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Abstract. Formal methods have come into use for the construction of real systems,
as they help increase software quality and reliability. However, they are usually ac-
cessible only to specialists, thus discouraging stakeholders’ participation, crucial in
first steps of software development. To address this problem, we present in this
paper a strategy to derive an initial formal specification, written in the RAISE
Specification Language, from requirements models based on natural language, such
as the Language Extended Lexicon, the Scenario Model, and the Business Rules
Model, which are closer to the stakeholders’ language. We provide a set of heuris-
tics which show how to derive types and functions, and how to structure them
in a layered architecture, thus contributing to fruitfully use the large amount of
information usually available after requirements modelling stage. In addition, we
illustrate the strategy with a concrete case study.

Keywords: Language extended lexicon, scenario model, business rules model, for-
mal specifications, RAISE method

1 INTRODUCTION

Formal methods have come into use for the construction of real systems, as they
help increase software quality and reliability, and even though their industrial use
is still limited, it has been steadily growing [29]. By using formal methods early
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in the software development process, ambiguities, incompleteness, inconsistencies,
errors, or misunderstandings can be detected, avoiding their discovery during costly
testing and debugging phases. However, one of the problems with formal speci-
fications is that they are hard to master and inappropriate as a communication
medium, as they are not easily comprehensible to stakeholders, and even to non-
formal specification specialists. This is particularly inconvenient during the first
stages of software development, when interaction with stakeholders is very impor-
tant. The information gathered during requirements elicitacion is heavily based on
natural language as stakeholders must be able to read and understand the results
of this phase [2, 23]. Therefore, a good formal approach should use both informal
and formal techniques [3, 29)].

A well-known formal method is the RAISE method, which has been used on real
developments [6]. RAISE is an acronym for “Rigorous Approach to Industrial Soft-
ware Engineering” [27]. The RAISE method includes a large number of techniques
and strategies for doing formal development and proofs, as well as a formal specifica-
tion language, the RAISE Specification Language (RSL) [26], and a set of tools [9].
However, it does not include any strategy for the requirements step that addresses
the problems mentioned before. As we had some experience in requirements mod-
elling, we proposed the use of natural language requirements models to elicit, model,
and communicate requirements in an easy and friendly way, and then map them to
an initial RSL specification that will be the basis for software development using
RAISE method.

The Language Extended Lexicon (LEL) and the Scenario Model are two well
known natural language requirements models, used and accepted by the Require-
ments Engineering community [15]. In addition, the Business Rules Model al-
lows the explicit specification of the policies of the organization in natural lan-
guage [14, 18, 25]. These models ease and encourage stakeholders’ participation,
very important in early stages of software development. However, they have to be
reinterpreted by software engineers into a more formal design on the way to a com-
plete implementation. Many works aiming at reducing the gap between the require-
ments step and the next steps of software development process have been published.
Some of them describe, for example, different strategies to obtain object oriented
models or formal specifications from requirements specifications [4, 7, 13, 19].

In this paper, we present a technique to derive an initial formal specification in
RSL from the LEL, Scenario, and Business Rules Models. This work enhances the
strategy presented in [21, 22] by adding the heuristics related to the Business Rules
Model [14]. This initial RSL specification may be validated by using a prototype
produced by the SML translator [30].

The rest of the paper is organised as follows. In Sections 2 and 3 we briefly
introduce the natural language requirements models and RAISE, respectively. The
core of the paper is in Section 4, where we describe the strategy to derive the initial
specification in RSL. We exemplify our proposal with a real case study: the Milk
Production System [20]. Section 5 contains an approach to validate our proposal.
Finally, in Section 6 we present some conclusions and outline possible future work.
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2 NATURAL LANGUAGE ORIENTED REQUIREMENTS MODELS

The models presented in this section are accepted and used by the Requirements
Engineering and Business Modelling communities. They provide an attractive way
of communication and agreement between software engineers and stakeholders. As
they are written using natural language they can be read and understood by the
stakeholders, thus allowing them to participate actively in the requirements defini-
tion process.

FIELD

Notion

— Land where cows eat pastures.

— It has an identification.

— It has a precise location in the dairy farm.

— It has a size.

— It has a pasture.

— It has a hectare loading.

— It is divided into a set of plots.

— It has a list of previous plots.

Behavioural Response

— A dairy farmer divides it into a set of plots, separated by electric wires.
— Many different groups of cows can be eating in it simultaneously.

Table 1. Example of an object LEL symbol

2.1 Language Extended Lexicon

The LEL is a structure that allows the representation of significant terms of the
Universe of Discourse (UofD) [15]. Its purpose is to help understand the vocabulary
and the semantics of the UofD, unifying the language and enhancing stakeholders’
participation.

LEL is composed by a set of symbols. Each symbol has a name (and possibly
a set of synonyms), a notion, and a behavioural response. The notion describes
what the symbol is, while the behavioural response describes how the symbol acts
upon the UofD. LEL symbols may be classified, according to their semantic in the
UofD, in objects, subjects, verb phrases, and states, and there are some heuristics
that suggest what to include in the notion and behavioural response of each kind of
symbol. In the description of the symbols two rules must be followed simultaneously:
the closure principle that encourages the use of LEL symbols when describing other
LEL symbols, and the minimum vocabulary principle which minimizes the use of
symbols external to the lexicon. Table 1 shows an object LEL symbol, taken from
the case study. Underlined phrases correspond to other LEL symbols.
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2.2 Scenario Model

A scenario describes a situation in the UofD [15]. Scenarios also use a natural
language description as their basic representation and they are naturally linked to
the LEL. Scenarios can be derived from the LEL by applying a set of heuristics.
In [15] the scenario construction process is described.

