
Computing and Informatics, Vol. 26, 2007, 489–506

AGENT-BASED FAULT TOLERANT
DISTRIBUTED EVENT SYSTEM

Ozgur Koray Sahingoz

Turkish Air Force Academy

Computer Engineering Department

Yesilyurt, 34149, Istanbul, Turkey

e-mail: sahingoz@hho.edu.tr

A. Coskun Sonmez

Yildiz Technical University

Computer Engineering Department

Yildiz, 34349, Istanbul, Turkey

e-mail: acsonmez@ce.yildiz.edu.tr

Revised manuscript received 20 February 2007

Abstract. In the last years, event-based communication style has been extensively
studied and is considered a promising approach to develop large scale distributed
systems. The historical development of event based systems has followed a line
which has evolved from channel-based systems, to subject-based systems, next
content-based systems and finally type-based systems which use objects as event
messages. According to this historical development the next step should be usage
of agents in event systems. In this paper, we propose a new model for Agent Based
Distributed Event Systems, called ABDES, which combines the advantages of event-
based communication and intelligent mobile agents into a flexible, extensible and
fault tolerant distributed execution environment.

Keywords: Distributed event system, fault tolerance, agvent, agent event, adver-
tisement based routing, publish/subscribe systems

490 O.K. Sahingoz, A.C. Sonmez

1 INTRODUCTION

The standard models for client/server communication in distributed object com-
puting are based on synchronous method invocations as used in COM+ [1], Java
RMI [2], and CORBA [3]. Clients invoke a method on the remote server and wait for
the response to return as depicted in Figure 1 a). This approach has several limita-
tions like tightly coupled, synchronous and point to point communication. This type
of communication exhibits critical scalability problems especially in data-centric en-
vironments [4].

With the use of mobile and/or large-scale systems, the need for asynchronous,
loosely coupled and point to multipoint communication pattern arises. The pub-
lish/subscribe communication protocol serves these needs by its three decoupling
characteristics as shown in Figure 1 b) [5]:

Client

Server

Request Response

Dispatching

Service

publish()

subscribe()

unsubscribe()

Publisher

Publisher

Publisher

Publisher
Subscriber
notify()

Subscriber
notify()

Subscriber
notify()

a. Client/Server b. Publish/Subscribe

Fig. 1. Client/server and publish/subscribe communication models

Space decoupling: Publishers which are the producers of events do not need to
address subscribers which are consumers of events and vice versa. Instead,
subscribers simply specify the notifications they are interested in. This loosely
coupled approach facilitates flexibility and extensibility because new subscribers
and publishers can be added, moved or removed easily.

Flow decoupling: Communication is asynchronous, thereby removing the disad-
vantages and inflexibility of synchronous communication.

Time decoupling: Publishers and subscribers do not need to be available at the
same time. This means that a subscription causes notifications to be delivered
even if producers join after the subscription was issued.

The publish/subscribe communication paradigm has been recognized as a func-
tional model particularly for Distributed Event Systems in which events are the
basic communication mechanism. An event can be seen as a notification (data
structure) that something of interest has occurred within the system. Components
either act as event sources and publish new events, or act as event consumers and

Agent-Based Fault Tolerant Distributed Event System 491

subscribe to events by providing a specification of events that are of interest to
them.

Event systems consist of distributed components which communicate through
the exchange of event messages which can be defined as simple messages, such as
records, tuples or simple objects. Middleware using an event based communica-
tion model is appropriate to address the requirements of distributed applications
for large scale and heterogeneous environments which require a less tightly cou-
pled communication relationship between their components. The benefits of event
based systems make them preferable for implementing information-driven applica-
tions. For example, they are well suited for information dissemination applications
like news delivery, stock quoting, digital libraries [6], e-commerce [7, 8], air traffic
control [9] and dissemination of auction bids [10]. However, there are also some
application independent implementations of event systems like [11, 12, 13, 14].

Mobile agents are a new and fascinating design paradigm and aims to intro-
duce the required intelligence into distributed information processing. Traditionally
designed distributed systems have some problems and might have to handle work-
load, the trend to open large numbers of customers, direct access to services/goods
and user mobility [15]. Intelligent mobile agents overcome most of these problems
by their characteristics which are described by Wooldridge and Jennings as fol-
lows [16]:

Autonomy: Agents should be able to perform the majority of their problem solv-
ing tasks without the direct intervention of humans or other agents, and they
should have a degree of control over their own actions and their own internal
state.

Social ability: Agents should be able to interact, when they deem appropriate,
with other agents and humans in order to complete their own problem solving
and to help others with their activities.

Reactivity: Agents should perceive their environment and respond in a timely
fashion to changes, which occur in it.

Proactiveness: Agents should not simply act in response to their environment;
they should be able to exhibit opportunistic, goal-directed behavior and take
the initiative where it is appropriate.

