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Abstract. The analysis and evaluation of computer-supported collaborative ac-
tivities is a complex and tedious task. However, it is necessary in order to sup-
port collaborative scenarios, to scaffold the collaborative knowledge building and
to evaluate the learning outcome. Various automated techniques have been pro-
posed to minimize the workload of human evaluators and speed up the process.
In this study, we propose a memory based learning model for the analysis, clas-
sification and evaluation of collaborative activities that makes use of time series
techniques along with logfile analysis. We argue that the classification of collabo-
rative sessions, with respect to their time series attributes, may be related to their
qualitative aspects. Based on this rationale, we explore the use of the model under
various settings. The results of the model are compared to assessments made by
expert evaluators using a rating scheme. Correlation and error analyses are further
conducted.

Keywords: time series, collaboration, logfile analysis, evaluation, computer sup-
ported collaborative learning

1 INTRODUCTION

The analysis of collaborative activities is a research area of great importance in
the field of Computer Supported Collaborative Learning (CSCL). It provides the
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means to understand the mechanisms of collaboration and the background to de-
velop new frameworks to enhance joint activities. The analysis and evaluation of
collaborative activities is usually carried out by human evaluators and it is a te-
dious and time consuming task due to the complex nature of collaboration. Various
data representation methods and evaluation methodologies, both qualitative and
quantitative, have been proposed to support the task of collaboration analysis. In
addition, automated techniques have been implemented to provide assessments of
the quality of joint activities, mostly based on statistics and event metrics computed
from recorded logfiles. However, these automated approaches also entail drawbacks,
since it is argued that the lack of a qualitative approach undermines the depth
of the analysis [1]. Moreover, the use of automated metrics usually involves com-
plex statistical methods and mathematical models that are difficult to adapt in new
settings.

The main goal of this study is to propose a method to classify and evaluate
collaborative activities by matching new collaborative sessions to an existing set of
reference cases. The method uses the events produced by user activity and recorded
into logfiles. This accelerates the task of analysis and lowers the effort of human
evaluators. The collaboration process is analyzed through the interactions between
users as well as through the interaction of users with the groupware application.
The classification is carried out by a memory-based learning model that is easy to
implement, adapt and interpret. The model makes use of time series techniques
and a set of previously evaluated activities to classify the new ones. Thus it is
possible to analyze and evaluate qualitative aspects of collaboration to a satisfac-
tory extent. The way a collaborative activity unfolds in time carries important
information regarding the quality of collaboration and the activity itself. This in-
dicates the need of a representation and analysis method that exploits the aspect
of time as the main dimension of analysis [2]. The use of such an analysis schema
allows the detection and capturing of undesirable phenomena or bottlenecks. The
proposed model does not require ending of the activity in order to be applied, as
most automated analysis techniques do, since it relies on the change of activity in
time and not on the overall outcome. Therefore, the model could be potentially
used in real time to evaluate joint activities and to provide online feedback to learn-
ers.

In order to further explore this notion, we designed and carried out a study to
explore the use of the proposed memory-based learning model. A rating schema was
used to define and assess the collaboration quality of collaborative activities. The
results of the model were compared to the ratings of collaboration quality obtained
by using the schema. Correlation analysis and error measures were computed to
verify the results of the study.

The article is organized as follows. In Section 2 we provide a brief review re-
garding previous studies on analysis of collaborative activities and time series ana-
lysis. In Section 3, the methodology followed in the study is described. In Sec-
tion 4, we review the structure and the use of the classification model as well as
techniques used in the classification setting. In Section 5 we present the results
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of the model. Further analysis of the results and findings are discussed in Sec-
tion 6. In Section 7 the conclusions, further improvements and future work are
presented.

2 LITERATURE OVERVIEW

A wide range of analysis methodologies has been proposed, focusing not only on the
social aspect of collaboration or on group dynamics but also on the way computers
support collaborative activities [3]. The use of computers gives the opportunity to
record ongoing activities and allows their post-examination through logfile analysis.
The groupware applications that facilitate computer supported collaboration provide
the capability of automatically recording the activity into structured logfiles. In
early studies simple metrics such as the sum of messages or the average number
of words [4, 5] were used to assess a collaborative practice. In later studies similar
metrics describing the density of the activity in combination with qualitative analysis
were exploited to analyze the interaction of students in a CSCL setting [6]. Social
Network Analysis (SNA) techniques use similar metrics to represent interactions
between users of a network [7]. SNA techniques have also been used in CSCL to
analyze the practices of learners [8, 9]. However, it is argued that such kind of metrics
and analysis schemas may provide false assessments regarding collaboration quality
and outcome [1]. The main disadvantage of these metrics is that they rely heavily on
the overall volume of the activity and do not take into account the user interactions
within the collaborative context and the contribution of individuals to the group
progress. More sophisticated metrics that aimed to describe interaction rather than
the volume of activity alone, were further inctroduced. Various frameworks use
annotated events to construct activity metrics [10, 11, 12] or the notion of symmetry
to describe interaction [13, 14]. Other frameworks propose more complicated metrics
with respect to the spatio-temporal characteristics of user activity [15].

Time is usually a key factor of analysis. The way a collaborative process unfolds
in time may offer an indication of the collaboration quality or the activity outcome.
Long periods of inactivity, uneven distribution in time and conflicts due to simulta-
neous user activity, can be indications of problematic situations. With this rationale
a number of event metrics have been proposed [16, 17]. However, and besides indi-
vidual studies, no systematic use of time series techniques has been attempted. The
use of time series will potentially:

1. provide a descriptive way to represent the unfolding of collaboration practice,

2. give the opportunity to explore analysis models and techniques widely used in
other research fields over the past decades,

3. reveal richer information on the kind of interaction that takes place.