A scenario is composed by a title to identify it, a goal describing its purpose,
a context to define geographical and temporal locations and preconditions, actors
which are entities actively involved in the scenario (generally persons or organiza-
tions), a set of resources that identify passive entities with which actors work, and
a set of episodes where each episode represents an action performed by actors using
resources. An episode may be explained as a scenario; this enables a scenario to be
split into sub-scenarios.

Table 2 contains an example of one scenario taken from the Milk Production
System Scenario Model. Underlined words or phrases are symbols defined in the
LEL, and phrases written in the episodes using capital letters correspond to the
title of other scenarios.

TITLE: Feed a group

GOAL: Register the daily ration given to a group.

CONTEXT: It is done once a day. Pre: Group is not empty.

RESOURCES: Group Date Quantity of corn silage Quantity of Hay
Quantity of concentrated food Feeding form

ACTORS: Dairy farmer

EPISODES:

— COMPUTE RATION.

— The dairy farmer records, in the Feeding form, the date and the quantities of
corn silage, hay and concentrated food given to each cow in the group.

— COMPUTE PASTURE EATEN.

Table 2. Example of a scenario

2.3 Business Rules Model

Business rules are a key concept in the requirements definition process. A business
rule is a statement about the way an enterprise does business [14]. Business rules
can be viewed as expressing functional and nonfunctional requirements which are
characterized by their strategic importance to the business, and consequently they
deserve special consideration. According to the Semantic of Business Vocabulary
and Business Rules Specification (SBVR) [25], a rule is an element of guidance that
introduces an obligation or a necessity. This definition gives two main categories of
rules:
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e Structural rules (necessities): Define how the business chooses to organise (i.e.
structure) the things it deals with. They supplement definitions.

e Operative rules (obligations): They govern the conduct of business activity; they
can be directly violated by people involved in the affairs of the business.

A cow has an earring with the identification number.
Category: Structural (Necessity)

A pregnant heifer must be vaccinated against diarrhoea in its seventh month of

pregnancy.
Category: Operative (Obligation)

Table 3. Examples of business rules

Table 3 shows examples of each type of rule, taken from the Milk Production
System business rules model.

The business rules construction process [18] begins with the identification of the
sources of information. Organisation documents, such as ISO required documents
and organisational models are generally the best sources. If the company does
not have any documentation, other techniques such as observation, interviews and
meetings should be used to acquire the information. We categorise the sentences
that appear in the sources considering their purpose in the organisation, trying to
distinguish sentences referring to: limits, responsibilities, and rights. To decide if
a sentence is a business rule, we analyse if it is determined by a decision of the
organisation or if it is an inherent sentence to the functionality of the UofD (in
which case it is not considered a rule).

Business rules are classified and documented following syntax patterns, con-
necting them with the corresponding LEL symbols. At this point, it is impor-
tant to identify the LEL symbol/s directly affected by the rule. After documen-
tation, the model is verified against the set of scenarios and the LEL. Finally, the
model is validated with stakeholders to detect elicitation errors or organisational
conflicts.

3 RAISE

RAISE gives its name to a wide spectrum specification and design language, the
RAISE Specification Language (RSL), an associated method, and an available set
of tools to help writing, checking, printing, storing, transforming, and reasoning
about specifications. Complete descriptions of RSL and the RAISE method can be
found in the corresponding books [26] and [27], while the tools are described in [9],
and they can be downloaded from UNU-IIST’s web site (www.iist.unu.edu).
Usually the first RSL specification is an abstract, applicative and sequential one,
which is later developed into a concrete specification, initially still applicative and
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then imperative, and sometimes concurrent. A specification in RSL is a collection of
modules. A module is basically a named collection of declarations; it can be a scheme
or an object. Each module should have only one type of interest. However, the kernel
module concept is that of a class expression. A basic class expression is a collection
of declarations enclosed by the keywords class and end and it represents a class of
models. Objects and schemes are defined using class expressions.

A typical applicative class expression contains type, value, and some axiom
definitions. Axioms may be used to constrain the values or to model invariants.

RSL is a typed language. This means each occurrence of an identifier represent-
ing a value, variable, or channel must be associated with a unique type. Besides, it
must be possible to check whether each occurrence of an identifier is consistent with
a collection of typing rules.

A type is a collection of logically related values, and it may be specified by
an abstract or a concrete definition. An abstract type, also referred to as a sort,
has only a name. It is a type we need but whose definition we have not decided yet.
A concrete type can be defined as being equal to some other type or using a type
expression formed from other types. In order to provide concrete definitions for
types, we need a collection of types to use. RSL has seven built-in types (Bool, Int,
Nat, Real, Char, Text, and Unit) with their corresponding operators, and a number
of ways of constructing types from other types (type constructors, record types,
variant types, union types, and subtypes). Type constructors allow the definition
of composite types: products (x), functions (— for total functions, = for partial
ones), sets (-set for finite sets, -infset for infinite ones), lists (* for finite lists, ¢ for
infinite ones), and maps ( 7 for finite maps, - for infinite ones). Sets, lists, and
maps define collections of values of the same type. A set is an unordered collection
of distinct values, while a list is a sequence of values, possibly including duplicates.
A map is a table-like structure that maps values of one type into values of another
type.

