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Abstract. Data intensive peer-to-peer (P2P) networks are becoming increasingly
popular in applications like social networking, file sharing networks, etc. Data min-
ing in such P2P environments is the new generation of advanced P2P applications.
Unfortunately, most of the existing data mining algorithms do not fit well in such
environments since they require data that can be accessed in its entirety. It also
is not easy due to the requirements of online transactional data streams. In this
paper, we have developed a local algorithm for tracing frequent item sets over a P2P
network. The performance of the proposed algorithm is comparatively tested and
analyzed through a series of experiments.
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1 INTRODUCTION

There are many systems where data is distributed over a large and dynamic network
of nodes including no special server or client nodes. An interesting example for large
scale distributed systems is peer-to-peer (P2P) systems which generate huge mass
of data every few seconds.

Popular P2P systems such as Gnutella, e-Mule, Napster, and Freenet can share
vast amounts of information. For example, media files such as songs and videos
are shared through Gnutella. Participants in the network reveal the files they store
on their computers to the system and gain access to files shared by their peers in
return [1].
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Early consumers in file sharing P2P networks focused on the value of the data
while more recent research argues that the consumers will notably profit from the
knowledge locked in the data [1]. For instance, it may be discovered that people who
download the movie Titanic also look for songs by Celine Dion. Such knowledge
can then be discovered in different ways, much like the well-known data mining
example stating that “customers who purchase diapers also buy beer”. In this
case, [2] also refers to an interesting application case from media-file-sharing P2P
networks knowing the frequent song set shared or most frequently searched songs
helps to distinguish the most popular style of music shared or searched (and hence,
recommendations), or what kinds of songs are shared or downloaded together. Thus,
the new generation of advanced P2P applications demands support for advanced
data mining [2].

We consider mining of frequent item sets that has been the focus of great interest
among data mining researchers.

Standard data mining algorithms [3] are not useable in P2P networks unless the
total data is centralized in one place. A scenario which centralizes the total data is
not scalable because any change must be announced to the central peer. Also the
data changes at a faster ratio than the rate at which it can be centralized. However,
that data is distributed so widely that it will usually not be feasible to collect it for
central processing. It must be processed in place by distributed algorithms suitable
to this kind of computing environment [1].

There is large body of literature for frequent item set mining in distributed
environment. However, most of these works deal mining in a small scale distributed
environment.

Data mining in P2P networks needs different kinds of algorithms because the
P2P environment introduces some new problems. The first problem is that there can
be no global synchronization [1]. The second problem is that global communication
is impossible in large P2P systems. Therefore, the nodes (by node we mean peer)
should communicate through a local negotiation. Another problem comes from the
dynamic nature of large scale systems in which a node departs or joins the system in
mid-computation. A further complication comes from the dynamic nature of data
stream. A data stream is an unbounded sequence of data elements continuously
generated at a rapid rate and have a data distribution that often changes with
time [4].

In this paper, we develop an algorithm which coordinates frequent item sets,
mined locally at each node, with the neighbor nodes to discover at each node, global
frequent item sets. The proposed algorithm can manage changing data stream and
network. The goal of our algorithm is to converge rapidly toward the exact results.
To the best of the authors’ knowledge this is one of the first attempts on developing
a local algorithm to mine frequent item sets in P2P systems whose nodes receives
a continuous sequence of transactions.

The rest of the paper is organized as follows: Section 2 briefly describes the
related work in mining frequent item sets in P2P networks. Section 3 introduces
the problem definition. In Section 4, the proposed algorithm is presented. Sec-
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tion 5 describes the experimental results. Finally, Section 6 concludes the pa-
per.

2 RELATED WORKS

P2P data mining is a new research area. Computing for P2P networks can be
classified into three main fields:

1. best effort heuristics,

2. gossip based computations,

3. local algorithms [5].

Recently, local algorithms have been developed for several data mining tasks: as-
sociation rule mining [1], L2 thresholding [6], outliers’ detection [7], decision tree
induction [8], meta-classification [9], k-means clustering [10] and multivariate regres-
sion [11].

