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Abstract. An alternative approach to modelling and analysis of interactions among
agents in multiagent systems (MAS) and to their control is presented in analytical
terms. The attention is focused especially on the negotiation process. However, the
possibility of another form of the communication is mentioned too. The reachability

graph of the Petri net (PN)-based model of MAS is found as well as the space of
feasible states. Trajectories representing the interaction processes among agents
in MAS are computed by means of the mutual intersection of both the straight-
lined reachability tree (from a given initial state towards the terminal one) and
the backtracking reachability tree (from the desired terminal state towards the
initial one, however oriented towards the terminal state). Control interferences are
obtained on the basis of the most suitable trajectory chosen from the set of feasible
ones.

Keywords: Agents, analysis, control, decision, discrete-event systems, modelling,
petri nets

1 INTRODUCTION

MAS are used in intelligent control, especially for a cooperative problem-solving [27].
To analyse complicated interactions among agents modelling of them is often used.
The negotiation belongs to the most important interactions. It is the process of mul-
tilateral bargaining for mutual profit. In other words [2, 25], the negotiation is a de-



508 F. Čapkovič

cision process where two or more participants make individual decisions and interact
with each other in order to reach a compromise. In [13] Petri nets (PN) are used
for e-negotiations activities. The following five principle properties of e-negotiation
are defined there:

1. interactivity (it involves the agents to participate and communicate with each
other);

2. informativity (it generates, transmits and stores information);

3. irregularity (it behaves differently according to the combination of agents, strate-
gies, events, tasks, issues, alternatives, preferences and criteria);

4. integrity (it affords speed, consistency and absence of errors through efficient
and effective mechanisms);

5. inexpensivity (it automates or semi-automates negotiation activities to save time
and cost).

Because PN can effectively help on this way (i.e. to express the properties to be
satisfied, especially the first three ones that are generic) PN were chosen to model
MAS too [17, 21]. On the base of previous experience [4, 5, 8] with PN-based
modelling and control synthesis of the discrete event dynamic systems (DEDS) and
the agent cooperation [6, 7] a new approach to modelling, analysis and control of
the negotiation process is proposed here. The negotiation process is understood
to be DEDS. It seems to be natural, because the process is discrete in nature and
simultaneously it is causal. The approach consists of:

1. creating the PN-based mathematical model of the negotiation process;

2. generating the space of feasible states which are reachable from the given initial
state;

3. utilizing the reachability graph in order to find the feasible state trajectories to
a prescribed feasible terminal state.

After a thorough analysing the set of possibilities, the most suitable strategy (the
control trajectory) can be chosen.

In order to use DEDS-based approach it is necessary to mention DEDS opera-
tion and causality first. Likewise the PN-based model will be concisely mentioned
because it yields both the user friendly analytical description of DEDS operation
(by means of the linear discrete model consisting of the system of linear difference
equations) and the basis for computing the reachability tree and/or the reachability
graph making possible simple testing the DEDS properties as well as assuring the
system causality.

As to the model creation the approach is sufficiently general to be utilized not
only for modelling the negotiation process but also for modelling the wider spectrum
of both the agent behaviour and the forms of communication among the agents.
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2 THE DEDS OPERATION AND CAUSALITY

DEDS behaviour is driven by discrete events. Such a system persists in a given state
as long as it is forced to change it owing to the occurrence of a discrete event. As to
the structure DEDS can be very complicated. Namely, the typical representatives
of DEDS are flexible manufacturing systems (FMS), communication systems of dif-
ferent kinds, transport systems, etc. Taking into account e.g. FMS as an example
of DEDS, they consist of many devices like robots, numerically controlled machine
tools, conveyers, automatically guided vehicles, pallets, buffers, etc., in order to pro-
duce the final product(s) from raw material(s) and/or semiproduct(s). The mutual
cooperation among the devices is driven by discrete events (starting or ending some
technological operations and/or movement of mobile devices, switching the devices
on and/or off, etc.). In PN-based modelling of DEDS the level of abstraction is very
important. From the global point of view the FMS devices can be understood to
be atomic elements of DEDS. However, at a deeper investigation they can also be
found to be DEDS, namely the subsystems of the global FMS with partial activities
and/or operations being the atomic elements. While in the global understanding
a robot is a device being only switched on (to be activated) and/or off (to be de-
activated), going into details we can find that it performs several activities – it can
be available (i.e. free and waiting for any activation), it can perform different ope-
rations like picking parts up, moving its wrist with one of the parts from one point
of its working space to another one, putting a part in a machine tool, on a pallet
or into a buffer, taking a part off a machine tool or a buffer, etc. Analogically, the
machine tools can perform several different technological operations (e.g. drilling,
milling, etc.). From the technological point of view FMSs realize a technological
processes while their subsystems realize corresponding technological subprocesses.
The state of FMS at a time instant consists of the states all of the atomic activities
in the system. Therefore, it is a vector. Its dimensionality is equal to the global
number of activities in the system.

From the system theory point of view the operation of a simple example of
DEDS – e.g. one of the FMS devices – can be imagined in such a way like it is
illustrated in Figure 1. The course of a DEDS state – i.e. the system dynamics
development – represented there shows us how the state changes its discrete values
(levels) x1, x2, . . . , x6 owing to the occurrence of discrete events u1, u2, . . . , u5. Here,
xi represents the state of the atomic activity ai, i = 1, . . . , 6. Namely, if ai is
performed xi is active, otherwise xi is passive. In this very simple example only one
of the six feasible atomic activities is performed in any step of the DEDS dynamic
development, e.g.:

1. x3 – the robot R moves from its waiting position to a conveyer;

2. x1 – R picks up a part from the conveyer;

3. x2 – R moves (with the part in its wrist) from the conveyer to a machine tool;

4. x5 – R puts the part into the machine tool;
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5. x4 – R moves to its waiting position;

6. x6 – the machine tool starts a tooling operation.

The activities link to each other – they pass sequentially. Namely, the system
persists in a discrete state (performs an operation) until it is forced to change it owing
to the occurrence of a discrete event (ending the operation and starting another
one). After this change the system persists in the new discrete state (performs the
operation) until another discrete event (ending/starting of an operation) occurs and
causes another change, etc. It is clear from Figure 1 that there exist 6 different
discrete levels of the state, namely x1, x2, . . . , x6. At any time the system (in our
simple example) can persist only in one of them, of course, because it has a character
of the sequential process. Consequently, the states of the system can be expressed
by the state vectors with the structure xk = (xk

1, x
k
2, . . . , x

k
6)

T , k = 0, 1, . . . , K,
where for each k only one of the components xk

i , i = 1, 2, . . . , n (in our case n = 6)
of the vector xk is different from zero. Thus, for K = 5 we have the following
states x0 = (0, 0, x0

3, 0, 0, 0)
T , x1 = (x1

1, 0, 0, 0, 0, 0)
T, x2 = (0, x2

2, 0, 0, 0, 0)
T , x3 =

(0, 0, 0, 0, x3
5, 0)

T , x4 = (0, 0, 0, x4
4, 0, 0)

T , x5 = (0, 0, 0, 0, 0, x5
6)

T . Name k to be the
step of the system dynamics development.