The following definitions exemplify some of the concepts defined above.

type
Cow.ld, /x abstract type */
Cow, /* abstract type */
Cows = Cow_id 7 Cow /# concrete type, map type expression #*/

Records are very much like those common in programming languages. Each
component of a record has an identifier, called a destructor, and a type expression.
Optionally a record component can have a reconstructor.

Variant types allow the definition of types with a choice of values, perhaps
with different structures. Subtypes are types that contain only some of the va-
lues of another type, the ones that satisfy a predicate. For instance, we can de-
fine the type Pregnant_cow as the one containing values that satisfy the predicate
is_preg_cow.
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type
Pregnant cow = {| ¢ : Cow + is_preg_cow(c) |}

Values are constants and functions. Their definition must include at least the
signature, that is a name, and types for the result, and for the arguments, in case
of a function. A function is a mapping from values of one type to values of another
type, and it can be total or partial. It is total when it is defined for every value of
the arguments, and it is considered partial when it is not known to be total.

4 THE STRATEGY FOR THE DERIVATION
OF THE RSL SPECIFICATION

As an attempt to bridge the gap between stakeholders and the formal methods
world, we propose a strategy to derive an initial formal specification in RSL taking as
input LEL, scenarios, and business rules. This proposal is an extension of the works
described in [20, 21, 22]. The derivation of the specification is structured in four
steps which guide the definition of RSL types and functions, and their structuring
in modules. The four steps are:

e Derivation of Types (Section 4.1),
e Definition of Modules (Section 4.2),
e Derivation of Functions (Section 4.3),

e Enhancement of the Specification (Section 4.4).

Although these steps are not strictly sequential, the strategy always begins by
deriving types and finishes with the application of business rules heuristics. In the
following sections we briefly describe each step, providing examples taken from the
case study.

4.1 Derivation of Types

This step produces a set of abstract as well as concrete types, which model the
relevant terms in the UofD. We perform the derivation of the types in two steps.
First we identify the types, and then we decide how to model them. Most of the types
derived in the Identification step will be abstract types, and many of them will be
replaced by more concrete ones in the Elaboration step. This way of defining types
follows one of the key notions of the RAISE method: stepwise development. The
replacement of an abstract type by a more concrete one follows the implementation
relation. Implementation is very important because if an initial specification meets
the requirements and all its developments follow the implementation relation, then
they all meet the requirements. Sections 4.1.1 and 4.1.2 present the heuristics to
identify the types of the RSL specification and to model them respectively.
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HITid LEL symbol RSL type RSL specification

HIT1 Subject/object name
is a singular noun

HIT1.1 Object representing Abstract type Property _name
a computable property

HIT1.2 Subject/object name is
a noun, also a symbol
in the LEL, modified by
a phrase:

HIT1.2.1 | If it represents Subtype expression Main_type, /x already defined */
a category, state or (not always) Subtype = {| s: Main_type *
situation is_subtype(s) |}

HIT1.2.2 | Ifit represents a different | Abstract type Symbol name
subject/object

HIT1.3 Otherwise Abstract type Symbol name

HIT2 State

HIT2.1 If name refers Subtype expression | Main_type, /x already defined */
to a symbol in the LEL (not always) Subtype = {| s: Main_type ®

is_subtype(s) |}

HIT2.2 If name does not Abstract type State_name
refer to a symbol in
the LEL

HIT3 Verb represents Abstract type Verb_name
an action with data to
save

HIT4 Symbol name is a plural
noun or symbol is an
element of a collection:

HIT4.1 If instances have Map type Sym.id,
an attribute or set expression Sym_name, /* already defined */
of attributes Map = Sym_id # Sym_name
for identification

HIT4.2 If instances need an List type expression | Sym.name, /x already defined */
ordering List = Sym_name”

HIT4.3 Otherwise Set type expression | Sym-name, /x already defined x/

Set = Sym_name-set

4.1.1 Identification of Types

Table 4. Heuristics to identify RSL types

The main goal of the Identification of Types step is to determine an initial set of
types that are necessary to model the different entities present in the analysed UofD.
This initial set will be completed, or even modified, during the remaining steps of
the specification derivation. For example, during the Definition of Modules step
it may be necessary to define a type to reflect the state of the UofD. Also, when
defining functions it may be useful to define some new types to be used as result

types.



A Derivation Strategy for Formal Specifications from Requirements Models 429

Table 4 summarises the heuristics we propose to define the relevant types. The
prefix HIT, used to distinguish each heuristic, means Heuristics for the Identification
of Types. The LEL is the source of information as LEL subjects and some objects
represent the main components or entities of the analysed UofD. In general, LEL
subjects and objects will correspond to types in the RSL specification. In addition,
LEL verbs may also give rise to the definition of more types, when they represent
an activity which has its own data to save.