We intend to combine advantages of both publish-subscribe communication pro-
tocol and intelligent mobile agents in a scalable and fault tolerant distributed event
system. In this paper, we present an Agent Based fault tolerant Distributed Event
System (ABDES), which exploits mobile agents as mediators between publishers
and subscribers. The rest of this paper is organized as follows: In the next section,
we present a classification of distributed event systems with references to related
work. Section 3 describes properties of ABDES. Message and agent flow between
system components is described in Section 4 and Section 5 explains the dispatching
mechanism of the system in detail. Section 6 presents the fault tolerance mechanism
of ABDES and finally Section 7 concludes the paper.

492 O.K. Sahingoz, A.C. Sonmez

2 RELATED WORKS

A distributed event system consists of allowing some components called subscribers
to express their interests in some kind of information, while allowing other com-
ponents called publishers to publish this information. The dispatching system is
responsible for matching publications to subscriptions and forwarding them to in-
terested subscribers according to their subscription messages. Subscriptions define
the potential targets of event messages and can be used by the dispatching system to
route of event messages. Therefore the subscription mechanism is one of the crucial
parts of the system. Distributed event systems can be classified into four groups ac-
cording to their subscription mechanism. According to historical development these
mechanisms are discussed in detail below.

2.1 Channel-Based Subscription

The simplest subscription mechanism is what is commonly referred to as a channel.
Some systems like CORBA Event Service [3] and Java Delegation Event Model [17]
implement this subscription mechanism. In these systems subscribers register and
listen to a channel. Applications explicitly notify the occurrence of events by posting
notification to one or more channels. The part of an event that is visible to the
event service is the identifier of the channel to which the event has been sent. Every
notification posted to a channel is delivered by the event service to all subscribers
listening that channel. Channel based systems have some inherent disadvantages.
The expressiveness and the filtering capability of channels is rather limited because
notifications can only be classified with respect to a number of channels.

2.2 Subject-Based Subscription

Some systems like Jedi [18] and SwiftMQ [19] extend the concept of a channel
with a more flexible addressing mechanism that is often referred to as subject-
based addressing. In this case, an event notification consists of two different parts:
a well-known attribute, the subject that determines the address, which is followed
by the remaining information of the event data. The main difference with respect
to a channel is that subscriptions can express interest in many subjects/channels
by specifying some form of expression to be evaluated against the subject of a no-
tification. Subject based systems provide more powerful notification selection than
channels. Nevertheless, subjects have a number of drawbacks. They still have a limi-
ted expressiveness because subjects are only suitable to divide the event dispatching
space with respect to one dimension.

2.3 Content-Based Subscription

By extending the domain of filters to the whole content of notifications, some re-
searchers obtain another class of subscriptions called content-based subscriptions

Agent-Based Fault Tolerant Distributed Event System 493

which are conceptually very similar to subject-based ones. However, since they can
access the whole structured content of notifications, an event server gets more free-
dom in encoding the data upon which filters can be applied and that the event
service can use for setting up routing information. Because of its expressive form
and filterable design of event messages most of distributed event systems like Re-
beca [7], Gryphon [8], Elvin [11], Lesubscribe [12], Siena [14] and Dadi [20] imple-
ments this type of subscription mechanism. Content-based systems are contrasted
with channel-based and subject-based systems, because the selection is done based
on the whole content. The other strategies offer only a set of well-defined attributes
for selection purposes. Matching event messages to the subscriptions brings a burden
to the underlying system which influences the scalability.

2.4 Type-Based Subscription

Type-based subscription model is a new model of subscription that has been de-
veloped to access event data in a more structured manner by using the features
of object oriented programming languages. The original motivation for introduc-
ing type-based systems was its supports on type safety and encapsulation which
are important factors in producing robust, error-free and stand-alone applications.
In previous subscription models events are often viewed as low-level messages and
a predefined set of such message types are offered by most systems, providing very
little flexibility. In this subscription model event messages are defined as objects,
which are strongly typed as in most object oriented languages. Subscribers register
on type of event messages. JECho [21], Hermes [6, 22] and type-based publish sub-
scribe system [23] use this type subscription mechanism. In the type-based systems
events are filtered according to their type. This is enabled by a close integration of
the programming language and the middleware to allow compile-time type checking.

According to this historical development described above, the next step should
be usage of agents in event systems. In previously mentioned distributed event sys-
tems, event data is represented by unstructured lists of strings, record-like structures
with positional or name-based identification of attributes, recursive structures, such
as LISP expressions or XML documents and serializable event objects. Our work
proposes a new approach for distributed event systems through a model in which
events are represented by intelligent mobile agents.

3 AGENT BASED DISTRIBUTED EVENT SYSTEM

The historical development of publish/subscribe systems has followed a line which
has evolved from channel-based systems, to subject-based systems, next to content-
based systems and finally to type based systems. We thought the next step should
contain agents in the system and developed an Agent Based Distributed Event

System-ABDES [24] which defines events (called agvents-AGent eVENTs) as first
class members of the system.