-
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Fig. 1. The development of the state in the simple example of DEDS

It is necessary to say that in large and complicated FMS a number of devices
can work simultaneously – for example, two production lines of FMS. When both
lines contain a machine tool and the machine tools are served by the same robot R,
the robot cannot serve both machines simultaneously. It is clear that R is able to
serve the machines either alternatively or in virtue of a prescribed program. In such
a case the course of the DEDS state will be more complicated than that shown in
Figure 1. Therefore, it is useful to establish another graphical interpretation of the
system dynamic development.
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2.1 Feasible States and the State Space

To avoid any misunderstanding, it is necessary to distinguish both the feasible state
vectors of the system regardless of the step k in which they occur (i.e. regardless of
the causality relations) and the state vectors occurring consecutively (successively)
during the system dynamics development in the steps k = 0, 1, . . . , K of the system
dynamics development, i.e causally. While the former vectors (they are mutually
different) represent the system state space, the latter ones express the dynamics of
the system within the framework of the given state space. Let us denote in our
example of FMS the feasible states as X1, . . . ,X6, where X1 corresponds to x0 (we
will use the symbol ,, i.e. X1 , x0), X2 , x1, X3 , x2, X4 , x3, X5 , x4, X6 , x5.
The set Xreach = {X1,X2, . . . ,X6} of the feasible states is created by the initial state
vector x0 and all of the mutually different states reachable from x0 regardless of the
number of steps which are necessary for such a reachability. The vectors of the set
Xreach can be understood to be the columns of the matrix Xreach as follows.

Xreach = (X1,X2, . . . ,X6) =











0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1











(1)

It is the matrix of feasible states. As already said, by the term feasible states
the initial state together with all of the states reachable from it are meant. The
dimensionality of the matrix Xreach is (n × N) with n,N being, respectively, the
number of the atomic activities being in the discrete states xk

i , i = 1, . . . , n (the
components of the vectors xk, k = 0, 1, . . . , K) of the system, and the number of
all the feasible state vectors Xi, i = 1, 2, . . . , N . For the given initial state the
matrix Xreach represents the system state space as a whole. However, when the
initial state will be represented e.g. by the vector x0 = (0, x0

2, 0, 0, 0, 0)
T , then x1 =

(0, 0, 0, 0, x1
5, 0)

T , x2 = (0, 0, 0, x2
4, 0, 0)

T , x3 = (0, 0, 0, 0, 0, x3
6)

T . Thus, X′

1 , x0,
X

′

2 , x1, X
′

3 , x2 and X
′

4 , x3. Consequently, N = 4 and Xreach = (X′

1,X
′

2,X
′

3,X
′

4).

However, in general, some of the feasible states can occur repeatedly (inconsecu-
tively) in a causal sequence of the states {x0,x1, . . . ,xK} in which the system finds
itself during the dynamics development.

Although no time is explicitly designated on the horizontal axis in Figure 1 its
implicit presence is indisputable. Namely, the discrete events occur in concrete time
instants but the time intervals between the instants of occurrence of two adjacent
events have different length. However, taking no account of a time we can introduce
a new simplified conception of the course of DEDS state as a formal representation
of the state trajectory. In such a case we will designate the steps of the DEDS dyna-
mics development on the horizontal axis, namely with the same geometric distance
between pairs of adjacent steps. At the same time we will designate the discrete va-



512 F. Čapkovič

lues of the DEDS state on the vertical axis, namely likewise with the same geometric
distance between pairs of adjacent discrete values. Consequently, the course of the
DEDS state will be represented by a broken line consisting of the elementary linear
segments (the abscissae) connecting the points with the pairs of coordinates (ki, xj1)
and (ki+1, xj2), where ki is the i

th step of the DEDS dynamics development and xj1,
xj2 (it is clear that xj1 > xj2 or xj1 < xj2) are two adjacent discrete values of the
state. At the same time, the discrete event causing the change of the state from the
discrete value to another one represents the parameter of the transition of the state
between these values. At such a conception the course of the state represented in
Figure 1 will be transformed into the course represented in Figure 2 a).

To emphasize the step of the system dynamics development, the left upper
index k is added to the symbol of ith discrete event ui denoting the step in which
the event occurs. Thus, kui means that ui occurs in the step k. Because the graphical
expression of states is imbedded into the lattice, it is well-arranged, lucid, and easy
to understand.
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Fig. 2. The simplified representation of: a) the course of the DEDS state; b) the state
trajectory in the state space

As evident from Figure 2 a), such a representation is unambiguous. Namely, the
transition of the DEDS state from the discrete value in a step k to the immediately
following one in the next step is realized just by means of the corresponding discrete
event. Although the broken line is only fictive, it can be named as the state trajec-
tory, because it represents (by any linear part – i.e. by any abscissa) the transition
from the existing state to another one being the consequence of the occurrence of
the corresponding discrete event.

When the feasible states are designated on the vertical axis, another simpli-
fied representation of the DEDS state course can be introduced. It is displayed in
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Figure 2 b). As can be seen below, such a representation can be utilized also for
displaying paths of the PN reachability tree and/or the reachability graph. Namely,
their nodes can be designated on the vertical axis and their lengths can be designated
by the number of steps on the horizontal axis.

The system can pass from a given discrete state to another state by means of
the occurrence of one discrete event only. However, in general (in more complicated
DEDS), several discrete events can sometimes be enabled in a given discrete state.
Because only one of them can be fired, there is a conflict among them. In case of the
forced events a decision has to be made which of them will be fired. Namely, each
of them can transfer the system to another (however, again solely one) potential
next state. Moreover, these states are mutually different. Consequently, the event
transferring the system into the most suitable state is chosen, of course. The choice
can be realized on the basis of a criterion or in virtue of a prescription. In case of
FMS the choice is determined by the technological process. Namely, any discrete
event cannot transfer the system into two or more different states simultaneously.
This fact is very important for the DEDS causality and it is utilized during the
control synthesis.

Chaining several successive discrete events yields the trajectory representing the
transition of the system from the given initial state to a prescribed terminal one.
Such a transition is causal. The DEDS causality can be (in an analogy with the
causality of continuous systems described in [1]) illustrated by Figure 3 where the
state in the step k = j can be reached from the state in the step k = 0 (the initial
state) after j steps. However, the same state can be reached also from the state in
the step k = i, 0 < i < j, after (j − i) steps.

' $
- -

-

s s s� �� �k = 0 k = i k = j; j > i

Fig. 3. The principle of causality in DEDS

Let us understand the trajectory in Figure 2 b) to be the directed graph. Its
adjacency matrix is as follows:

A =











0 0u1 0 0 0 0
0 0 1u2 0 0 0
0 0 0 2u3 0 0
0 0 0 0 3u4 0
0 0 0 0 0 4u5

0 0 0 0 0 0











(2)

The dimensionality of A depends on the number of the graph nodes. Because the
nodes are represented by the feasible state vectors the matrix dimensionality is
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N ×N . In our case N = 6. However, the nonzero elements of A representing the
discrete events depend on the step k of the DEDS dynamics development. Namely,
the elements ai,j, i = 1, 2, . . . , 6, j = 1, 2, . . . , 6, of the adjacency matrixA represent
the discrete events transfering the system from Xi to the adjacent state Xj. Thus
ai,j = ku(Xi→Xj),

ku(Xi→Xj) ∈ {0, 1}, i = 1, . . . , 6, j = 1, . . . , 6 where k determines
the step of the DEDS dynamics development when the event is enabled. Conse-
quently, the element ai,j depends on k. In other words the element is k-variant (is
a function of k). Therefore, the matrix A can be named as the k-variant adjacency
matrix and/or the functional adjacency matrix and it will be denoted as Ak. In
order to avoid the complicated lower index Xi → Xj of the events we will use only
the ordinal number of the event like it was done in Figures 2 a) and 2 b) as well as
in (2). Thus, for j = 0, 1, . . .