For example, by applying the heuristics HIT1.3 and HIT4.1 to the LEL symbol
Field from Table 1 we obtain the following specification:

type
Field.id, /x from HIT4.1 %/
Field, /x from HIT1.3 %/
Fields = Field.id 7 Field /« from HIT4.1 %/

4.1.2 Elaboration of Types

Having defined a preliminary set of types and in order to remove under-specification,
we propose to return to the information contained in the LEL and the Scenario
Model. In particular, the analysis of the notion, and sometimes the behavioural
response, of each symbol that motivated the definition of an abstract type, can
help decide if the type could be developed into a more concrete type. As we have
already mentioned, all the developments we suggest satisfy the implementation re-
lation. Table 5 presents some heuristics to assist in this task. The prefix HDT,
used to distinguish each heuristic, means Heuristics for the Development of Types.
During this step, it might be necessary to introduce some type definitions that do
not correspond to any entry in the LEL. They appear, in general, when modelling
components of some other type. Symbols without an entry in the LEL may rep-
resent an omission or a symbol considered outside the UofD language. When an
omission is detected, it is necessary to return to the LEL to add the new definition,
and update the Scenario and Business Rules Models to maintain the consistency
between their vocabulary and the LEL itself.

For example, the abstract type Field, coming from an object LEL symbol
(Table 1) as set by heuristic HIT1.3, may be developed into a short record de-
finition with five components (HDT1.1 and HDT1.2), representing the properties
identified from the symbol notion (location, size, pasture, set of plots, and previous
plots). Hectare loading is discarded by heuristic HDT1.2 because it is a computable
property. The RSL definition for the type Field is then:

type
Location,
Size,
Pasture,
Plots,
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HDTid | Type comes from RSL type RSL specification
HDT1 Subject/object symbol:
HDT1.1 Notion contains one or more | Short record Sym_name::
properties of the symbol definition prop_1: Prop_type_1
prop-n: Prop_type.n
/*n >0/
HDT1.2 Notion contains computable | Simple type Prop_name = Type_expression
property of the symbol /* Remove property from record */
HDT1.3 | Notion represents symbol Variant type Categ == cat_1 | ... |cat_n
state or category /* (n >0) =/
HDT1.4 Categories or states share Variant type Categ == cat_1 | ... |cat_n,
some attributes Short record Main_type::
definition common_attr_1: Attr_type_1
Subtypes .
(if necessary) common_attr_m: Attr_type.m
distinguishing_attr: Categ,
St_Cat_1 = {| mt : Main_type ®
has_cat_1(mt) |},
St_Catn = {| mt: Main_type ®
has_cat_n(mt) |}
Jx (n,m > 0) %/
HDT1.5 | Object behavioural response /* In general, model the
suggests symbol property property as part of the object*/
HDT2 Verb describing an action /* In general, model the
applied to an object action as part of the objectx/

Table 5. Heuristics to develop identified types

Field::
location: Location
size: Size
pasture: Pasture
plots: Plots
past_plots: Plots

4.2 Definition of Modules

Modules are the means to decompose specifications into reusable units. This de-
composition into modules is particularly useful when designing complex systems,
as it eases and encourages separate development, one of the principles the RAISE
method is based on.

This step helps to organise in modules all the types produced by the Derivation of
Types Step in order to obtain a more legible and maintainable specification. These
modules would be later completed with the definition of functions, and probably
with more type definitions. A summary of the heuristics we propose to define the
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modelling UofD
components

HDMid | Type RSL module RSL definition
HDM1 For all the types that | Two modules: scheme GLOBAL_TYPES =
must be visible to a scheme and class
users or used in at a global object which type
least two modules is an instantiation Global_type_1,
of the scheme
Global_typen
end /xn > 0 x/
context: GLOBAL_TYPES
object GT:GLOBAL_TYPES
HDM?2 Models an element of | Scheme scheme COLL_ELEM =
a collection class
type
Coll_elem
end
HDM3 Models a collection Scheme, where the context: COLL_ELEM
scheme modelling scheme THE_COLLECTION =
each element in the class
collection is defined object CE: COLL_ELEM
as an embedded type
object /* if collection specified with a map */
The_Collection =
GT.Colliid # CE.Coll_elem
/* if collection specified with a list */
The_Collection = CE.Coll_elem*
/* if collection specified with a set */
The_Collection = CE.Coll_elem-set
end
HDM4 For all the types One top level module | context: DOM_COMP_1, ...,

defined as a scheme,
with each scheme
defining a UofD
component
instantiated as

an embedded object

DOM_COMP_n
scheme DOM_STATE =
class
object
DC_1: DOM_COMP._1,

DC.n: DOM_COMP.n
type
Dom_state::
dom_comp_1: DC_1.Dom_Comp_1

;iuom_comp_n: DC_n.Dom_Comp_n
/xn >0 x/
end

Table 6. Heuristics to define modules

modules is shown in Table 6. The prefix HDM, used to distinguish each heuristic,
means Heuristics for the Definition of Modules.

In defining these heuristics, we closely followed the features RSL modules should
have according to the RAISE method. For example, each module should have only
one type of interest, defining the appropriate functions to create, modify, and ob-
serve values of the type, and the collection of modules should be, as far as possible,
hierarchically structured. Therefore, we first identify class expressions to define
schemes, and then we assemble these schemes defining objects to express dependen-
cies between them.
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For example, as suggested by heuristics HDM2 and HDM3, the following two
scheme modules result from the map Fields defined during the Derivation of Types
step:

scheme FIELD =

class
type
Field::

location: Location
size: Size
pasture: Pasture
plots: Plots
past_plots: Plots

end

context: FIELD /* to make the scheme FIELD visible */
scheme FIELDS =
class
object F: FIELD /x embedded object for the collection element */
type
Fields = GT.Fieldiid # F.Field
/* GT is a global object where the type Field_id is defined */
end

4.2.1 The Architecture of the Specification

The modules defined by applying the heuristics we proposed can be hierarchically
organised to show the system module structure. The root of this hierarchy is the
system module, the second level contains the modules that define each UofD com-
ponent, and the remaining levels correspond to the modules that help to define the
upper ones. A diagram showing this hierarchy can be generated automatically by
the RAISE tools.