A related work to this paper, Wolff et al. [1] address the problem of association
rule mining, bypassing the frequent item set mining problem based on ‘majority
voting’ protocol. In their approach, each node executes a majority voting protocol
with its neighbours to determine whether an item set that exists in local data is
frequent globally. If a pair of nodes does not agree on majority of an item set, they
exchange the local support and local data size. The protocol terminates when there
is no message in the total network, and every node then knows whether an item
set that exists in its own data is frequent or not. They do not address the problem
of frequent item set mining directly, and discover association rules directly on the
basis of local communication with neighbouring nodes. Their algorithm for discov-
ering association rules from a P2P network can take communications of the order
of network size for those rules whose confidence is about equal to the confidence
threshold.

The problem of finding frequent item sets in a P2P network is already addressed
in [2] using a sampling-based probabilistic approach. The main idea is to identify
the most frequent item sets using a uniform random sample drawn from the whole
data. One particular randomly selected node, NS, leads the execution of the P2P-
AFIMI algorithm. They assume other node in the P2P network is reachable from
NS. NS first collects a uniform sample of data to create a set of item sets that are
possibly frequent in the data distributed in the P2P network. This set is called
a ‘candidate set’. Then it runs standard Apriori algorithm [12] on the sample to
generate item sets that are frequent in the sample. To identify item sets actually
frequent (globally frequent) in the entire network from the candidate set, node NS
takes another round of node sampling to collect local support for each candidate
item set and corresponding local data size and estimates the global frequency of
each candidate set. The communication between NS and any sampled node happens
directly in peer-to-peer fashion. The size of the node sample is determined by desired
accuracy level. They assumed that the network topology and data do not change
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during the execution of the algorithm. This assumption makes their algorithm
inappropriate for real P2P networks. Thus using Apriori algorithm causes a decline
in the efficiency in this algorithm.

None of the presented algorithms consider P2P network which peers get a stream
of tuples.

3 PROBLEM DEFINITION

The problem of on-line mining of recent frequent item sets in data streams is de-
fined as follows: Let D = T1, T2, . . . , Tm be a sequence of transactions, where each
transaction Ti ∈ D, i ∈ [1,m], is a subset of I. I = {i1, i2, . . . , in} is a set of
n distinct literals, called items which are units of information in an application
domain. An item set x is a subset of items. A window W consists of the most
recent N transactions that slides forward for every transaction. The support of
an item set x over W , denoted as Support(x,W ), is the number of transactions
in W which contain the item set x. An item set x is called a frequent item set if
Support(x,W ) ≥ minSupp×N , where minSupp is a user defined minimum support
threshold in the range of [0, 1].

In P2P global frequent item set mining, the dataset, in essence, is partitioned
among a set of nodes. Each node to mine recent global frequent item sets in the
entire recent data over a P2P network can only be associate with a small set of other
nodes – its immediate neighbors. By globally frequent item set, we imply an item set
whose frequency over the entire current recent data in the network exceeds minSupp.
Since, each node in a P2P network receives a continuous sequence of transactions;
it may not be possible to propagate the changes to the entire system at the rate
they occur. Thus, it is useful if an incremental algorithm can obtain ad hoc results
quickly and enhance them as more data is propagated. Such algorithms are called
anytime algorithms [1]. The performance of an anytime algorithm is quantified by
its average recall and precision [1, 2]. An anytime algorithm is said to be correct if
during static periods, in which the dataset and the system do not change, both the
average recall and the average precision converge to one [1]. Here, in this paper, we
raise convergence rate by selecting super nodes and decreasing communication load
through sending only MFIs and MIFIs.

There are several protocols advised for distributed super node selection in an un-
structured P2P network. We refer the H2O protocol [13] to select super nodes and
their member nodes from an unstructured P2P network. In this way, after a while,
every node is either a super node with a list of its member nodes and a list of
other super nodes in the neighbourhood, or is a member node that knows its super
node(s). In this case, as shown in Figure 1, the communication topology of the P2P
network takes the form of some hub consisting of super nodes directly connected
to each other in the neighbourhood. We assume the selected super nodes do not
change with time. This protocol is avoided in the pseudo code in order to keep
conciseness.
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In this work, we assume that an underlying mechanism maintains a communica-
tion tree that spans all super nodes in a P2P network, communication among peers
is reliable and that a super node is informed of changes in the status of adjacent
nodes. We further assume that each peer has the same set of attributes for its data
tuples. These assumptions are not uncommon and have been made elsewhere in the
distributed algorithms literature [1].