494 O.K. Sahingoz, A.C. Sonmez

ABDES combines the advantages of publish/subscribe communication and mo-
bile agents into a flexible and extensible distributed execution environment. The
major novelty of the model is that an event is represented as a mobile agent and
given autonomy and mobility features to select and travel between system compo-
nents. Using events as intelligent mobile agent potentially leads to higher type safety
and better encapsulation of events than traditional publish/subscribe communica-
tion styles, and enables the programmer to focus on agent oriented abstractions and
modeling in contrast to lower level details.

The benefits of the model are: reduced network load, higher adaptability by al-
lowing dynamic changes in system configuration, information hiding, asynchronous
communication and flexibility of agent based execution. We think the new model
will serve as an effective choice for several information oriented applications, such as
e-commerce, information retrieval, publication dispatch systems, distributed soft-
ware and virus definitions updating. The ABDES system consists of four main
components as shown in Figure 2:

Dispatching System

S1

S3

S2

S4

P1

P2

Si: Subscriber
Pi: Publisher

Agvent
Server

Agvent
Server

Agvent
Server

Agvent
Server

Agvent
Server

Agvent
Server

Agvent
Server

Agvent
Server

Agvent
Server

Agvent
Server

agvent

advertise

subscribe

publish

Fig. 2. Framework of the ABDES system

Publishers decide what events are observable, how to name or describe those
events, how to actually observe an event and then how to represent an event as
a discrete entity that is an agvent.

Subscribers determine agvent types they are interested in and describe them in
a subscription form which is processed by the Dispatch Service.

Agvent Servers are responsible for storing advertisements and subscriptions in-
formation in its knowledge base and provides an Agvent Operation Platform
where agvents can migrate to and pursue their execution.

An agvent is a collection of code and data that migrates through ABDES. A sig-
nificant capability of an agvent is its ability to discover target nodes, namely
subscribers which demanded to be notified of the occurrence of an event, and to
route itself to these subscribers. This is accomplished by enabling the published

Agent-Based Fault Tolerant Distributed Event System 495

agvent to search the knowledge base of an agvent server, select the registered
subscribers, clone itself and send each agent clone to a subscriber on the selected
list. Each agvent server provides an operation platform for agvent execution,
where incoming agvents execute their code in order to achieve their prescribed
objectives. An agvent determines its own path through the network, utilizing
the minimal set of facilities provided by agvent servers.

Within ABDES, as in all push-based publish-subscribe systems, information
flows from publishers to subscribers over dispatching system according to the specific
selection criteria expressed by individual subscribers. Dispatching system consists of
cooperative agvent servers in a distributed topology. Each instance of the other two
main components of the framework, publishers and subscribers, is directly connected
to an agvent server, to which it sends its subscriptions, advertisements or publi-
cations. Every agvent server processes incoming subscriptions and advertisements
according to some protocol, possibly redistributing them to other adjacent/neighbor
agvent servers. Publications, actually agvents, move themselves to adjacent agvent
servers and/or subscribers in a similar manner. The ABDES system differs from
other distributed event systems by its distinctive characteristics that are described
below:

Autonomous events: In most event systems, events are defined as low-level mes-
sages, which consist of record-like structures, list of strings, tuple-based struc-
tures, etc. In type-based systems, events are defined as objects and viewed as
main component of the system. Nevertheless, they are not autonomous. In the
ABDES system, events are not viewed as simple messages. On the contrary,
they are represented as intelligent mobile agents which have their own goals,
beliefs and behaviors that they acquire at creation. When an agvent reaches
an agvent server, it examines the knowledge base of the server and selects its
targets autonomously after certain processing. This approach reduces the load
and complexity of agvent servers as well.

Agvent based subscription: In most distributed event systems, subscribers re-
gister on a channel, on a specific topic or on a specific content of an event
message. In the ABDES system, subscribers register on agvent types and de-
fine their filter not only on agvents’ attributes but also on their behaviors. For
example, a subscriber can register on an agvent, which is an instance of ’Agv-
type1’ class, specifying certain constraints based on its advertised attributes and
behaviors.

Information hiding: In previously developed event systems, an event server can,
actually has to, access the content of the published event data before it can
dispatch the data to the registered targets. In the ABDES system, the pub-
lished agvent itself searches the knowledge base of the agvent server, selects
the registered subscribers, clones itself and sends each agent clone to a sub-
scriber on the selected list. Therefore, the agvent server has no access to the
content of the published event data, which simplifies its role and consequently

496 O.K. Sahingoz, A.C. Sonmez

facilitates the server development process. Information hiding also meets re-
quirements of certain applications where confidentiality of event data is essen-
tial.

User/application defined agvent types: Distributed event systems generally
use predefined event types. Therefore, to add a new event type you have to
make programmatic changes in the dispatch service and also at publisher and
subscriber sites. In the ABDES system, a publisher creates its own agvent type
and declares its properties and behaviors through an advertisement message
sent to the Dispatch Service. Once an agvent type is announced on the dispatch
service, subscribers can register on agvents of that type.