The RAISE method provides many guidelines to hierarchically structure a spe-
cification, aiming at encouraging separate development and stepwise development.
These guidelines allow to obtain a hierarchy of modules that may be specified using
the Layers pattern [5]. As the strategy we propose closely follows all these guidelines,
the RSL specification derived can be structured in layers. Considering the Layers
Pattern, the global architecture we suggest is composed of three layers: specific layer,
general layer, and middleware layer [21]. Figure 1 is an example of a module diagram
with the layers identified. A layer is a set of RSL modules that share the same degree
of generality. Lower layers are general to several domain specifications, while higher
ones are more specific to a concrete domain. The specific layer contains application-
specific modules not shared by other parts. The general layer includes modules that
are not specific to a single application and then they can be reused for many different



A Derivation Strategy for Formal Specifications from Requirements Models

DAIRY_FARM

DAIRY_FARMERS

Ccows | |COW76R0UP| |DAIRY7FARMER|

4
GH

COW_EVENT

GROUP_EVENT

CONSTANTS

Specific Layer
v y
| FIELDS
GENERAL_TYPES| PLOT
General Layer

Middleware L ayer
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applications within the same domain or business. The middleware layer has modules
that are so general that can be used in any domain. Examples of middleware layer
modules are standard specifications such as bags, stacks, queues, etc. at different
levels of abstraction. A specific module, which is located in the specific layer, can
use modules of the general layer or the middleware layer. Modules located in the
general layer can use modules in the middleware layer. This way of defining use
relationships between layers is similar to the one proposed in [5], although more

flexible.
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RSL provides control over visibility and hence dependency, allowing a layer to
be partially opaque. This means that some of its modules are only visible to the
next higher layer, while others are visible to all higher layers [20].

In general, the development of a specification into another one has no impact
on the layered architecture. Development in RAISE typically involves replacing
more abstract modules with more concrete ones, and sometimes it also involves
introducing new child modules. A child appears when the development of a module
introduces a new component or concept worthy of its own module. A developed
module will be in the same layer as its more abstract counterpart, while the new
child may be in the same layer or in a lower one.

Our proposal of using the Layers Pattern to structure the hierarchy of modules
of a specification in RSL assumes all the modules have the same specification style,
as for example applicative sequential as in our case study. When developing the
modules into a different style, such as imperative sequential, the architecture could
be respected as long as the implementation relationship holds between the modules
of the different layers of both specifications.

4.3 Derivation of Functions

In this section we present a set of heuristics which help to identify and to model
the functions of the RSL formal specification. Scenarios are the main source of
information when defining functions, as they are natural language descriptions of the
functionality in the UofD. In addition to functions that are specific to the considered
UofD, we also provide definitions for the appropriate functions to create, modify,
and observe the type of interest of each module defined in the Definition of Modules
step. Functions are usually identified at the top level as scenarios help generate
them there. Functions at one level in the hierarchy of modules frequently have
counterparts at lower levels, but with different parameters. For each function in
the top level module we model the necessary functions in lower level modules, in
order to simplify the legibility and maintainability of the specification. See [21] for
details.

We perform the derivation of functions in two steps: Definition of top level
functions and Definition of low level functions, which are detailed in the next two
sections.

4.3.1 Definition of Top Level Functions

Top level functions represent the main functionality in the UofD and they are defined
in the system module.

Behavioural responses of LEL subjects include the main functionality in the
UofD, and each of them is usually described with more details in a scenario. There-
fore, in general, each scenario will motivate the definition of a top level function. We
classify each scenario as modifying or observing depending on whether it produces
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a change in the UofD or not. We model the first ones with generator functions and
the second ones with observer functions.

Table 7 summarises the heuristics we propose to specify top level functions (HTF
stands for Heuristics for Top Level Functions). After determining which functions
to define in the top level module (HTF1), the next steps are the formulation of their
signatures (HTF2, HTF3, HTF4) and the definition of their bodies. The definition
of the signature of a function involves determining its arguments and result type as
well as classifying it as partial or total.

HTFid Scenario Model RSL
HTF1 Scenario describes a LEL subject Top level function
behavioural response
HTF2 Scenario type Function type
HTF2.1 Modifying Generator (not always)
HTF2.2 Observing Observer
HTF3 Scenario components Function signature
HTF3.1 Modifying scenario
HTF3.1.1 Resources to modify and Arguments
resources with data to modify
HTF3.1.2 Actors Probably arguments
HTF3.1.3 Resources and/or actors modified Result
HTF3.2 Observing scenario
HTF3.2.1 Resources to access information Arguments
HTF3.2.2 Actors Probably arguments
HTF3.2.3 Information returned Result
HTF4 Context Total or partial function

Table 7. Heuristics to model top level functions

For example, the scenario shown in Table 2 is a modifying one, motivating
the definition of the generator function feed group (HTF2.1). The resources of the
scenario suggest that the group, the date, the quantities of concentrated food, hay
and corn silage, and the feeding form should be the arguments of the function
(HTF3.1.1). The actor dairy farmer should not be an argument because its only
responsibility is the execution of the action described by the scenario (HTF3.1.2).
The resource Feeding form is the place where the change performed by the scenario
is stored, so it will represent the function result (HTF3.1.3). The context of the
scenario Feed a group establishes that a group should be fed once a day and only
if the group is not empty. The function feed_group must then be defined as partial
(HTF4). An informal definition for this function would be

feed group: group x date x quantity of corn silage X quantity of hay x
quantity of concentrated food x feeding form = feeding form

We use this kind of informal definition to determine the types to include in the
signature of the function. These arguments and result are replaced by the corre-
sponding types previously defined during the Derivation of Types step (Section 4.1).