Figure 1. The communication topology

4 THE PROPOSED ALGORITHM

In [1] it has been shown that a P2P frequent item set mining algorithm can be con-
sidered as a decision problem in which the participating nodes must decide whether
or not each item set is frequent. However, the algorithm presented in that work is
only suitable for P2P systems whose nodes can examine their data element several
times and face with very little change in data. We present here FIM-P2P algorithm
which works well for P2P systems in which each node receives a continuous sequence
of transactions, thus the nodes cannot access the entire local data, and each data
element can be examined at most once. The purpose of FIM-P2P algorithm is to
make certain that each node converges toward the correct result. The algorithm dic-
tates how nodes react when the data concept changes, a member node is separate
or joined.

In our algorithm each member node independently mines its local data stream
and sends the current result to its super node. Sending of all produced frequent
item sets to super nodes results in high communications load. In order to decrease
the volume of communications, in our algorithm, each member node only sends
Maximal Frequent Item sets (MFIs). The infrequent item sets in each peer may
have the chance to become frequent on the recent data of the whole network. In
order to prevent any false negative errors it is necessary that each member node sends
also information related to infrequent ones. For this purpose, in our algorithm, each
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member node also sends a part of infrequent item sets, Minimal InFrequent Item
sets (MIFIs).

Definition 1. Maximal Frequent Item sets are the sets of item sets that are fre-
quent, but any of their immediate supersets are not frequent. They are denoted by
MFIs [4].

Definition 2. Minimal InFrequent Item sets are the sets of item sets that are not
deemed frequent, but all their immediate subsets are frequent. They are denoted by
MIFIs [4].

Note that in these definitions, maximal and minimal refer to the size of the item
set. MFIs whose support count is close to minSupp may cause false negative errors
in network, because they do not have the exact support count of their subsets. If
a great change occurs in the concept of data and the behaviour of these MFIs change
compared to previous stage, this may lead to false negative errors in network about
their subsets. In order to decrease such errors, the member nodes can send a few
of the subsets of the described MFIs. Consequently, more frequent item sets are
sent to the super node, leading to more communication load and less error. How to
select these subsets is among our future work.

Therefore, each member node produces MFIs and MIFIs from its current window
periodically by using Max-FISM algorithm [4] and in the event of their change as
compared to previous stage; it sends them along with their support count to its
super node. We assume the size of window in all peers to be the same.

Max-FISM (Maximal-Frequent Item sets Mining) algorithm uses a prefix tree-
based summary data structure called Max-Set for maintaining the number of in-
dependent appearance of each transaction in the current window. Finally, the set
of recent maximal frequent item sets and recent minimal infrequent item sets are
obtained from the current Max-Set. The Max-FISM algorithm is avoided in the
pseudo code in order to keep conciseness.

Each super node uses a data structure called global tree, denoted as T u
G based

on Max-Set [4] to keep current information of the nodes. Whenever the super node
u receives new information, denoted as ∆m

new < MFIs − MIFIs list >, from the
member node m, it inserts it in T u

G and deletes the previous information, ∆m
old <

MFIs−MIFIs list >. Also when a member node is separated from super node, the
related information is deleted from T u

G. Therefore, the algorithm responds to every
change in network topology or data.

Each super node for finding global frequent item sets should consider not only
the local data, but also data in the other nodes in network. For this purpose,
the global tree of super node u must be in agreement with the global tree in each
neighbour super node that makes it certain that all nodes that are reachable from
another one converge toward the correct result according to their combined dataset.
If two global trees are in agreement with each other about their borderline item sets,
both of them produce the same mining result. The borderline item sets are MFIs
and MIFIs associated with the global tree. In this case, whenever a super node faces
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the request of a user, it can deliver global frequent item sets by examining its global
tree.