Self routing agvents: In previously developed event systems, routing of events is
the main duty of the event servers. Because of the intelligent mobile agent struc-
ture of agvents, route of an agvent is determined by itself with minimum help of
agvent servers. Role of an agvent server is providing an execution platform for
agvents and storing advertisement/subscription messages for necessary routing
operations.

Double side filtering: Event systems use subscriber side filtering mechanism for
dispatching event messages to event consumers. The ABDES system enables
not only subscriber side filtering, but also publisher side filtering. Therefore
publishers can define some criterion for selecting subscribers. Because routing
operations are determined by agvents, publisher side filtering is enabled.

ABDES brings a new approach according to the system properties stated above,
and covers some open issues of previous distributed event systems. The comparison
of ABDES with other distributed event systems is depicted in Table 1.

Systems Filtering Filtering Information User defined Autonomy
events

Channel based No No No No No

Topic based Only topic Subscriber No No No

Content based All fields Subscriber No No No

Type based Type, Subscriber Yes Yes No
attribute

Type, Publisher,
ABDES attribute, Subscriber Yes Yes Yes

behavior

Table 1. Comparison of ABDES and other event systems

4 MESSAGE/AGENT FLOWS

Communication between system components is carried out using Java RMI. Due to
architecture neutrality, Java and RMI handle geographically distributed heteroge-
neous machines and provide a transparent view to the participants. Figure 3 depicts

Agent-Based Fault Tolerant Distributed Event System 497

the message/agent flow between components of the system, and the details of the
transfers are described as follows:

ABDES

System

Publisher
Site

Notify Agvent1

Subscribe Agvent1

Publish Agvent1
*
*
*
*

Publish Agvent1

*
*
*

Notify Agvent1

Unsubscribe Agvent1

Unadvertise Agvent1

2

3

4

5

7

6

T
i
m
e

GetAdvertisementList

Subscriber
Site

NotifyUnadvertisement
8

1
Advertise Agvent1

Fig. 3. Message/agent flow of ABDES

1. First, a publisher advertises its agvent type to the system (Advertise). This
advertisement is dispatched to all agvent servers in the dispatch service via
broadcasting.

2. If a subscriber is connected to an agvent server, it can obtain the advertise-
ment list which includes a list of agvent types currently available on the system
(GetAdvertisementList). All agvent servers hold the same advertisement list.

3. If a subscriber decides to subscribe on an agvent type, it sends a subscription
message to the agvent server it is connected to in order to have itself registered
(Subscribe). Next, this message is routed to necessary agvent servers by the
system. The details of the subscription are stored in subscription tables of
knowledge bases in each agvent server.

4. Whenever a publisher observes an event, it creates and sends an agvent to the
agvent server (Publish). When an agvent arrives on an agvent server, it starts to
execute its pre-specified code to select its targets (neighbor agvent servers and/or
registered subscribers) according to the information present in the subscription
table.

5. Next, the agvent creates its clones and sends each one to a different target on
the list, and after completing this task, it disposes itself (Notify).

6. A subscriber continues to receive published agvents until it issues an unsubscribe
request for that particular agvent type (Unsubscribe). When an agvent arrives

498 O.K. Sahingoz, A.C. Sonmez

on a subscriber, it starts to communicate with the subscriber agent according
to its pre-defined goals.

7. When a publisher stops publishing a certain type of agvent, it informs the system
through an unadvertise message (Unadvertisemet).

8. In this case, if no other publisher of that agvent type exists, the system sends
out a message to subscribers registered on that agvent type, informing them of
the new situation (NotifyUnadvertisement).

5 DISPATCHING MECHANISM OF ABDES

The basic publish-subscribe mechanism uses subscribe, unsubscribe and publish
primitives for messaging; this is called subscription based routing. A subscription
expresses the subscriber’s interest in the occurrence of specific events. It is a logical
expression that provides the ability to select a subset of events based on their content
or type. Subscription messages are used for setting routes for event messages. During
the propagation of subscription messages, each event broker behaves as a subscriber
with respect to relevant neighbors. Consequently, each of them records the filter
associated with the subscription in its own subscription table and forwards it towards
the publishers. This process effectively sets up routes for events through the reverse
path followed by subscriptions.

ABDES uses an extended version of this mechanism, as used in SIENA [14,
31] by using advertisement messages to optimize the routing of subscriptions. In
advertisement-based routing servers use the information provided by event produ-
cers (publishers) to route incoming subscriptions. A subscription is only forwarded
if it covers the advertisement. Advertisements are used to make agvent types visible
to all the participants of the system. Advertisement forwarding, limits the overhead
of subscription dispatching by spreading knowledge about agvents throughout the
system. When an agvent server receives an advertisement from one of its neighbors,
not only it stores the associated agvents’ behaviors and attributes into its adver-
tisement table, but it also forwards it to all the remaining neighbor agvent servers,
thereby forming a tree to reach all agvent servers. This process effectively sets up
routes for subscriptions through the reverse path followed by advertisements.