jur =

{
1 if j = k
0 otherwise

; r = 1, 2, . . .m (3)

where m is the total number of discrete events. In our case m = 5. Consequently,

A0 =











0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0











A1 =











0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0











. . . A4 =











0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

0 0 0 0 0 0











2.2 Vicarious State Vectors

In order to work with the functional adjacency matrix Ak in a mathematical model
of the DEDS dynamics, let us define the N -dimensional vicarious vectors Xk =
(kX1,

kX2, . . . ,
kXN )

T , k = 0, 1, . . . , K which will take the place of the real state
vectors xk, k = 0, 1, 2, . . . , K representing the system dynamics development. In
any step k the vector Xk has only one nonzero component, namely

kXi =

{
1 if i = k + 1
0 otherwise.

; i = 1, 2, . . . , N (4)

Thus, in our case X0 representing x0 has the form X0 = (1, 0, 0, 0, 0, 0)T, X1 repre-
senting x1 has the form X1 = (0, 1, 0, 0, 0, 0)T, . . . , X5 representing x5 has the form
X5 = (0, 0, 0, 0, 0, 1)T. By means of the vicarious vectors we can develop the system
dynamics as follows

Xk+1 = AT
k .Xk, k = 0, 1, . . . , K. (5)

The equation (5) describes DEDS as a state machine. In any step k only one
discrete event can occur (can be fired). Such a discrete event transfer the system
from Xk to Xk+1 by means of the discrete event fired in the step k.
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2.3 The Example of the More Complicated DEDS

Consider the more complicated system (as to the compositional structure) with the
behaviour expressed by the directed graph in Figure 4. As we can see there are
three mutually different possibilities of the transition to the next state already in
the initial state x0. The initial state vector is the first feasible vector of the system –
i.e. X1 , x0. It can be seen from the same figure that x1 ∈ {X2,X3,X4} – i.e. either
X2 , x1 or X3 , x1 or X4 , x1. Analogically, x2 ∈ {X5,X6,X7}, x3 ∈ {X8,X9},
x4 ∈ {X10,X11}, x5 ∈ {X12,X13,X14}. The matrix Xreach = (X1,X2, . . . ,X14).
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Fig. 4. The example of the more complicated DEDS

The system structure is created by the digraph with the vectors Xi, i = 1, 2, . . . ,
14 being its nodes. Consequently, the adjacency matrix of the graph is the following
(14× 14)-dimensional matrix:

A=



























0 0u1
1

0u2
1

ku3
1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1u1
2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1u2
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1u3
2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2u1
3 0 0 0 0 0

0 0 0 0 0 0 0 0 2u2
3 0 0 0 0 0

0 0 0 0 0 0 0 2u3
3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 3u1
4 0 0 0 0

0 0 0 0 0 0 0 0 0 3u2
4

3u3
4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 4u1
5 0 4u2

5

0 0 0 0 0 0 0 0 0 0 0 0 4u3
5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0



























(6)
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In the k-variant adjacency matrix Ak only such discrete events appear which have
its left upper index equal to k. It means that 0u1

1,
0u2

1,
0u3

1 appear in A0,
1u1

2,
2u2

2,
2u3

2

appear in A1, etc. Here it has to be repeated again that only one of the en-
abled discrete events can be fired in any step of the system dynamics develop-
ment.
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Fig. 5. The graphical expression all of the feasible trajectories

Introducing the 14-dimensional vicarious vectors Xk, k = 0, . . .K taking the
places of the vectors xk, k = 0, 1, . . . , K we can develop the system dynamics by
means of (5). The system trajectories are given in Figure 5.

2.4 The Formal Expression of DEDS Causality

The functional (k-variant) matrix Ak is the transition matrix between two causally

adjacent states Xk, Xk+1, k = 0, 1, . . . , K. Consequently,

Xk = AT
k−1. . . . .A

T
0 .X0 = (

k∏

i=1

AT
k−i).X0 = (

k−1∏

i=0

Ai)
T .X0 = Φk,0.X0 (7)
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because X1=AT
0 .X0, X2=AT

1 .X1=AT
1 .A

T
0 .X0, . . . , Xk=AT

k−1.Xk−1=AT
k−1.A

T
k−2.

. . . .AT
0 .X0. The matrix Φk,0 is the transition matrix of the system from the state

X0 to the state Xk.

2.5 The DEDS Backward Causality

Till now we considered the natural DEDS causality – the causality in straightforward

direction, i.e. in the direction cause
event
−→ consequence. In such a case the system being

in the state Xk passes to another state Xk+1 in a natural way (i.e. owing to the

occurrence of a discrete event). Thus the transformation Xk
event
−→ Xk+1 is realized.

This kind of causality determines the future on the basis of the presence. However,
there are situations (the DEDS control or, better said, the need of the DEDS control
synthesis is one of them), when it is important to answer the question what event
(symbolically ”?event”) caused that the system finds itself in the present state Xk

and/or from which previous state Xk−1 (symbolically ”?Xk−1”) the system passed

(due to the event) into the state Xk – i.e. ?Xk−1
?event
−→ Xk. Thus, the question

marks symbolize the questions ”from which previous state?” and ”by means of what

discrete event?” the system passed to the state Xk. Usually, any unambiguous
answer does not exist in such a case. The system could pass into the state Xk

from several (e.g. ncp) different previous states iXk−1 (causal predecessors), i =
1, 2, . . . , ncp, namely owing to different discrete events being the elements of the
matrix Ak−1. For example, in Figure 5 the feasible state X9 corresponding to the
real state x3 (represented by the vicarious state X3) can be reached either from
X5 (corresponding to 1x2 represented by 1X2), namely by means of the event 2u1

3,
or from X6 (corresponding to 2x2 represented by 2X2), namely by means of the
event 2u2

3.

This kind of causality finds possible causes in the past the consequence of which
is just the presence (the existing state of the system). The backward causality is
very important especially during the DEDS control synthesis. The mathematical
description of the backward causality is (at the above introduced conception of
causality) very simple. It is sufficient to transpose the transition matrix AT

k (i.e. to
use the matrixAk) in order to obtain such a procedure. For one step the description
is as follows:

Xk−1 = Ak−1.Xk. (8)

In general (for i = 1, 2, . . . ), Xk−i = Ak−i.Ak−i+1. . . . .Ak−1.Xk. Thus,

X0 = A0.A1. . . . .Ak−2.Ak−1.Xk = (

k−1∏

i=0

Ai).Xk = Φ0,k.Xk. (9)

The matrix Φ0,k is the backward transition matrix of the system from the state Xk

to the state X0. It is evident from comparing (7) and (9) that Φ0,k = Φk,0
T .
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3 SIMPLIFIED EXPRESSING OF THE CAUSALITY

Using the k-variant adjacency matrix Ak is not comfortable as to the computations.
The standard (i.e. constant) adjacency matrix A seems to be more suitable because
the graph theory results can be utilized.

