3 Final Project Demonstration of the EUSAS System

The final project demonstration of the EUSAS system (V2) consisted of three parts:

e Virtual training demonstration;
e Behaviour cloning demonstration;

e Data farming demonstration.

Since we have already covered behaviour cloning in Sections 2.4 and 3.2 and
data farming in Section 2.5, we shall focus on virtual training here.

Figure 14 shows a virtual training session in progress, in which four members
of the French Army (Armée de Terre — Troupes de Marine — RICM) tested the
capabilities of the EUSAS system. The team included one squad leader (standing)
who commanded three squad members (sitting).

The computing infrastructure consisted of three computers with 64-bit OS “Win-
dows 7 Professional” running on Intel® Xeon® CPU 3.20 GHz (quadcore) with 8 GB
RAM, a graphic card “Nvidia Quadro FX 3800” 1GB, HDD 250 GB, an Ethernet
network card, and the installed serious game VBS2 VTK v1.4 (Virtual Battlespa-
ce 2 — Virtual Kit Training) of Bohemia Interactive Simulations®.

One computer was used as a server running both ABS and VBS2 in the admin-
istrator mode, which allowed the user to choose the mission, to launch it and also to
play a character. The server was equipped with two screens: the first one showed the
3-D view generated by VBS2 and the second one the 2-D view generated by ABS.
Real-time synchronisation between ABS and VBS2 was realised through a CORBA-
based interface. The two remaining computers were connected to the server as VBS2
clients; each was equipped with one screen and permitted the participation of one
soldier.

In Figure 14, the squad leader is looking at a bird’s eye view of the training
situation projected for him on the wall (this was in fact the 2-D view generated by
ABS - see Figure 5 in Section 2.3). Meanwhile, the squad members are executing
his orders on VBS2 consoles providing simulated 3-D views shown in Figure 15.
Labels and icons above the heads of displayed characters and avatars in Figure 15
convey the meaning of their culture-specific gestures, actions and verbal utterances.
For simulated civilians, they also indicate their internal motivations. In this way
we compensated for the inability of VBS2 to render emotions through facial expres-
sions.

Within 80 minutes allocated for the virtual training, eleven training runs were
performed: six on Vignette 1.1 (turmoil in front of the pedestrian entrance) and
five on Vignette 2.2 (crowd looting a shop). The repetition was required in order
that CMASDA could later analyse the logs and extract useful behaviour patterns
as outlined in Section 2.4. Moreover, two different levels of civilian behaviour had
been implemented for each vignette: a normal mode (with default parameters) and

10 https://www.bisimulations.com/
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Figure 14. Virtual training session in progress

a mode where the civilians were more aggressive and thus more difficult to deal
with.

Apart from a minor technical problem at the beginning (loss of synchronisation
between VBS2 instances), the virtual training demonstration proceeded smoothly
and according to plan. At the end, the trainees and their leader were asked to fill
in a questionnaire with 28 questions assessing the system in the following areas:

e VBS2 Interface and the EUSAS system HMI (human-machine interface);
e The EUSAS System Training and Analysis approach;
e Benefits for Virtual Training;

e Benefits for Mission Preparation.

Each question required an answer rating the system on a scale from 1 (“very little”,
minimum appreciation) to 7 (“very much”, maximum appreciation). Empty space
for textual comments was also provided. The overall rating of the system, calculated
as the mean of four area ratings, was 5.78. The system performed particularly
well in the areas of benefits for mission preparation (rating 6.13) and benefits for
training (rating 5.79) while a comparatively lower rating for the VBS2 interface
(5.45) indicates a space for further improvement. This operational feedback was
highly valuable for potential future applications of the EUSAS system.



Stmulations for Urban Security Operations 1227

Figure 15. Simulated 3-D views generated by VBS2 for Vignette 2.2 scenario

4 CONCLUSION AND FUTURE WORK

The EUSAS system was accepted by the European Defence Agency as meeting
the contractual requirements. Its overall technology readiness level'! was estimated
at TRL 4-5 (technology validated/demonstrated in relevant environment). This
shows that integrating mission analysis with mission rehearsal through behaviour
cloning can indeed provide significant benefits, such as the ability to capture the
security expert knowledge in a non-verbal way and to guarantee the consistency of
mission rehearsal with mission analysis. Moreover, the use of the PECS reference
model for realistic modelling of civilian agents helped to provide a modern virtual
training environment that adequately reflects the importance of human factors for
security operations in an urban terrain. Finally, the breakdown of large scenarios
into smaller units (vignettes) facilitates the formulation of simple and dynamic rules
of engagement tailored to specific situations. This is further assisted by behaviour
cloning which captures the security expert strategies in the form of simple and
straightforward rules that help to focus the attention of trainees on key decision-
making factors.

The wide spectrum of technologies used in the EUSAS project opens up mul-
tiple directions for future work. First of all, the system might be further improved
as a whole. Here the possibilities include, for example, the introduction of playable
characters on the civilian side (at present all civilians are simulated), the improve-
ment of civilian models through behaviour cloning (only security personnel agents

" https://en.wikipedia.org/wiki/Technology_readiness_level
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benefit from it now), or support for squad leader training (at present virtual training
is only for squad members). Secondly, individual components of the system might
be improved or adapted for new domains. Data farming components, for example,
might be enhanced with a semi-automatic expansion of the parameter space and self-
scaling, since both have to be done manually now. They could also be generalised
so as to work with any kind of simulation that provides a formalized description
of its required inputs and outputs, or to become deployable on new types of com-
puting infrastructure (grids with different middleware, different types of computing
clouds).

Along similar lines, our behaviour cloning approach could be improved so as
to reduce the involvement of human experts in the behaviour analysis phase. This
would mean, first, that the behaviour analyser would automatically choose appropri-
ate parameters for pattern extraction, such as the level of abstraction of the abstract
action graph from which the patterns are mined. Next, it would have to identify the
subset of discovered patterns which best represent the original human behaviour.
Last, the chosen subset of patterns might have to be further refined before getting
exported to the behaviour library. This automation could reduce the time needed
to construct the behaviour library from low-level log data to a matter of minutes.

Finally, our agent-based simulator ABS could also be improved along several
lines. One line, purely technical, would involve low-level coding in order to remove
known deficiencies, e.g. the element of uncontrolled randomness that we mentioned
in Section 2.3. Another line, more abstract, could unify our treatment of simulation
parameters: at present there are three types of parameters (component-related,
scenario-related, simulator-related) which are not equally accessible for data farming.
These two lines of advance would make our ABS more versatile as a general-purpose
platform for agent-based simulation. But there is also a third line concerning its use
as a platform to develop, study and evaluate behavioural models. This would require
specialized data analysis tools, such as those mentioned in Section 2.5. Among
these, we are working intensively on causal partitioning, which we consider the most
promising: the first part of our work was already published in [14] and a sequel is
under preparation.
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