Dispatching mechanism of ABDES is depicted in Figure 4. First, a publisher ad-
vertises its agvent types which it will publish to the system (Step-1). The technique
of flooding is the simplest approach to implement the advertisement propagation
in dispatching service. Here, every agvent server forwards an advertisement that
is produced by one of its local clients (publishers) to all of its neighbors, and if
an agvent server receives an advertisement from a neighbor, it simply forwards it
to all other neighbor agvent servers. Each agvent server exploits a further routing
table, called advertisement table, which stores all the received advertisements. If
a subscriber decides to subscribe on an agvent type, it sends a subscription message
to its connected agvent server, and this message is dispatched to all relevant agvent
servers, in reverse direction of the advertisement dispatching tree, by the system

Agent-Based Fault Tolerant Distributed Event System 499

(Step-2). Whenever a publisher observes an event, it creates and sends an agvent
to the agvent server which it is connected (Step-3). When the agvent arrives on the
agvent server, it starts to execute its pre-specified code to select its targets (neighbor
agvent servers and/or registered subscribers) according to the information present
in the subscription table.

11

6

4

8

1

12

9 3

10

7

2
5

13

P1
S1

S2

Step-1
advertisement

Pi i Publisher Agvent Server Si Subscriber

Step-2
subscription

Step-3
publish
Agvent

Fig. 4. Dispatching mechanism of agent based distributed event system

6 FAULT TOLERANCE MECHANISM

We assume that agvent servers in the dispatching service of ABDES can fail by
crashing and that the failure of a server is eventually detected by all its neigh-
bor servers by using well-know failure detection techniques like heartbeats, or by
detecting when there is a necessity. A failed server can cause a gap in the event
dissemination tree. To heal the tree, the server which detects the failure re-routes
the subscriptions, advertisements and agvents via an alternative route.

Faults and failures are inevitable in a distributed system built over a wide-area
network and they should be tolerated for continuing system transactions. Fault-
tolerance mechanisms in distributed event systems can cope with different kinds of
failures in system middleware and especially integrated with the routing algorithm.
This type of fault tolerance results in a scalable and robust system. Researches on
fault tolerance mechanism of event based systems are concentrating on two main
topics; self stabilization and reconfiguration. In [25, 26] authors assume that some
links may disappear and others appear elsewhere, because of changes in the un-
derlying. Reconfiguration in this case means fixing routing tables entries no longer
valid after the topology change. A broker triggers such reconfiguration operation
on disappearance of the link with another broker. Self-stabilization is an optimistic
way of looking at system fault tolerance and scalable coordination, because it pro-
vides a built-in safeguard against transient failures that might corrupt the data in

500 O.K. Sahingoz, A.C. Sonmez

a distributed system. Some event systems [27, 28] use self-stabilization in the bro-
ker network by discarding broken and outdated information about neighbors. This
methodology is used for synchronizing routing tables because of message loses and is
accomplished by the use of leases. Both these models have a side effect as significant
increase of the network traffic. Therefore some researches [29] have been done to
minimize traffic overhead of the system.

There are only a few researches [30] in the literature regarding node and com-
munication link failures. In these researches, when a broker fails, another broker
can take over the role and publish/subscribe model can continue its transactions
without any interruption; and when the communication link is disconnected, data
transfer is delayed until the link is reconnected. But, if the link is not reconnected
then messages over this link cannot be dispatched.

The architecture of event based systems should be tolerant to error and network
fallout, especially in dispatching service. Therefore ABDES has a fault tolerance
mechanism that can cope with different kinds of failures in the middleware and it
is integrated with the routing algorithm resulting in a scalable and robust system.
Fault tolerance mechanism of ABDES is thought in three dimensions for faults in
advertisement, subscription and agvent dispatching.

6.1 Fault Tolerance in Advertisement Dispatching

In ABDES, advertisements are used to make agvent types visible to all the partici-
pants of the system. Advertisement forwarding limits the overhead of subscription
dispatching by spreading knowledge about agvents throughout the system. When
an agvent server receives an advertisement message from one of its neighbors, it not
only stores the associated agvent’s behaviors and attributes into its advertisement
table, but also forwards this message to all the remaining neighbor agvent servers,
thereby forming a tree to reach all agvent servers. This process effectively sets up
routes for subscriptions through the reverse path followed by advertisements.