The super node u in the node related to item set x in T u
G keeps the current

support count of item set x and network size NPx that are computed by using
following functions. NPx is recalculated through changing Nm (number of member
nodes) and/or changing NPs (number of network nodes which each neighbor super
node s knows). We symbolize the local support (the support obtained from the
member nodes) of global tree as supp⊥xu . The initial support of item set is local
support.

Suppinitial = supp⊥x u

NP xinitial = Nm

The super node u, to coordinate its global tree with its neighbours, periodically
examines its global tree by using Max-FISM algorithm [4] to produce the current
MFIs and the current MIFIs and their support count. We show these item sets are
denoted ∆u. Then super node u, for any item set x available at ∆u, considers ∆us

x .
∆us

x shows the behaviour of item set x, which super nodes u and s has recently
reported to each other. The super node u records, for every neighbor super node
s, the last message it sent to s about item set x, < x, suppusx , Nus

P x > and the last
message it received from s, < x, suppsux , N su

P x > in a buffer. Super node u computes
the following function of these messages:

∆us
x = ∆su

x = 〈(suppusx + suppsux ), (Nus
P x +N su

P x)〉 (1)

∆us
x is recalculated when a message is sent to or received from s. Super node u

coordinates its global tree with super node s for item set x by keeping the same value
∆us

x (except for the time a message travels between u and s, ∆us
x = ∆su

x ). During
the time that (∆us

y⊇x ≥ minSupp, where y is x or superset of x, and ∆u
x ≥ minSupp)

or (∆us
y⊆x < minSupp, where y is x or subset of x, and ∆u

x < minSupp) there is no
need for u and s to interchange data about item set x. It means that super nodes s
and u are convergence on item set x. If, on the other hand, ∆us

y⊆x < minSupp ≤ ∆u
x

or ∆u
x < minSupp ≤ ∆us

y⊇x or ∆us
x = ∆su

x = 0, super node u should send message
< suppu

x − suppsu
x , N

u
P x −N su

P x > to super node s. The super node s receiving new
information deletes the previous information of the super node u, in T u

G and adds
new information as shown in the functions 4 and 5. After this message is sent,
∆u

x = ∆us
x . When no message is sent, s knows that u is in agreement with it on item

set x.

Suppx = Suppx − suppus
x old + suppus

x new

NPx = NPx −Nus
Pxold +Nus

Pxnew

For example, in the global tree of node u, AB is a MIFI where min Supp = 2/5,
as shown in the Figure 2 a). We assume N = 1 and Nm = 5. The neighbor node
s finds AB as a frequent item set, then it sends message (AB, Supp = 4, NP = 5)
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to u. Then the global tree of node u is changed based on Max-Set tree [4] as shown
in the Figure 2 b).

Figure 2. A running example

Each super node executes the algorithm independently with each of its imme-
diate neighbor super nodes. Consequently, super nodes will become aware about
current status of item sets in more number of network nodes. When no message is
sent across network, nodes have been convergence toward the right result about each
item set x, i.e., that upon convergence ∆u

x ≥ minSupp if and only if the support
count obtained of the nodes which can be reached from u (as shown in functions 6
and 7) is not less than minSupp. This proof is given in the following. We show the
group of edges connected to u as Eu including the edges of neighbor super nodes.

Suppx = supp⊥u
x +

∑
su∈Eu if s and uare not in agreement about x

supportsux

NPx = Nm +
∑

su∈Eu if s and u are not in agreement about x

N su
Px

Assume a connected tree T(V,E) with data ∆u
x =< suppx, NPx > about item

set x at super node u ∈ V . Assume ∆us
x the value after the algorithm has converged.

For each u ∈ V let [u] = {s ∈ V : s be reachable from u using edges in E}. For
every us ∈ E let [u]s = {w ∈ V : w be reachable from s using edges in E − {us}}.
Finally, for any subset of super nodes S ⊆ V let ∆S

x =< suppS
x =

∑
s∈S supp⊥s

x , NS
P =∑

s∈S N
s
m >.

Theorem 1. In a tree T (V,E) upon convergence, for all u ∈ V , ∆u
x ≥ minSupp if

and only if ∆V
x ≥ minSupp.