Namely, the relations between powers of the digraph adjacency matrix A and
the number of paths having a given length are defined and proved – see e.g. [20, 22]
and/or [10, 11, 14, 19, 24, 26]. The digraph reachability matrix is defined there as
well.

Therefore, the element a
(k)
i,j of the kth power Ak of the adjacency matrix A

represents the number of the paths having the length k from the node i to the
node j. The reachability matrix R =

∑N

i=1 A
i = A1 + A2 + . . . + AN yields

information about the number of paths having the length N or the length less than
N . Replacing the ordinary arithmetic (in general e.g. cij =

∑n

k=1 aik · bkj) by the

Boolean arithmetic (accordingly, cij =
∨n

k=1 aik∧bkj), the element a
(k)
i,j of the matrix

Ak is Boolean and expresses the nonexistence or existence of the path from the node
i to the node j having the length k. The elements of the logical reachability matrix
RL =

∨N

i=1A
i = A1 ∨ A2 ∨ . . . ∨ AN yield information about the reachability in

itself (decide the reachability).
The nonzero elements rjk, j = 1, 2, . . . , N , of the kth column (r1k, r2k, . . . , rjk, . . . ,

rNk)
T of the reachability matrix R contain the numbers of paths from the node j

to the node k, while the elements of the same vector in the logical reachability
matrix RL decide whether the node k is reachable from the node j or not.

3.1 Utilizing the Constant Adjacency Matrix

Consider formally that all of the discrete events are enabled. Consequently, the
k-variant adjacency matrix Ak is turned to the constant adjacency matrix A having
the same structure like in (6) however, all of the nonzero elements are replaced
by the integer 1. Such an approach helps us find the space of feasible trajectories
from a given initial state to a prescribed terminal state. Using the matrix A in the
straight-lined development is as follows:

{Xk} = AT .AT . . . . .AT .AT

︸ ︷︷ ︸

k factors

.X0 = (
k−1∏

i=0

AT ).X0 = (
k−1∏

i=0

A)T .X0 =
cΦk,0.X0 (10)

because {X1} = AT .X0, {X2} = AT .{X1} = AT .AT .X0, . . . , {Xk} = AT .{Xk−1}
= AT .AT . . . . .AT

︸ ︷︷ ︸

k factors

.X0. Here, the {Xi}, i = 1, 2, . . . , k express aggregated states

because of the fact that all of the discrete events are (formally) fired. Denote these
vectors as sl{Xi}, i = 1, 2, . . . , k (because they represent the straight-lined develop-
ment) and store them as the columns of the matrix

M1 = (slX0,
sl{X1}, . . . ,

sl{Xk}). (11)
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Analogically, the backward development is performed as follows

{X0}
′ = A.A. . . . .A.A

︸ ︷︷ ︸

k factors

.Xk = (

k−1∏

i=0

A).X0 =
cΦ0,k.X0 =

cΦT
k,0.X0 (12)

because {Xk−1}
′=A.Xk, {Xk−2}

′=A.{Xk−1}
′=A2.Xk, . . . , {X0}

′=A.{Xk−1}
′=

A.A. . . . .A
︸ ︷︷ ︸

k factors

.Xk. Here, the {Xi}
′, i = 0, 1, . . . , k − 1 also means aggregated states

because of the same reason. Denote these vectors as bt{Xi}, i = 0, 1, . . . , k − 1 (be-
cause they represent the backtracking development) and store them as the columns
of the matrix

M2 = (bt{X0},
bt{X1}, . . . ,

bt{Xk−1},
btXk). (13)

In both cases such an approach has the real interpretation. The nonzero compo-
nents of the columns of M1 express the number of paths through the corresponding
graph nodes in the straight-lined direction, i.e. from the initial state X0 to the pre-
scribed terminal state Xk. The nonzero components of the columns of M2 contain
the number of paths through the corresponding graph nodes in the backward di-
rection, i.e. from the terminal state Xk to the initial state X0, however, directed
towards the terminal state.

3.2 The Space of Feasible Trajectories

After the column-to-column intersection of the matrices M1, M2 we have the final
result in the form of the matrix

M = M1 ∩M2 = (fX0,
f{X1}, . . . ,

f{Xk−1},
fXk) (14)

M = (slX0 ∩
bt{X0},

sl{X1} ∩
bt{X1}, . . . ,

sl{Xk−1} ∩
bt{Xk−1},

sl{Xk} ∩
btXk). (15)

The column-to-column intersection of two corresponding columns is understood to
be finding minima of their corresponding elements. It is done as follows

f{Xi} = sl{Xi} ∩
bt{Xi} = min(sl{Xi},

bt{Xi}), i = 0, 1, . . . , k (16)

with sl{X0} = X0,
bt{Xk} = Xk. The operation of the intersection ensures that

in the matrix M only the paths emerging from the given initial state and entering
the prescribed terminal state are stored. It can be said that in the matrix M the
feasible trajectories are stored or, in other words, that M represents the space of
the feasible trajectories.

It is very important and interesting that the principle of causality allows us to
find shorter trajectories when the longer ones have already been computed. Namely,
having at disposal the matrices M1, M2 (given, respectively, by (11), (13)) we
can compute trajectories shorter for 1, 2, . . . , j steps in such a way that before the
intersection of these matrices we shift the matrixM2 to the left for 1, 2, . . . , j columns
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as follows

−1M = M1 ∩
−1M2 , where

−1M2 = (bt{X1}, . . . ,
bt{Xk−1},

btXk, 0/) (17)
−2M = M1 ∩

−2M2 , where
−2M2 = (bt{X2}, . . . ,

bt{Xk−1},
btXk, 0/, 0/) (18)

...
−jM = M1 ∩

−2M2 , where
−jM2 = (bt{Xj}, . . . ,

bt{Xk−1},
btXk, 0/, . . . , 0/

︸ ︷︷ ︸

j vectors

). (19)

Here, 0/ is the zero column vector of the corresponding dimensionality. When an in-
tersection M1 ∩

−jM2 does not exist, the matrix −jM is the zero matrix. It means
that no trajectory shorter for j steps exists in such a case.

3.2.1 The Illustrative Example

To illustrate the procedure let us apply it to Figure 5. The real initial state vector
is x0. It is the feasible state and thus X1 , x0. The vicarious vector X0 represents
the initial state vector in order to work with the adjacency matrix A. When the
feasible state X12 is prescribed to be the terminal state, after 5 steps we have

M1 =



























1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 2 0 0
0 0 0 0 3 0
0 0 0 0 2 0
0 0 0 0 0 3
0 0 0 0 0 2
0 0 0 0 0 3



























M2 =



























3 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0



























M =



























1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0



























However, it has to be said that the number representing the step k in which
the terminal state will be reached from the initial state is not predetermined. It is
bounded only by the relation k ≤ (N − 1) which results from graph theory (where
(N − 1) is the maximal length of the paths in the graph with N nodes) as well
as by the relation sl{Xk} ≥ Xk (to be sure that Xk is comprehended in sl{Xk}).
When such a k is found, the number of the columns of M1 is determined and the
backtracking development starting from Xk can be performed in order to obtain the
matrix M2.