In dispatching of an advertisement, if there is a node or link error and one of the
agvent servers (or more) is disconnected, then this agvent server cannot get adver-
tisement messages. This fault causes a disadvantage on routing this advertisement
message not to all relevant agvent servers. When this agvent server is online or link
is repaired, the agvent server synchronizes its advertisement table by controlling the
neighbor agvent servers’ knowledge bases. If there are some unsynchronized adver-
tisement messages, these are received from them and forwarded to other neighbor
agvent servers (if there is any). This mechanism is also used for adding a new
agvent server as a new neighbor to one already in the system. As is to be expected,
improving scalability can be seen as more agvent servers are added to the system.
Scalability of brokers in an event system is important today. As the Internet con-
tinues to grow in popularity and size, dispatching service without good scalability
will result in performance drop or live-lock. When a new agvent server joins to the
system, agvent servers get the advertisement table of the one of its neighbor and
uses it.

Agent-Based Fault Tolerant Distributed Event System 501

6.2 Fault Tolerance in Subscription Dispatching

As usage of advertisements to set up routes for subscriptions, subscription messages
are used for setting routes for agvents. In dispatching of subscription, if there is
a node or link error in the system (as shown in Figure 5) then the agvent server which
detected node/link error should chose an alternative route and forward message on
this route. For example if there is a link error between AS9 and AS8 then AS9
cannot forward subscription message over AS8. In this case AS9 can detect the link
failure and checks its Alternative Routing Table (ART) for an alternative route to
AS1. ART is maintained by each agvent server and composed by every incoming
messages (advertisements, subscription and agvents) which also contain their routes
to reach their clients. In this failure case the solution can be in two forms:

11

6

4

8

1

12

9 3

10

7

2
5

13

P1
S1

S2

subscription1

subscription2

X
target=
AS1

target=
AS1

Fig. 5. Fault tolerance in subscription dispatching

• If AS9 contains an alternative route between AS9 and AS1, it forwards this
subscription message on this route (see Figure 5). Other agvent servers use
these messages for updating their ARTs.

• If there is not any routing information between AS9 and AS1 then AS9 should
search an alternative route for it. To achieve this it broadcasts a subscription
message whose target is set as AS1 to all neighbor agvent servers. This message
is not evaluated as a subscription message except AS1.

In case of adding new agvent server to dispatching service, advertisement table of
this new agvent server is copied (synchronized) from one of neighbor agvent servers.
But, there is no need to copy the subscription table of the neighbors. Subscription
table is composed according to needs of the connected subscribers. In the case of
adding an agvent server, two components can join to the system over this agvent
server; publishers and subscribers.

• If a subscriber connects to the system over this new agvent server, it sends a sub-
scription message to its connected agvent server and this message is forwarded

502 O.K. Sahingoz, A.C. Sonmez

according to copied advertisement table. After that the subscription table is
updated.

• If a publisher connects to the system over this new agvent server, it sends an
advertisement message to the agvent server and this message is broadcasting to
all agvent servers in dispatching service. Agvent servers which have connected
subscribers interested in this type of agvents reply this advertisement message
and forward a subscription message to this newly added agent server.

6.3 Fault Tolerance in Agvent Dispatching

Routes of agvents are decided by subscription messages (reverse path of subscription
messages). As shown in Figure 6, the published agvent should be dispatched to S1
and S2. Agvents forward themselves to these destination nodes. After an agvent
reaches AS8, a clone of the agvent is created and one is forwarded over AS3, and the
other is forwarded over AS9. Because there is a link error between AS8 and AS9,
the agvent cannot reach to AS9. Therefore AS8 search an alternative route from its
ART. If there is a route, it forwards this agvent over new route.

11

6

4

8

1

12

9 3

10

7

2
5

13

P1
S1

S2

X

target=
AS11, AS12

target=
AS11, AS12

target=
AS11, AS12

target=
AS11

target=
AS11

target=
S1

target=
S2

target=
AS12

Fig. 6. Dispatching agvents when there is a node/link error

Main problem will still exist if there is not any alternative route. In this case we
cannot broadcast the agvent as we do in fault tolerance mechanism of subscription
dispatching. An agvent is a collection of code and data. Therefore its size could
be from 4–6 kilobytes to 8–10 megabytes (or more) according to its data block.
Consequently, we have to establish a new route to send message from broken node
to destination node. To achieve this we make a small part of previous messaging
processes as follows.

An advertisement is broadcasted to reach the target agvent server, AS12 (sam-
pled in Figure 7). This message is taken into consideration only by the destina-
tion server (AS12). Other servers use this message only for updating their ARTs.
Destination agvent server replies this advertisement message and forwards the sub-
scription messages about that agvent type. After this subscription message reached

Agent-Based Fault Tolerant Distributed Event System 503

the broken server, an alternative route is set as reverse path of the subscription
message. Agvent server re-routes the waiting agvent(s) to destination server(s) over
this new route.

11

6

4

8

1

12

9 3

10

7

2
5

13

P1
S1

S2
target=
AS12

Fig. 7. Fault tolerance in agvent dispatching

7 CONCLUSION

This paper presents a new model for Agent Based Distributed Events Systems, called
ABDES, which combines the advantages of publish/subscribe communication and
intelligent mobile agents into a flexible and extensible distributed execution environ-
ment. The major novelty of the model is that an event is represented by a mobile
agent, an agvent, which is treated as a first class citizen of the system and given
autonomy and mobility features to select and travel between system components.