For a generator function, the result type is always the record type representing
the system state. This record type is also included as an argument type because it
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contains the definition of all the domain components. The rest of the argument types
correspond to the types used to define the data required to identify the components
to modify as well as the information with which to modify them. Then, when the
type comes from a subject or an object whose collection was defined as a map, the
type of the corresponding identification argument will be only the set of attributes
defined as the map domain. For the function informally defined above, the signature
is the following:

value
feed_group: GT.Group_type x D.Date x GT.Quantity x GT.Quantity
x GT.Concentrate x Dairy_farm — Dairy_farm

We use Group_type as argument because the LEL symbol Group is an argument
whose collection was represented with the map Groups. Feeding form is apparently
not included as argument. But, when deriving the types we decided to model all
the events applied to groups of cows as part of the type Group [20].

The function feed_group is a partial one, and its precondition will be formulated
as a call to a function defined in the top level module. Some preconditions arise
implicitly when we need to check values input by the user. For example, to record
the birth of a calf to a cow, we would check that the cow’s identifier refers to an
existing cow. This might not appear explicitly in the scenario.

The hierarchy of modules affects the specification of functions. Most of the top
level functions will call functions in the second level, which in turn will call functions
in the levels below, thus motivating the definition of more functions in lower level
modules.

In general, the body of each top level function will contain a call to one or more
functions defined in modules in the second level. In the case of a generator function,
the body will contain at least one call to a chg_component function which in turn will
call to the function or functions that perform the modification of the corresponding
component(s). Thus, each chg component function will have as its first argument
a call to a second level function in charge of doing the change, and as its second
argument the system state. To determine the appropriate second level function to
call, we analyse the informal definition we have previously proposed. This definition
shows which components are modified. From these components, the types obtained
during the derivation of types, and the hierarchy of modules, we can identify the
arguments and result type of the second level function, and the second level module
in which it should be defined. For example, the complete definition for the function
feed_group is

value
can_feed _group: GT.Group_type x D.Date x Dairy farm — Bool
can_feed group(gt, d, df) = ...,

feed_group : GT.Group_type x D.Date x GT.Quantity x GT.Quantity
x GT.Concentrate x Dairy_farm — Dairy_farm
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feed group(gt, d, corn, hay, conc, df) =
chg_groups(CGS.feed group(gt, d, corn, hay, conc,
groups(df), cows(df)), df)
pre can_feed_group(gt, d, df)

The definition of observer functions is quite similar. Details can be found in [20].

4.3.2 Definition of Lower Level Functions

Top level functions and their preconditions are modelled in terms of functions in the
second level modules. For each function that is called in the body or the precondition
of a top level function, and whose name has an object name as prefix, we analyse
the object name to determine in which second level module we should define the
function. From the call in the top level module and the informal definition obtained
from the corresponding scenario, we can also find out the signature of the second
level function, i.e. function arguments and result type and its classification as partial
or total function.

For example, the function CGS.feed_group should be defined in the module
COW_GROUPS of which CGS is an instance. From the call in the top level module
we can also find out the signature of the second level function.

The body of a second level function usually contains a call to one or more
functions in a lower level module, the one that manipulates each individual value
in the map range. Following the heuristics proposed in [20], the complete formal
definition for the function feed group in COW_GROUPS is

value

feed group : GT.Group_type x D.Date x GT.Quantity
x GT.Quantity x GT.Concentrate x Cow_groups
x CS.Cows = Cow_groups

feed group(gt, d, corn, hay, conc, cgs, cs) =

let
ration = GT.mk_Ration(0.0, corn, hay, conc),
/= Ration is a record with 4 components */
new.r = GT.chg pasture(compute pasture eaten(gt, ration, cgs, cs), ration)
/* chg_pasture takes a ration and modifies its pasture producing
a new ration x/

in
cgs T [gt — CG.feed group(new.r, d, cgs(gt))]

end

pre can_feed_group(gt, d, cgs, cs)

In the specification above, CG.feed group is the lower level function that ge-
nerates a new Cow_group value which feed_group uses to update the Cow_groups
map.
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The episodes in a scenario are a good source of information when trying to
define the bodies of functions like CG.feed _group. However, it is not easy to provide
general guidelines for defining the bodies of such functions because they will depend
on the details of the types and module structure chosen.

4.4 Enhancement of the RSL Specification

In this section we describe how to include business rules in the RSL specification,
modelling the necessities and obligations of the organization in terms of RSL ele-
ments.

As we described in Section 2.3, business rules involve LEL symbols, some of
them representing the receiver of the rule and the others giving information about
the business rule itself (structure or behaviour information). Thus, it is necessary
to identify to which RSL elements these symbols were mapped to in order to decide
where to attach the rule. This attachment is also greatly influenced by the hierarchy
of modules (Section 4.2). In general, business rules define invariants, pre and post
conditions for functions, and they also may define new type elements or functions.

Table 8 summarises the heuristics we propose to map business rules to RSL
elements. The following are some examples of business rules taken from the Business
Rules Model of the case study and their mapping to the RSL specification.