Thus, in our case k = 5, X12 , x5, where x5 is represented by X5. The
first column of the matrix M is created by the initial vicarious state vector X0
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Fig. 6. The graphical expression of the feasible trajectories from X1 to X12

representing the real initial state vector x0 (X1 , x0). The last (k + 1)-th column
is created by the terminal vicarious state vector X5 representing the real terminal
state vector x5, where X12 , x5. The columns placed between them point out
(by their nonzero elements) the feasible transitive states as well as the number
of paths through them. The matrix M stores the feasible trajectories from the
feasible state X1 to the desired feasible terminal state X12. We can distinguish the
trajectories as well as make sure of the correctness of the trajectories by means of the
matrix A displayed in (6). Namely, this matrix guarantees causality. At the same
time we can assign the corresponding discrete event realizing the transition between
any adjacent feasible states (Xi,Xj) being a part of the trajectories in question.
Consequently,

X1

0u1

1−→ X2

1u1

2−→ X5

2u1

3−→ X9

3u2

4−→ X10

4u1

5−→ X12 (20)

X1

0u2

1−→ X3

1u2

2−→ X6

2u2

3−→ X9

3u2

4−→ X10

4u1

5−→ X12 (21)

X1

0u3

1−→ X4

1u3

2−→ X7

2u3

3−→ X8

3u1

4−→ X10

4u1

5−→ X12. (22)

The graphical expression of the trajectories is given in Figure 6.
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4 THE PN-BASED MATHEMATICAL MODEL OF DEDS

Use the analogy between the DEDS atomic activities ai ∈ {a1, . . . , an} and the PN
places pi ∈ {p1, . . . , pn} as well as between the discrete events uj ∈ {u1, . . . , um}
occurring in DEDS and the PN transitions tj ∈ {t1, . . . , tm}. Consequently, DEDS
can be modelled by means of PN. The analytical model of DEDS based on PN has
the form of the linear discrete system as follows

xk+1 = xk +B.uk , k = 0, . . . , K (23)

B = GT − F (24)

F.uk ≤ xk (25)

where k is the discrete step of the dynamics development; xk = (σk
p1
, . . . , σk

pn
)T

is the n-dimensional state vector in the step k; σk
pi

∈ {0, 1, . . . , cpi}, i = 1, . . . , n
express the states of the DEDS atomic activities, namely the passivity is expressed
by σpi = 0 and the activity is expressed by 0 < σpi ≤ cpi; cpi is the capacity as to
the activities – e.g. the passivity of a buffer means the empty buffer, the activity
means a number of parts stored in the buffer and the capacity is understood to be
the maximal number of parts which can be put into the buffer; uk = (γk

t1
, . . . , γk

tm
)T

is the m-dimensional control vector of the system in the step k; its components
γk
tj

∈ {0, 1}, j = 1, . . . , m represent the occurrence of the DEDS discrete events
(e.g. starting or ending the atomic activities, occurrence of failures, etc.) – when
the jth discrete event is enabled γk

tj
= 1, when the event is disabled γk

tj
= 0; B,

F, G are structural matrices of constant elements; F = {fij}n×m
, where fij ∈

{0,Mfij}, i = 1, . . . , n, j = 1, . . . , m express the causal relations between the states
of the DEDS (in the role of causes) and the discrete events occuring during the DEDS
operation (in the role of consequences) – nonexistence of the corresponding relation
is expressed by Mfij = 0, existence and multiplicity of the relation are expressed by
Mfij > 0; G = {gij}m×n

, where gij ∈ {0,Mgij}, i = 1, . . . , m, j = 1, . . . , n express
very analogically the causal relations between the discrete events (as the causes) and
the DEDS states (as the consequences); the structural matrix B is given by means
of the arcs incidence matrices F and G according to (24); (.)T symbolizes the matrix
or vector transposition.

The PN marking which in PN theory is usually denoted as µ was denoted here
by the letter x usually denoting the state in system theory. The main reason is that
we work with the term “system” rather than with the term “PN”. Fuzzy PN [15]
can be modelled analogically – see [3]. Using the higher-level PN is not discussed in
this paper.

4.1 The PN Reachability Tree and the Reachability Graph

Exact definitions of the reachability tree are introduced in PN theory basic sources –
see e.g. [16, 18]. To have an idea about the reachability tree it is sufficient to intro-
duce here only a short description of it. The PN reachabitity tree Grt = (Vrt, Ert) is
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the tree where the set of nodes Vrt = {v0, v1, . . . , vNr} is represented by the set of PN
states – i.e. the nodes vi, i = 0, . . . , Nr represent the state vectors xi, i = 0, . . . , Nr

and consequently, Vrt = {x0,x1, . . . ,xNr}, with the initial state x0 being the root
of the reachability tree. The set of edges Ert = {e1, e2, . . . , eM} consists of egdes
marked by the PN transitions tj ∈ T, j = 1, . . . , m. Namely, two nodes vi, vj ∈ V
are connected by the oriented arc e = evi→vj ∈ E directed from vi towards vj . The
arc is marked by the PN transition t = tvi→vj = txi→xj

∈ T just when it is enabled
in the state xi and by its firing the new state xj will be reached. The reachability
tree has to involve a corresponding node for every PN state and a corresponding
edge for any PN transition enabled in the given state. To avoid complications (es-
pecially the infiniteness of the generated reachability tree) the so called duplicity
nodes are defined as the leaf nodes (the graph leaves). In such a way subtrees which
have been included into the reachability tree already are eliminated. Namely, the
node vi ∈ Vrt for which there is a node vj ∈ Vrt such that vj ≺ vi is named the
duplicity node. Here the operator ≺ represents the binary antireflexive transitive
antisymetric relation expressing the ordering of nodes in the set Vrt. Consequently,
from the duplicity node no edges emerge. Connecting all duplicity nodes of the
node vj ∈ Vrt together and also with the node vj itself we obtain (after doing this
for j = 1, . . . , Nr) the reachability graph from the reachability tree. It is important
that both the reachability graph and the reachability tree have the same adjacency
matrix.

Another descriptive definition of the reachability graph is presented in [12]. It
is distinctive on it that it starts by defining two functions

• enabled(v): given a state v, this function returns the set of transitions t that are
enabled in v

• fire(v, t): given a state v, and a transition t ∈ enabled(v), this function returns
the state v′ reached from v by firing t

and consequently, the reachability graph is defined as Grt = (Vrt, T, Ert, v0) being
the graph with the smallest sets of nodes Vrt, transitions T , and edges Ert such that

• v0 ∈ Vrt, where v0 is the initial state of the system, and

• if v ∈ Vrt, then for all t ∈ enabled(v) it holds that t ∈ T , fire(v, t) ∈ Vrt, and
(v, t, fire(v, t)) ∈ Ert.

In PN theory the reachability tree and/or graph are very important, especially
for testing the PN properties. In this paper it will be utilized at the DEDS control
synthesis. The Matlab procedure for computing the Grt was introduced in [9]. Its
entries are the PN incidence matrices F, G and the initial state x0. The procedure
computes the adjacency matrix Art of Grt in the quasi-functional form Art(k) (with
integers representing the indices of the transitions as its nonzero elements) and the
set of the reachable states given as columns of the matrix Xreach. These matrices
fully characterize the PN reachability graph. The functional adjacency matrix Ak

corresponding to the quasi-functional matrix Art(k) can be constructed when the
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integers in Art representing the indices of PN transitions tj ∈ T, j = 1, . . . , m are
replaced by the transition functions γk

tj
, j = 1, . . . , m, k = 0, 1 . . . , K. This matrix

represents the PN causality. It can be said that when DEDS is modelled by PN, the
strictness of the DEDS causality is rigorously adhered by the PN reachability tree
and/or the reachability graph. Therefore, the reachability graph cannot be avoided
at the DEDS control synthesis, of course.