Lemma 1. In a tree T(V,E) upon convergence if for some u, ∆u
x ≥ minSupp then

for each s such that us ∈ E, suppsu
x

Nsu
P x
≈ ∆[u]s

x , where ≈ means agreement.
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Proof. By induction on |[u]s|.|[u]s| = 1. It means that [u]s = s and s received mes-
sage only from than u and sent message only to u. So, ∆[u]s

x =< supp⊥s
x , N s

m > and
∆s

x =< suppus
x + supp⊥s

x , Nus
P x +N s

m >. We assume by contradiction suppsu
x /N

su
P x �

∆[u]s
x , where � means disagreement. It inferences that ∆us

x = ∆su
x = (suppus

x +
suppsu

x )/(N su
P x + Nus

P x) � (supp⊥s
x + suppus

x )/(N s
P x + N s

m) = ∆s
x. Therefore, su-

per node s should send a message to u. It is contradictive to the convergence
assumption. Assuming the Lemma 1 is true for [u]s ≤ K we prove that it is
true for [u]s = K + 1. ∆s

x = (supp⊥s
x +

∑
ws∈Es suppws

x /N s
m +

∑
ws∈Es Nws

px ) =

(supp⊥s
x + suppus

x +
∑

ws6=us Suppws
x )/(Nus

Px
+N s

m +
∑

ws6=usN
ws
px ). Because of the con-

tradictive assumption, suppsu
x /N

us
Px
� (supp⊥s

x +
∑

ws6=us Suppws
x )/(N s

m+
∑

ws6=usN
ws
Px

),
that follows ∆us

x = ∆su
x = (suppsu

x + suppus
x )/(Nus

Px
+ N su

Px
) � ((supp⊥s

x + suppus
x +∑

ws6=us Suppws
x )/(Nus

Px
+N s

m +
∑

ws6=usN
ws
Px

)) = ∆s
x. Again, super node s should send

a message to u. It is contradictive to the convergence assumption.

Proof of Theorem 1: We know that if super node u has ∆u
x ≥ minSupp and no

super node s ∈ V needs to send a message, then every super node s must have ∆u
x ≥

minSupp. We now must prove that ∆u
x ≥ minSupp if and only if ∆V

x ≥ minSupp.
We assume an imaginary super node h with supp⊥h

x = Nh
m = 0 to the super node u.

Note that if u does not need to send a message to h then ∆h
x = ∆uh

x = ∆u
x and

also that h never sends messages. Upon convergence, according to the Lemma 1,
minSupp ≤ ∆h

x = ∆uh
x ≈ ∆[h]u

x = ∆V
x . Since we know ∆h

x ≥ minSupp,∆V
x is also

greater than or equal to minSupp. 2

Defining the significance degree of item set x as sig = (
∑

u∈V supp⊥u
x /

∑
u∈V N

u
m)

−minSupp, we will show in Section 5 that in our algorithm even a minor significance
is enough to get a correct result about an item set using data from only a small
number of super nodes. Therefore, our algorithm has a good locality. Also, during
the execution of the algorithm, each node keeps an ad hoc result. During static
periods of network, most of the nodes will converge toward the correct results rapidly.
These features make it scalable and therefore suitable for P2P networks where peers
get a stream of tuples rapidly. The pseudo code of the FIM-P2P is given in the
following.

Algorithm: (FIM-P2P)
Input for Super node u: (1) The set of super nodes that is located in a certain
geographical distance with it Eu and (2) A user-defined minimum support threshold
minSupp ∈ [0, 1].
Ad hoc output of Super node u: Current global tree in the super node u: TG
/* The algorithm never terminates*/
Initialization: TG ← a global tree with null initialization; Nu

m = 0; /* The number
of member nodes of u */
Main: Repeat the following forever
On receiving a message ∆m < MFIs−MIFIs list > from member node m:
/* the current MFIs and MIFIs in member node m*/
If there is ∆m

old < MFIs − MIFIs list > into the buffer then Remove MFIs −
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MIFIs list∆m
old from global tree;

Else Nm = Nm + 1; /* the member node m is joined to super node u */
For each x ∈ MFIs−MIFIs list
If x /∈ TG Create a new entry of form (x, suppxMFIs−MIFIs list