Rule LEL + RSL involved terms Modification of RSL elements
Structural LEL objetc/subject modelled as RSL type/type — Define invariant for type
component component

— Define new type component
Operative Subject/Object modelled as type or Verbal phrase | — Define pre and/or

modelled as type/function post-condition for function

— Define new type component
— Define new function

Table 8. Business rules heuristics

Rule: It is necessary that the dairy farmer has an official authorization to operate.

Category: Structural
Involved LEL Symbols: Dairy farmer, Official authorization

This structural rule modifies the definition of the type Dairy farmer, adding
an axiom to verify the existence of an official authorization.

type  /* in module DAIRY _FARMER.rsl %/
Dairy_farmer::
salary: GT.Salary
employees: GT.Employee-set
off_authorization: GT.Off auth
axiom
V df: Dairy_farmer « df_authorization(df) = true
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Rule: If a dairy farmer detects a dairy cow has any disease it is obligatory to
dry the cow for discard.

Category: Operative
Involved LEL Symbols: Dairy farmer, Dairy cow, Dry the cow for discard

According to the hierarchy of modules, this rule is attached to the module Cows.

scheme COWS = /% in module COWS.rsl %/
class

value
dry_cow: GT.Cow_id x D.Date x Cows =+ Cows
dry_cow(ci, d, dc, cs) as cs

post cs } [ci— C.set_dry(d, de, cs(ci))]
pre has_disease(cs(ci))

end
4.5 Discussing the Strategy

When analysing developments of RSL specifications of different domains, we found
they start from informal descriptions containing synopsis, narrative, and terminolo-
gy [20]. Once obtained these informal descriptions, in general, each case followed its
own approach to obtain the RSL specification, although of course they all considered
the principles proposed in the RAISE method. We proposed and defined a concrete
and detailed three-step process that could be applied in any domain, allowing to
take profit of informal descriptions and reducing the gap between them and the
final RSL specification.

Our proposal is based in the metamodel of LEL, Scenario Model, and Business
Rules Model. The heuristics were defined considering the way in which the concepts
of the UofD are described. We followed the structure proposed in each metamodel,
but we allowed the use of a free style to describe each component. For example, we
considered that each LEL symbol has a notion and a behavioural response but we
followed a free style to express the content of notions and behavioral responses of
LEL symbols. As a consequence, some heuristics take always a fixed decision; for
example, definition of types is based on the classification of LEL symbols, modelling
one type per each subject or object LEL symbol (Heuristic HIT1). However, other
heuristics need human judgement to decide how to model some kind of requirement.
For example, when developing abstract types into more concrete ones (Heuristic
HDT1) or identifying verbal phrases modelling registration behaviour (Heuristic
HDT?2), the software engineer has to analyse the content of notions.
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In the way to automate our strategy, one possibility to overcome some of the
problems mentioned before would be to impose stronger standards or guidelines
to describe each component of the models. For example, to express a property of
a LEL symbol, the natural language structure “An x has a y” could be used, thus
simplifying type attributes identification. There are some works that use controlled
natural language [24]. Others, apply linguistic analysis ([4, 7, 8, 11]) or most so-
phisticated approaches (like CIRCE [1]). These works provide powerful information
extraction techniques, maintaining the freedom of expression of natural language.
Considering the importance that requirements models used in our approach give
to stakeholders’ active participation in the requirements definition process, we will
incorporate linguistic analysis when developing a tool to implement our strategy.

5 VALIDATING THE RSL SPECIFICATION

The aim of validating the RSL specification is to check that we have written the
right specification, i.e. that we have met the requirements. As we try to make
the initial specification a contract between software engineers and stakeholders, the
validation of the specification turns to be a very important step. Verification is
concerned with checking whether the final implementation conforms to the initial
specification. As it assumes the correctness of the initial specification, it must
be done after validation. Together, validation and verification help assure we are
“writing the right specification right”. Validation needs requirements traceability,
in order to relate them to where they are met either in the initial specification or
in a later development. Once we are sure a requirement has been captured, we use
verification to control whether it remains captured.

It is important to remark that the construction process of each natural lan-
guage model used in our proposal has its own validation and verification stages.
Previous to the application of the derivation strategy for the RSL specification pre-
sented in Section 4, natural language models were validated and verified. The LEL
and the scenario model were verified following an inspection-based process [12, 16]
while a more informal process was chosen for the business rules model [17]. After
verification, all models were validated with stakeholders trough interviews.

To validate the RSL specification we considered the validation techniques pro-
posed in [10] and we selected a combination of prototyping with system tests. With
these techniques we could take advantage of the translators already implemented
as part of the RAISE tools, such as the SML translator, thus minimising the deve-
lopment costs for the prototype. The SML translator maps a specification in RSL
to the functional programming language Standard ML [28], giving as result a first
prototype of the specification. RSL has a very rich set of features but not all of
them can be translated into a functional programming language, like SML. RSL
elements such as abstract types, axioms, post expressions, and implicit values and
implicit functions cannot be currently translated into SML. So, sometimes it would
be necessary to make some refinements in order to get a concrete RSL specification
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which could be translated into SML. A complete description of this translator can
be found in [30] and, as the rest of the RAISE tools, it can be downloaded from
UNU/IIST’s web site.