Applying the results of the previous sections (concerning the DEDS causality)
to the PN reachability graph we can utilize them at modelling, analysing and con-
trol of interactions among agents. However, it is necessary to keep in mind that
the number of feasible states N = Nr + 1 because also the initial state is one of
them.

The attention will be focused especially on the negotiation process.

5 THE PRINCIPLE OF THE AGENTS NEGOTIATION PROCESS

The negotiation process itself consists of several principle activities [13]. Especially,
the following are most important: defining the negotiation environment, initial con-
tact of agents, offer(s) and counter offer(s) among them, evaluation of proposals,
and outcomes of the negotiation process. The coordination plan of the negotiation
process can be formally described by DEDS modelled by PN as can be seen on the
left in Figure 7 a). The PN places represent the activities and the PN transitions
represent the discrete events. The interpretation of the places and transitions is
as follows: p1 = start; p2 = define negotiation environment; p3 = initial contact;
p4 = offer(s) and counter offer(s); p5 = evaluation; p6 = outcomes; p7 = end;
t1 = starting negotiation process; t2 = negotiation plan(s); t3 = ”hand shake”;
t4 = proposal(s); t5 = revised proposal(s); t6 = agreement or quit; t7 = ending
negotiation process. However, the reality is more complicated. To illustrate it in
details, let us introduce the PN-based model of the agent in general and the cooper-
ation of two agents. The possible cooperation of several agents will be pointed out
too.

6 THE PN-BASED MODEL OF AGENTS IN MAS

In general, the compositional structure of an agent from the collaboration/negotia-
tion point of view can looks like that given in Figure 7 b). The PN-based model
represents the atomic activities of the agent as well as their mutual interconnection.
The interpretation of the PN places is as follows: p1 = the agent (A1) is free; p2 =
a problem has to be solved by A1; p3 = A1 is able to solve the problem (PA1

);
p4 = A1 is not able to solve PA1

; p5 = PA1
is solved; p6 = PA1

cannot be solved
by A1 and another agent(s) should be contacted; p7 = A1 asks another agent(s) to
help him solve PA1

; p8 = A1 is asked by another agent(s) to solve a problem PB;
p9 = A1 refuses the help; p10 = A1 accepts the request of another agent(s) for help;
p11 = A1 is not able to solve PB; p12 = A1 is able to solve PB. However, it has to
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Fig. 7. The PN-based model of: a) the coordination plan of the negotiation process in
general; b) a compositional structure of the agent

be said that another concept of both the agent structure and the activities is not
excluded.

In our case parameters of the PN-based model are as follows:

F =























1 1 1 1 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0























; G =













0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0













Analyse e.g. the situation when x0 = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)T, i.e. the situ-
ation when the agent A1 is free and it is asked by the agent A2 to solve the
problem PB = PA2

. Using the algorithm introduced in [5] we have the following
quasi-functional adjacency matrix Art(k) (its elements are the indices of the PN
transitions) of the PN reachability tree and the matrix Xreach with columns be-
ing the feasible states (the initial state and all states reachable from this initial
state):
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Art(k) =









0 3 4 0 0
0 0 0 5 6
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









; XT
reach =









1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1









The reachability graph (RG) of such a PN-based model is given in Figure 8.

d d dd d
��	 @@R

��	 @@R

X1

X2 X3

X4 X5

t3 t4

t5 t6

Fig. 8. The reachability graph of the agent in the situation given by the initial state

Such a PN-based model of the agent is universal and it can be used for mod-
elling other agents of MAS too. Namely, the same interpretation of places (how-
ever with shifted numbering pi+12, i = 1, . . . , 12) can be used e.g. for the
agent A2.

The agent model given in Figure 7 b) can be modified by additional internal
connections from t7 to p2 and from t7 to p4. Consequently, the elements g72, g74 are
added as follows:

G =













0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 1 0 0 1 0 0 0 0 0













Such a modification of the model does not influence the agent activities when the
agent works autonomously and/or in pair. However, experiments with the mo-
dels showed that the modified model has a favourable influence when the number
of agents is greater than 2. Namely, when the modified model of agents is used
the dimensionality of the reachability tree is less than the dimensionality of the
reachability tree in case of the original model.

6.1 Analysing the Model and the Control Synthesis

Having the PNmodel at disposal we can use the wide spectrum of methods developed
for PN, especially the methods based on PN invariants and on the PN reachability
graph which are most important at testing the PN properties. When the graphical
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tool (suitable for drawing PN and testing the properties) is used on this way the
model analysis is comfortable.

The DEDS control synthesis is based on the following simple idea:

1. developing the straight-lined reachability tree (SLRT) from the given initial
state x0 (represented by the vicarious vectorX0) towards the prescribed terminal
state xt (represented by the vicarious vector Xt);

2. developing the backtracking reachability tree (BTRT) fromXt towardsX0, how-
ever, directed to Xt;

3. intersecting both the SLRT and BTRT.

All steps are performed numerically in Matlab. To compute SLRT and/or BTRT
as well as their intersection the approach presented in Section 3 is utilized. Having
the set of feasible trajectories, the most suitable one (satisfying imposed control
task specifications) can be chosen. More details about the procedure can be found
in [6, 9].

The GraSim graphical tool was developed to support the DEDS control syn-
thesis. It is different from the graphical PN simulator (the tool for PN draw-
ing and testing). The input of GraSim is the RG of the PN model. It is
created by mouse clicking on appropriate icons representing the RG nodes and
edges as well as the marks for designating the initial and terminal states. At
its output the tool yields (in the graphical form) the feasible trajectories from
a given initial state to a prescribed terminal one. The trajectories can be ana-
lysed one after another. When a trajectory is chosen for analysing, the sequence
of corresponding discrete events is displayed. At present the choice of the most
suitable trajectory is not self-acting yet. Namely, the choice strongly depends on
the concrete kind of the system to be controlled. Therefore, a generalization in
this way is problematic. Moreover, the criteria for the choice are usualy only ver-
bal. To quantify them an appropriate knowledge representation has to be devel-
oped. However, using logical and/or fuzzylogical PN seems to be hopeful on this
way.

6.2 Cooperation of Agents

Having two agents A1, A2, their the collaboration/negotiation is given in Figure 9.
In case of more agents – e.g.NA – the places of the agent k = 1, . . . , NA are numbered
pi+12.j , i = 1, . . . , 12, j = k − 1 = 0, . . . , NA − 1. In case of several agents both the
PN model and the RG will be more intricate. While the model size depends on
modules and their interface, the RG size depends on x0 and on the structure of the
model blocks.

As we can see we have n = 24 places and m = 20 transitions in the PN model
of the two agents cooperation. However, the number of transitions is higher than
a simple sum being m = 14. Namely, some transitions have to be added as an
interface in order to connect both of the agents. Consequently, for two agents A1,
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Fig. 9. The Petri net-based model of the two agents negotiation

A2 the matrices of the MAS parameters will have the following form, where the
structure of the contact interface between the agents is given by the (n× 6)-dimen-
sional matrix Fc and (6× n)-dimensional matrix Gc

F =

(
F1 0 Fc1

0 F2 Fc2

)

; G =





G1 0

0 G1

Gc1 Gc2





Fc1 =























0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0























Fc2 =























0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0























GT
c1
=























0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0























GT
c2
=























0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






















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In general, for agents i = 1, 2, . . . , NA the structure of matrices is as follows:

F=










F1 0 . . . 0 0 |Fc1

0 F2 . . . 0 0 |Fc2
...

...
. . .