, Nm) into the TG;
Else suppx = suppx + suppxMFIs−MIFIs list

;
Record ∆m < MFIs−MIFIs list > as last message of m into the buffer;
On receiving a message < x, suppsu

x , N
su
Px
> from super node s: /* informa-

tion is about item set x */
If x /∈ TG Create a new entry of form (x, suppsu

x , N
su
Px

) into the TG;
Else If < x, suppsu

x , N
su
Px
>old is into last recorded messages into buffer;

suppx = suppx − suppsu
xold

;NPx = NPx −N su
Pxold

;
suppx = suppx − suppsu

x ;NPx = NPx + N su
Px

; Record < x, suppsu
x , N

su
Px

> into the
buffer;
On failure of member m:
Remove MFIs−MIFIs list∆m

old
from global tree;

Remove MFIs−MIFIs list∆m
old

from last recorded messages;
Nm = Nm − 1; /* the member node m is disjoined from super node u */
Periodically: /* Find Global MFIs−MIFIs list(TG) by Max-FISM algorithm:
For each x ∈ MFIs−MIFIs list
For each super node s ∈ Eu

∆su
x = δusx = (suppus

x + suppsu
x )/(Nus

Px
+ N su

Px
) /* the real support count of x, which

u and s has recently reported to each other */

5 EXPERIMENTAL RESULTS

For testing effectiveness of FIM-P2P, we implemented a simulated network including
2 000 peers connected in a random tree spread over on a 50 × 40 grid. The 200
super nodes are selected from the network by using H2O protocol [13] and do not
change with time in these experiments. In these simulations all processors have
the same speed and all messages are delivered in unit time. These assumptions are
not because the algorithm requires such limitations but because properties such as
convergence and locality are best demonstrated in these conditions [1]. For lack of
real datasets of the scale required by a system of 2 000 computers, we used synthetic
databases generated by IBM [12]. We generated synthetic database, T30.I20.1000K,
where the parameters of synthetic data denote the average transaction size (T), the
average maximal frequent item set size (I), and the total number of transactions (D),
respectively. We split this data homogeneously between member nodes. We assume
the size of window (W) in all member nodes to be 300 transactions.

The two main qualities measured in our experiments are the convergence rate
of the result and the communication cost. The convergence rate is determined by
calculating the recall and precision in the ad hoc results of algorithm and that is
measured by a centralized algorithm, given all the recent data of all of the peers.
We have measured the communication cost of the algorithm based on the produced
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communication volume of average peer to converge to the exact results. Since P2P
network scale is very large, any algorithm which does not have good average locality
cannot be regarded scalable. Therefore, a locality is used to evaluate performance [1].
In Experiment 1, our aim is to consider locality of the proposed algorithm.

To evaluate the performance of FIM-P2P, we compare it with the Majority-
Rule algorithm [1]. Since, Majority-Rule algorithm does not address the problem of
frequent item set mining, and discover association rules directly. To create an ana-
logous environment to compare the two algorithms, we have changed Majority-Rule
algorithm to discover frequent item sets directly. In these experiments, minSupp is
set at 0.3.

Experiment 1. In one static state, we consider the environment of super node u for
item set x as the super nodes whose information about item set x is gotten by super
node u. The locality of an algorithm is measured according to the worst-case size
and the average size of the environments of the different super nodes, because super
nodes just must be coordinated together in the network. The average environment
size determines the number of messages exchanged between super nodes. Figure 3
indicates locality of algorithm. For each algorithm, the worst state and average state
of the environment size are shown against item set significance.