ABDES differs from previously developed distributed event systems by its dis-
tinctive characteristics like double side filtering mechanism, autonomous event struc-

ture, user defined event types and information hiding. The system has also the
following properties:

Scalable structure: It is possible to increase the number of agvent servers and
reach more subscribers.

Expressive subscription model: It is possible to define type, attribute and be-
havior based filters by subscribers.

Fault tolerant message dispatching: In case of collapsing a link or an agvent
server, it is possible to dispatch advertisement messages, subscription messages
and agvents from an alternative route.

In order to measure systems performance several tests have been made on AB-
DES [32]. On comparing these test results we conclude that ABDES has an ex-
pressive subscription model and is a scalable system. We think this new model
is especially suitable for events which are not generated frequently but contain

504 O.K. Sahingoz, A.C. Sonmez

large, valuable and secret data for several information-oriented applications, such as
e-commerce or information retrieval.

REFERENCES

[1] Microsoft. The component object model (COM) specification web site. Availaible on:
http://www.microsoft.com/com/.

[2] JavaSoft. Java RMI. Technical report, Sun Microsystems, Inc web site. Availaible on:
http://java.sun.com/products/rmi/.

[3] Gore, P.—Cytron, R.—Schmidt, D.—O’Ryan, C.: Designing and Optimizing
a Scalable CORBA Notification Service. ACM SIGPLAN Notices, Vol. 36, 2001,
No. 8, pp. 196–204.

[4] Object Management Group: CORBAservices. Common Object Service Specification,
Technical Report, Object Management Group, 1998.

[5] Eugster, P.—Felber, P.—Guerraoui, R.—Kermarrec, A.: The Many Faces
of Publish/Subscribe. ACM Computing Surveys, Vol. 35, 2003, No. 2, pp. 114–131.

[6] Pietzuch, P.—Bacon, J.: Hermes: A Distributed Event-Based Middleware Archi-
tecture. Proceedings of the First International Workshop on Distributed Event-Based
Systems (DEBS ’02), 2002, pp. 611–618.

[7] Muhl, G.—Fiege, L.—Buchmann, A.P.: Filter Similarities in Content-Based
Publish/Subscribe Systems: In Proceedings of the ARCS International Conference
on Architecture of Computing Systems, 2002, pp. 244–240.

[8] Strom, R.—Banavar, G.—Chandra, T.: Gryphon: An Information Flow based
Approach to Message Brokering. In Proceedings of the ISSRE International Sympo-
sium on Software Reliability Engineering, Paderborn, Germany, 1998, pp. 10–21.

[9] Liebig, C.—Cilia, M.—Buchmann, A.P.: Event Composition in Time-
dependent Distributed Systems. In Proceedings of the IFCIS CoopIS Interna-
tional Conference on Cooperative Information Systems, Edinburgh, Scotland, 1999,
pp. 70–78.

[10] Bornhövd, C.—Cilia, M.—Liebig, C.—Buchmann, A.: An Infrastructure for
Meta-Auctions. Second International Workshop on Advance Issues of E-Commerce

and Web-based Information Systems (WECWIS ’00), San Jose, California, 2000,
pp. 21–30.

[11] Segall, B.—Arnold, D.: Elvin Has Left the Building: A Publish/Subscribe Noti-
fication Service with Quenching. In Proceedings of the AUUG Australian UNIX and
Open Systems User Group Conference, Queensland, Australia, 1997, pp. 243–255.

[12] Fabret, F.—Jacobsen, H.—Llirbat, F.—Pereira, J.—Ross, K.—Shasha,

D.: Filtering Algorithms and Implementation for Very Fast Publish/Subscribe. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
Santa Barbara, 2001, pp. 115–126.

[13] Liu, H.—Jacobsen, H.A.: A-TOPSS – A Publish/Subscribe System Supporting
Approximate Matching. In Proceedings of the Intl. Conference on Very Large Data
Bases (VLDB), 2002, pp. 1107–1110.

Agent-Based Fault Tolerant Distributed Event System 505

[14] Carzaniga, A.: Architectures for an Event Notification Service Scalable to Wide-

area Networks. Ph.D. Thesis, Politecnico di Milano, Italy, December 1998.

[15] Lange, D.B.—Oshima, M.: Seven Good Reasons for Mobile Agents. Communica-
tions of the ACM, Vol. 42, March 1999, No. 3, pp. 88–89.

[16] Wooldridge, M.—Jennings, N.R.: Intelligent Agents: Theory and Practice. The
Knowledge Engineering Review, Vol. 10, 1995, No. 2, pp. 115–152.