...
... |

...
0 0 . . . FNA−1 0 |FcNA−1

0 0 . . . 0 FNA
|FcNA










G=














G1 0 . . . 0 0

0 G2 . . . 0 0
...

...
. . .

...
...

0 0 . . . GNA−1 0

0 0 . . . 0 GNA

Gc1 Gc2 . . . GcNA−1
GcNA














B=










B1 0 . . . 0 0 |Bc1

0 B2 . . . 0 0 |Bc2
...

...
. . .

...
... |

...
0 0 . . . BNA−1 0 |BcNA−1

0 0 . . . 0 BNA
|BcNA










=
(
blockdiag(Bi)i=1,NA

|Bc

)

where Bi = GT
i −Fi; Bci = GT

ci
−Fci ; i = 1, 2 . . . , NA; Fc = (FT

c1
,FT

c2
, . . . ,FT

cNA
)T

Gc = (Gc1,Gc2 , . . . ,GcNA
); Bc = (BT

c1
,BT

c2
, . . . ,BT

cNA
)T with Fi,Gi,Bi, i = 1, 2,

. . . , NA, representing the parameters of the PN-based model of the agent Ai, and
with Fc,Gc,Bc representing the structure of the interface between the agents coope-
rating in MAS. The model properties can be tested by means of the graphical tool.
The tool was developed in order to draw the Petri net to be tested, to simulate its
dynamics development for a chosen initial marking, to compute its P-invariants and
T-invariants and to compute and draw its reachability tree.

In case of two agents cooperation starting from the initial state x0 = (σp1, σp2,
. . . , σpn)

T = (A1xT
0 ,

A2xT
0 )

T with A1x0 = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T, A2x0 = (1, 1,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T, i.e. from the state where only six places have nonzero mark-
ing, namely σp1 = 1, σp2 = 1, σp3 = 1, σp13 = 1, σp14 = 1, σp16 = 1, the reachability
graph given in Figure 10 is developed.
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Fig. 10. The reachability graph of the two agents negotiation
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It has N = 13 nodes representing the feasible states {X1,X2, . . . ,X13}. The
edges express feasible paths (trajectories) among the corresponding states.

Using both graphical tools – the tool for the PN model drawing and analysing
the model properties as well as the tool GraSim determined especially for find-
ing and analysing the space of feasible trajectories and for the control synthesis –
is very comfortable and user friendly. However, from the ergonomy (human fac-
tor engineering) point of view, the observed area on the monitor as well as the
number of places, transitions and their interconnections in the former tool and
the number of states and the intricacy of connections among them in the latter
one, which the human operator is able to recognize, are limited. Hence, more
formal approaches are found for DEDS analysis and control. Thus, large-scale
mathematical models can be handled numerically (e.g. by means of the Matlab
procedures). The matrices Art(k) and Xreach characterizing the RG are as fol-
lows

Art(k) =

























0 1 9 0 0 0 0 0 0 0 0 0 0
0 0 0 9 0 0 0 0 0 0 0 0 0
0 0 0 1 14 0 0 0 0 0 0 0 0
0 0 0 0 0 14 0 0 0 0 0 0 0
0 0 0 0 0 1 15 0 0 0 0 0 0
0 0 0 0 0 0 0 15 0 0 0 0 0
0 0 0 0 0 0 0 1 3 4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 5 6 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 16
0 0 0 0 0 0 0 0 0 0 0 0 0

























; Xreach =

(
1Xreach
2Xreach

)

1Xreach =























1 0 1 0 1 0 1 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 1 1 1 1
1 0 1 0 1 0 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0






















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2Xreach =























1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0























The solutions of the control synthesis are illustrated in Figure 11.
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Fig. 11. The cooperation of two agents A1, A2 in MAS: a) the case when A1 solves (on
the basis of the demand of A2 ) the problem to be solved by A2, however, A2 is not
able to do this; b) the case when A1 refuses to help A2
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6.2.1 The Problem of DEDS Controller and Controlled Object

The simple example introduced above describes the problem of two independent
(autonomous) agents that communicate each other about the possibility of a mutual
help in solving own problems. As to the authorities, the agents are equipollent.
Namely, they can help each other; however, they also can refuse the help.

However, consider the controlled object (being e.g. a kind of DEDS or a system
in general) to be the agent Asyst and its controller to be another agent Acont. The
role of the agent Asyst is to work with respect to prescribed rules. The role of
the agent Acont is to force Asyst to work with respect to the prescriptions. It can
be said that a master-slave relation between the agents occurs, where Acont is the
master and Asyst is the slave. More precisely, the Asyst has the permanent problem to
behave with respect to the rules, e.g. to pass from a given state towards a prescribed
state when several alternatives are possible. The most suitable possibility cannot
be chosen by the agent Asyst itself but on the contrary, it is determined in the
process of the control synthesis. The control synthesis yields the sequence of control
interferences which are obtruded on Asyst. The agent Acont supervises whether Asyst

respects the interferences or not. Such an agent Acont is usually named supervisor.
On the other hand, a more sophisticated agent Acont can permanently be able to solve
the problems concerning the Asyst behaviour and obtrudes the control interferences
upon Asyst. Therefore, in case of control it cannot be spoken about a mutual help
betweenAsyst and Acont. The situation is displayed in Figure 12. While the process of
the control synthesis is usually performed in the off-line way the mutual cooperation
between the controller and the controlled system is performed on-line.

Control
Synthesis

?

Controller

off-line

on-line

Controlled
System

-

�

Fig. 12. Cooperation of the agents Asyst (the controlled system) and Acont (the controller)
in the process of controlling Asyst by Acont

Nevertheless, the proposed PN-based approach to modelling, analysing and con-
trol synthesis is sufficiently general and it can be utilized in this case as well. Con-
sider that A1 = Asyst and A2 = Acont and utilize the above introduced mathematical
model suitable for two agents with the same parameters, but with another ini-
tial state given as x0 = (A1xT

0 ,
A2xT

0 )
T with A1x0 = (1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T,
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A2x0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T. Hence,

Art(k) =

















0 2 0 0 0 0 0 0 0
0 0 7 0 0 0 0 0 0
0 0 0 18 0 0 0 0 0
0 0 0 0 10 11 0 0 0
0 0 0 0 0 0 12 13 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 17
0 0 0 0 0 0 0 0 0

















The corresponding reachability tree is on the left in Figure 13.
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Fig. 13. The reachability graph of the cooperation Asyst and Acont. The cooperation with-
out the feedback – on the left side; the cooperation with the feedback – on the right
side

Because the control problem needs not be solved in one cooperative cycle the
feedback connection can be introduced. It can be simply realized by adding the
transition t19 into the system interface – see Figure 14. It can be seen that its input
place is p5 (namely, its firing realizes the process of the control problem solving)
and its output places are the places determining the initial state of the agents, i.e.
the places p1, p2, p4 and p13. Of course, the PN incidence matrices have to re-
spect the new transition t19 too. Consequently, the additional 19th column of F is
(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T and the 19th row of the ma-
trix G is (1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). In the reachability
graph on the right in Figure 13 such a feedback manifests itself by connecting X9

with X1 by the arc marked by t19. Consequently, the first column of Art(k) is
(0, 0, 0, 0, 0, 0, 0, 0, 19)T. The space of the feasible states is the same, i.e. the matrix
Xreach does not change. It means that when the problem is not solved during one
cooperative cycle of the agents their cooperation can continue in another cycle. The
state trajectories are given in Figure 15.
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Fig. 14. The PN-based model of the feedback cooperation of the Asyst and Acont