The prototype obtained using the SML translator will not only help us in check-
ing the specification against requirements, but it may also assist in clarifying the real
requirements for the system, as the stakeholders may participate in this validation
task. By running the prototype with appropriate test cases, stakeholders may find
it easier to discover problems with poorly understood requirements.

5.1 Validating Our Specification

The initial specification for the Milk Production System derived applying the strate-
gy described in Section 4 is an applicative one, i.e it is written in terms of definitions
and applications of functions. Besides, it may have some abstract type and function
definitions. So, to make use of the SML translator, we did a quick and simplified
refinement of the abstract types we found to obtain a concrete applicative version
of the derived specification. For some of the types, as we did not have enough
information, we gave a temporary definition which could be replaced later by a more
appropriate one.

"+ EMACS@VIRGINIA oy [
Buffers Files Tools Edit Seach RSL Help
test_case || |

[t1]
C3.C.is_calf(
CH.Comk_Cow(
D.mk_Date (2004, 1, 1, O},
GT.oalf (GT.wk_Calf info (GT.male_calf]),
CH.empty) ),
[ez]
CE5.C.i3_heifer(
CH.Comk_Cow(
D.mk_Date (2004, 1, 1, 0,
GT.calf (GT.wk_Calf info(GT.male calf]),
CH.empty) ),
[e31
milk cowil, today, 18.00) ; cows(l),
[t4]
milk cowi(l, today,

- iUnix)** dairy farm.rsl ] 5L

open DAIRY_FARN =
[tl] true

wal it = [} : unit

[t2] false

wal it = () : unit

[t3] mk_Cov(mk_Date{2002,1,1,0),dairy (mk_Dairy_info(milking{post_birth)]),<.mk_Event {mk_Date [2004}
L1,1,3) ,milking (18.0)) .>)

wal it = () : unit

[t4] DAIRY FARM.rsl:47:13: Precondition of milk_cow(l,mk_Date(2004,1,1,3),22.0)

not satisfied

wal it = [} : unit

pilation* 16:03  (Compilation:iexit [0])—-Lé——ill

Fig. 2. Test cases execution

In addition, we defined an appropriate set of test cases in order to run the specifi-
cation with them and check if the specification did what was required. Scenarios were
of great help when designing test cases. The goal of a scenario contains the aim to be
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reached in the domain after performing the scenario. Then, to validate each function
in the specification we suggest going to the scenario that motivated its definition,
and analysing the goal to define one or more test cases. Besides, the scenario
context may help define appropriate test cases to check partial functions. Test
cases are always evaluated in order of definition, and this is particularly useful for
imperative specifications with variables to store information [10]. As the information
stored as a result of one test case is available for the next one, it is possible to
test scenarios step-by-step by using a sequence of test cases. To achieve this, we
formulated a concrete imperative specification from the concrete applicative one.
Figure 2 presents the execution environment of RAISE tools, showing the definition
of some test cases and the results of their execution for the Milk Production System
specification.

6 CONCLUSIONS AND FUTURE WORK

In this paper we proposed a natural language-based strategy to be used in the first
stages of development using the RAISE method. We defined a concrete and detailed
four-step process that could be applied to any domain, to derive an initial formal
specification in RSL from LEL, scenarios, and business rules. In this way, we could
take profit of informal descriptions reducing the gap between them and the final
RSL specification. In addition, we also take advantage of all the time and effort the
definition of requirements and business model consumes.

By using our strategy, the effort to define requirements models is worth doing
because, though partially, they could be later mapped onto a formal specification.
The LEL provides structural features of the relevant terms in the UofD, thus limiting
the definition of types to those that correspond to significant terms. Using the
behavioural description represented in the scenarios, it is possible to identify the
main functionality to model in the specification. Business rules allow to adjust the
specification to reflect the policies of the organization.

The strategy gives as a result a set of modules hierarchically structured, that
can be mapped onto a layered architecture by describing the structure of modules
using the Layers pattern. This architecture is the basis to start applying the steps of
the RAISE method and provides the specific properties all its developments should
have. This means that, for example, any implementation or extension development
step should preserve the layers and the relationships among them. The use of a lay-
ered architecture is particularly useful when designing complex systems, because it
facilitates and encourages not only reuse but also separate and stepwise develop-
ment.

As the heuristics we defined closely followed the principles the RAISE method
proposes, the initial specification derived could be developed into a concrete one
according to the steps provided by the RAISE method. With this concrete specifi-
cation, the SML translator could be used to obtain a prototype and get a feeling of
what the specification really does.
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Concerning future work, we plan to improve our strategy by refining and com-
pleting the heuristics presented in this paper. One direction to address is the inclu-
sion of linguistic approaches to achieve a better processing of the information as we
mentioned in Section 4.5. In [20] we described a first approach to track traceabili-
ty relationships. Although they contain the information in a “traced-to” way (for
example, they show how a LEL symbol is modelled with a type or a function), the
“traced-from” relationships could be added by including appropriate comments in
the RSL specification derived. However, a more detailed and deeper analysis should
be made because traceability relationships are not always one-to-one.

A complete automatic derivation is by no means possible, as LEL, scenarios,
and business rules contain all the necessary and unavoidable ambiguity of the real
world, while the specification contains decisions about how to model this real world.
However, tool assistance is of great importance in the derivation process. We have
developed a tool that implements the heuristics of derivation concerning LEL and
scenarios. This tool is integrated with the RAISE tools, thus giving assistance in
the RSL specification complete development process. We plan to add the heuristics
related to business rules as well as to track traceability.
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