[17] Java AWT: Delegation Event Model. (Sun Microsystems.) Availaible on:
http://java.sun.com/j2se/1.3/docs/guide/awt/designspec/events.html.

[18] Cugola, G.—di Nitto, E.—Fuggetta, A.: The JEDI Event-Based Infrastruc-
ture and Its Application to the Development of the OPSS WFMS. Technical Report,

CEFRIEL – Politecnico di Milano, Italy, 1998.

[19] SwiftMQ, JMS Enterprise Messaging Platform, Availaible on: http://www.swiftmq
.com/.

[20] Cao, F.—Singh, J. P.: Efficient Event Routing in Content-based Publish-
Subscribe Service Networks. In Proceedings of IEEE INFOCOM, Hong Kong, 2004,
pp. 929–940.

[21] Chen, Y.—Schwan, K.—Zhou, D.: Opportunistic Channels: Mobility aware
Event Delivery. In ACM/IFIP/USENIX International Middleware Conference, Rio
de Janeiro, Brazil, 2003, pp. 182–201.

[22] Pietzuch, P.R.: Hermes: A Scalable Event-Based Middleware. Ph.D. Thesis, Com-
puter Laboratory, Queens’ College, University of Cambridge, 2004.

[23] Eusgter, P.T.: Type Based Publish/Subscribe. Ph.D. Thesis, Ecole Polytechnique
Federale De Lausanne, France, 2001.

[24] Sahingoz, O.K.—Erdogan, N.: Agvent: Agent Based Distributed Event Sys-
tem. In proceedings of 30th Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM 2004), Czech Republic, 2004, pp. 144–153.

[25] Picco, G.P.—Cugola, G.—Murphy, A. L.: Efficient Content-Based Event Dis-
patching in the Presence of Topological Reconfiguration. 23rd IEEE International
Conference on Distributed Computing Systems (ICDCS ’03), 2003, USA, pp. 234–243.

[26] Baldoni, R.—Beraldi, R.—Querzoni, L.—Virgillito, A.: A Self-Organizing
Crash-Resilient Topology Management System for Content-Based Publish/Subscribe.
International Workshop on Distributed Event-Based Systems (DEBS ’04), Edinburgh,
Scotland, UK, 2004, pp. 3–8.

[27] Xu, Z.—Srimani, P. K.: Self-Stabilizing Publish/Subscribe Protocol for P2P Net-
works. Distributed Computing – IWDC 2005: 7th International Workshop, Kharag-
pore, India, 2005, pp. 129–140

[28] Buchmann, A.–Bornhövd, C.—Cilia, M.—Fiege, L.—Gartner, F.—

Liebig, C.—Meixner, M.—Mühl, G.: DREAM: Distributed Reliable Event-
based Application Management. Springer, 2004, pp. 319–350.

[29] Cugola, G.—Frey, D.—Murphy, A. L.—Picco, G. P.: Minimizing the
Reconfiguration Overhead in Content-Based Publish-Subscribe. In Proceedings
of the 19th ACM Symposium on Applied Computing (SAC), Cyprus, 2004,
pp. 1134–1140.

506 O.K. Sahingoz, A.C. Sonmez

[30] Oh, S.—Pallickara, S. L.—Ko, S.—Kim, J.—Fox, G.: Publish/Subscribe Sys-

tems on Node and Link Error Prone Mobile Environments. ICCS 2005, Lecture Notes
in Computer Science, Springer-Verlag, Vol. 3515, 2005, pp. 576–584.

[31] Carzaniga, A.—Rosenblum, D. S.—Wolf, A. L.: Design and Evaluation of

A Wide-Area Event Notification Service. ACM Transactions on Computer Systems
(TOCS), Vol. 19, 2001, No. 3 pp. 332–383.

[32] Sahingoz, O.K.—Sonmez, A.C.: Mobile Agent Based Publication Alerting Sys-

tem. Lecture Notes in Computer Science, Springer-Verlag, Vol. 3993 ICCS 2006,
pp. 903–907.

Ozgur Koray Sahingoz is currently an assistant professor in
the Department of Computer Engineering at Turkish Air Force
Academy. He graduated from the Computer Engineering De-
partment of Bogazici University in 1993. He received his M. Sc.
and Ph.D. degrees from Computer Engineering Department of
Istanbul Technical University, in 1998 and 2006, respectively.
His research interests lie in the areas of object oriented systems,
artificial intelligence, distributed computing, and agent based
systems.

A. Coskun Sonmez is currently working as professor in the
Department of Computer Engineering at Yildiz Technical Uni-
versity. He graduated from the Department of Electronics and
Telecommunications, Electrical and Electronic Faculty of Istan-
bul Technical University in 1981. He received his M. Sc. degree
from Science Institute of Istanbul Technical University in 1983.
He received his Ph.D. degree from Cambridge University (UK)
in 1992. His major research interests include AI and AI ap-
plications, knowledge based systems, expert systems, intelligent
automation and fuzzy systems.