6.2.2 Cooperation of Three Agents

Analyse the cooperation of three agents A1, A2, A3 mutually connected as given in
Figure 16. The structural matrices describing the agents interactions can be written
on the basis of this figure as follows

Fc1 =























0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0























; GT
c1
=























0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0






















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Fc2 =























0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0























; GT
c2
=























0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0























Fc3 =























0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0























; GT
c3
=























0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0






















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Fig. 15. The state trajectories at the cooperation of Asyst and Acont: on the left – at the
cooperation without feedback; on the right – at the feedback cooperation
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Fig. 16. The Petri net-based model of the three agents cooperation

Consider

x0 = (A1xT
0 ,

A2xT
0 ,

A3xT
0 )

T (26)

where A1x0 = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T, A2x0 = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T,
A3x0 = (1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T. It is the situation where A3 is not able to solve
its problem PA3

and it has to ask either A1 or A2 for help. A1, A2 are able to
solve their problems. There are N = 40 different feasible states in this system. The
reachability graph is in Figure 17.

The segment of the reachability graph demarcated by the dotted line indicates
the part of the graph which is active during the system dynamics development in
case when the initial state is given by (26). Of course, the interaction with other
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Fig. 17. The reachability graph of the three agents cooperation developed from the given
initial state. The active segment indicates the part when A1 or A2 solves the prob-
lem PA3

parts of the graph should not be broken in order to preserve the model universality.
Two solutions can be found for the given initial state. Namely, the solution depends
on the fact which of the agents A1, A2 will be asked by the agent A3 for help. The
solutions are as follows:

X1
t16→ X4

t21→ X8
t32→ X13

t3→ X21
t6→ X32

t31→ X38

X1
t16→ X4

t21→ X8
t29→ X12

t10→ X19
t13→ X30

t26→ X37

where Xi = (A1X
T
i ,

A2X
T
i ,

A3X
T
i )

T , i = 37, 38, A1X37 = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T,
A2X37 = (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T, A3X37 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)T and
A1X38 =(0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T, A2X38=(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T, A3X38=
(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)T.
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7 GENERALIZATION

The above described approach to modelling the agents in MAS is not rigid. It is
suitable not only for modelling and analysing the negotiation process but also for
the agent cooperation in general. Namely, the PN subnets modelling the struc-
ture of agents can be built arbitrarily (according to demands of the model creator).
Even, the agents can have the mutually different structure. Also the interface among
the agents in MAS needs not be modelled only by the additional PN transitions.
On the contrary, in general the interface can be modelled by a PN subnet consist-
ing of both the additional PN transitions and/or the additional PN places. The
structure of such an interface can be created without restrictions at pleasure of the
model creator. Let us introduce e.g. the simple model of the agent communication
in order to illustrate the possibilities of the PN modelling the agents cooperation
in MAS.

7.1 The Example of the Agent Communication

Consider the simple structure of the agents defined in [23]. The interpretation of
the places in the PN model in Figure 18 is as follows: p1 – A1 does not want to
communicate; p2 – A1 is available; p3 – A1 wants to communicate; p4 – A2 does
not want to communicate; p5 – A2 is available; p6 – A2 wants to communicate; p7 –
communication; p8 – availability of the communication channel(s) Ch (representing
the interface). The PN transition t9 fires the communication when A1 is available
and A2 wants to communicate with A1, t10 fires the communication when A2 is
available and A1 wants to communicate with A2, and t12 fires the communication
when both A1 and A2 wants to communicate each other.

It is clear that the interface (the communication channel) has a form of the PN
module (subnet) consisting of both the places and transitions. In spite of this fact,
the above introduced approach to modelling, analysing and control synthesis can
be utilized also in such a case, of course. It is sufficient to use the following model
parameters and to choose an initial state. After doing this, there are no restrictions
as to using the approach.

F =



















0 1 0 0 | 0 0 0 0 | 0 0 0 0
1 0 1 0 | 0 0 0 0 | 1 0 0 0
0 0 0 1 | 0 0 0 0 | 0 1 0 1
−−−−+−−−−+−−−
0 0 0 0 | 0 1 0 0 | 0 0 0 0
0 0 0 0 | 1 0 1 0 | 0 1 0 0
0 0 0 0 | 0 0 0 1 | 1 0 0 1
−−−−+−−−−+−−−
0 0 0 0 | 0 0 0 0 | 0 0 1 0
0 0 0 0 | 0 0 0 0 | 1 1 0 1



















=





FA1
0/(3×4) FA1→A2

0/(3×4) FA2
FA2→A1

0/(2×4) 0/(2×4) FCh1,2




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GT =



















1 0 0 0 | 0 0 0 0 | 0 0 0 0
0 1 0 1 | 0 0 0 0 | 0 0 1 0
0 0 1 0 | 0 0 0 0 | 0 0 0 0
−−−−+−−−−+−−−
0 0 0 0 | 1 0 0 0 | 0 0 0 0
0 0 0 0 | 0 1 0 1 | 0 0 1 0
0 0 0 0 | 0 0 1 0 | 0 0 0 0
−−−−+−−−−+−−−
0 0 0 0 | 0 0 0 0 | 1 1 0 1
0 0 0 0 | 0 0 0 0 | 0 0 1 0



















=





GT
A1

0/(3×4) GT
A1→A2

0/(3×4) GT
A2

GT
A2→A1

0/(2×4) 0/(2×4) GT
Ch1,2





xT
0 = (0, 1, 0, 0, 1, 0, 0, 1)T

The number of agents cooperating in such a kind of MAS can be greater than two,
of course.
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Fig. 18. The example of the PN-based model of the two agents communication in general

8 CONCLUSIONS

First of all, both the straightforward and backward causality of DEDS in general
were described in this paper. The DEDS control synthesis method based on them
was introduced. Then, the alternative PN-based approach to modelling, analysis
and control of the agent interactions in MAS was presented. The approach yields
the results in analytical terms (computed by means of Matlab) as well as graphically
(obtained by means of the graphical tool – the PN simulator). Next, the PN-based
model of the interaction process was created in analytical terms. The reachability
tree and/or the reachability graph as well as the space of reachable states were
generated on the basis of both the model parameters and the given initial state
of the system. The coherence between the causality and the reachability graph
was pointed out. Finally, the feasible state trajectories were found by means of
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the mutual intersection of both the SLRT representing the straightforward causal
development of the system and BTRT representing the backward causal development
of the system. The graphical tool GraSim developed in order to automate the process
of finding the space of feasible trajectories at the control synthesis was mentioned.
Finally, the possibility of the wider utilizing the proposed approach was pointed out.
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[7] Čapkovič, F.: DEDS Control Synthesis Problem Solving. Proc. 2nd IEEE Conf.
on Intelligent Systems, Varna, Bulgaria. IEEE Press, Piscataway, NJ, USA, 2004,
pp. 299–304.
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