The environment size of each super node for an item set depends on the signifi-
cance degree of item set. While the significance of an item set is close to zero, in order
to achieve a precise global result, more super nodes must be coordinated together
in the network which environment size is large. As shown in the Figure 3, when
item set significance moves away from zero, the size of the environment decreases.
In Majority-Rule algorithm, when significance degree of an item set is about 0.16,
i.e., its global support degree is larger than minSupp by 0.16, the algorithm enjoys
a desirable locality. The minimal size of environment is about 220 nodes and the
average size of environment is about 80 nodes. In Majority-Rule Algorithm, when
the significance degree of an item set is zero, the environment size, in the worst
state, equals to the size of network, because all nodes must be coordinated together
in the network. But in FIM-P2P Algorithm, all super nodes must be coordinated
together in the network. The number of super nodes is smaller than the number of
nodes in the network. This is regarded as a major weakness of Majority-Rule algo-
rithm for marginal item sets. In FIM-P2P Algorithm, when significance degree of
an item set is about 0.05, the algorithm enjoys more desirable locality. The minimal
size of environment is about 95 nodes and the average size of environment is about
30 nodes. According to results obtained, in our algorithm, dependency of locality
on significance would be decreased to a great extent compared with Majority-Rule
algorithm and even in significance degree close to zero has a good local behaviour.
This decrease in the size of environment of each node for each item set proves better
locality of our algorithm. A good locality would cause that algorithm is fast and
communication efficient [1].

Further to locality, two main characteristics of the proposed algorithm are
namely convergence rate and communication cost.
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Figure 3. Locality of FIM-P2P algorithm with increasing environment size

Experiment 2. We calculate convergence rate by calculating the recall and preci-
sion in the ad hoc results. To evaluate the correctness of the outcome of FIM-P2P,
we compare it with the frequent item sets generated by Max-FISM algorithm run
on the entire recent data. Figure 4 compares the convergence of the recall a) and of
the precision b) in FIM-P2P and Majority-Rule with increase of environment size
in three significant degree – 0.15, 0.05 and zero.

In both algorithms, the frequent item sets with high significance degree, it is
expected that it may be generated earlier and nodes agree upon the same quickly.
This is also correct about the infrequent item sets with very low significance degree.
Because they are usually formed due to noise, as more nodes enter the calculations,
they come down rapidly [1]. In Majority-Rule algorithm, item sets whose support
count is very close to minSupp are generated only when the algorithm works for
a long period. If a huge number of item sets are the same as described earlier,
execution time of algorithm will be very long. This defect with the Majority-Rule
algorithm makes it incompatible with peer-to-peer networks whose peers receive
the continuous sequence of transactions. In our algorithm, as shown in Figure 4,
convergence speed of nodes toward correct results is higher compared to Majority-
Rule algorithm. This has been caused due to use of super nodes and each super
node communicates with its neighbours only about its MFIs and its MIFIs instead
of all its candidate item sets. These results show that in the proposed algorithm
the convergence rate of peers toward correct results is higher compared to Majority-
Rule algorithm. High convergence speed is one of the essential requirements of
peer-to-peer networks where network topology and data constantly change.

Experiment 3. Figure 5 compares the entire communication load generated in
each super node in order to achieve the entire global results by FIM-P2P with
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Figure 4. Precision and Recall with increasing environment size

communicating load of each node in Majority-Rule algorithm through increase of
size of network. As shown in Figure 5, in FIM-P2P algorithm in each size of network,
the entire generated communication load in each node is less that of Majority-
Rule. Since Majority-Rule algorithm uses Apriori property [12] for generating the
candidates, communication is established among nodes for all candidates. Moreover,
when a great change occurs in the concept of data, the behaviour of many candidates
will change compared to previous stage. This may lead to re-communication load on
system. However, in our algorithm, all nodes release only their MFIs and MIFIs and
speed of release of the said information is higher because of use of super nodes. This
causes that less messages would be generated. Also as shown in the Figure 5, upon
increase of size of network, the communication load generated in FIM-P2P algorithm
shows less growth compared with Majority-Rule algorithm. This achievement is
caused due to use of super nodes. Consequently, the results obtained from this
experiment confirm that our algorithm enjoy higher scalability with respect to the
number of nodes.

6 CONCLUSION

We presented a local algorithm, FIM-P2P, for discovering P2P network-wide fre-
quent item sets. We have shown that our algorithm has a good locality which
causes fast convergence of the result and low communication load. Such algorithms
are needed for the next generation P2P applications such as P2P file sharing net-
works, P2P web mining, P2P bioinformatics and P2P astronomy using national
virtual observatories.
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Figure 5. Total communication in megabytes with increasing P2P network size
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