The conclusion of an activity is not required for the application of time series
analysis since the method does not rely on overall statistics. Therefore it could be
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proven useful for the real-time evaluation of a collaborative activity and the support
of collaborators through automated feedback.

Any sequence of observations recorded at successive time intervals can be char-
acterized as time series. These observations can be single or aggregated events
within certain time frames. Time series find application in numerous fields such as
engineering, economics, biology or environmental studies. The main objectives for
using time series analysis are the efficient description of data, the understanding and
interpretation of concurrent relationships that occur within a certain setting and the
forecasting of future values from past or current ones. Various methodologies have
been proposed to model and support time series analysis, such as Hidden Markov
Models (HMM), ARIMA and VAR models and Dynamic Time Warping (DTW) [18].
Time series fall into two categories regarding construction and analysis: univariate
and multivariate. Univariate time series are those consisting of single observations
repeating in time while a multivariate time series is a vector of multiple observations
repeated in time that aim to describe a single process. Multivariate time series are
preferred, in general, in order to enhance the effectiveness of analysis in terms of
better understanding of dynamic relationships as well as to improve the accuracy of
a model [19].

Time series have a wide range of application but are rarely met in the analysis of
collaborative activities. ARIMA modeling has been used to describe long-term ac-
tivities of teams working over the internet [20]. However, such time series techniques
are difficult to adapt due to the fragmented and complex nature of collaborative ac-
tivities [2]. To avoid complexity and other constraints imposed by ARIMA and
similar modeling techniques, the current study makes use of a memory-based learn-
ing model. The Dynamic Time Warping algorithm (DTW) is used to measure the
similarity of the time series that represent collaborative activities. The methodology
of the study is described in the following section.

3 METHOD OF STUDY

The activities where people work together towards a common goal are subsumed
under the term collaborative activities. In this article we deal with collaborative
activities in a learning context. The analysis of such activities and the evaluation
of their quality is a popular field of research within the CSCL community. Col-
laborative activities can be represented in various ways, i.e. employing the use of
graphs, textual representation or formal language. With the proposed use of time
series we aim to describe collaboration efficiently in the dimension of time. Possible
interferences and dependencies of concurrent activities can be mapped and further
studied. Moreover, we propose a method to classify collaborative sessions in a way
that will depict their quality.

The classification is carried out by a supervised, machine learning algorithm
(near neighbor classification) implemented by a memory-based classification model,
we have named TSCMoCA (Time Series Classification Model for Collaborative Ac-
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tivities). For the classification procedure a training and a test set were required.
The training set consists of collaborative activities that can be described as ordered
pairs (tsi, CQAi), where:

• tsi is the time series representing the activity i

• CQAi is an evaluative value of the collaboration quality of activity i.

A test set consists of collaborative activities described by time series as well,
but of unknown evaluative value of collaboration quality. The goal is to rate the
test set by using the training as a reference set. The method of the study for
the classification of collaborative activities with the use of the TSCMoCA model is
depicted in Figure 1.

The reference set (also refered as “memory” or training set) was constructed
from collaborative activities that took place during a programming course in the
Department of Electrical and Computer Engineering. The purpose of the course
was the joint creation of algorithm flowcharts. Dyads of students were asked to
collaborate to that end. Duration of the activity was about one and a half hour.
The activity was supported by a groupware application used in numerous, similar
settings. The groupware provides a shared workspace for the creation of flowcharts
or any diagrammatic representation and a chat tool that facilitates the communi-
cation between partners (Figure 2), [17]. The activity of each collaborative session
is recorded into logfiles according to the OCAF coding scheme [21]. Each event (or
action) is added as a new record in the logfile of the activity in the form of XML-like
entry, as following:

[< ID >,< timestamp >,< actor >,< event-type >,< attributes >],

where: < ID > is an incremental identifier, unique for each event; < timestamp >
represents the time when the event occurred; < actor > the user responsible for the
event; < event-type > the type of the event (e.g. chat message, insert/edit/delete/
move/resize object in the common workspace); < attributes > a field related to
information about the type of event such as the coordinates of an object on the
common workspace or the context of a chat message.

The activity is recorded into logfiles in intervals of one second by the relay server.
The relay server is also in charge of the communication between the collaborators.
This setting can raise synchronization issues due to network delays. Therefore we
ensured similar network performance applying for all participants: the users who
took part in the activity were participants in laboratory classes of equal size (about
30 users per class); all participants used almost identical computers regarding both
software and hardware and they were connected over a high-speed local area network.
This setting ensured that the potential delays would be minimized and roughly the
same for all users.

The dataset gathered from the experimental procedure consisted of 228 collabo-
rative sessions and was evaluated regarding the quality of collaboration in a previous
study [22]. The objective of the original study was the adaptation and application
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Figure 1. Method of study: Classification of a collaborative activity tsx using the memory-
based model TSCMoCA. Sub-diagram a) describes the construction of the reference
set and sub-diagram b) represents the runtime process of the classification

of a rating scheme for the assessment of the quality of collaboration. The rating
scheme introduced seven, collaborative dimensions that stand for five, fundamental
aspects of collaboration. Table 1 presents the seven collaborative dimensions on
which the human evaluators rated the collaborative activities.

The first six dimensions (collaboration flow, sustaining mutual understanding,
knowledge exchange, argumentation, structuring the problem solving process, coop-
erative orientation) describe the collaborative aspects of the activity. The seventh
dimension (individual task orientation) takes into account the activity of each user
separately. Therefore the dimension of individual task orientation was not included
in further analysis. We gain an overall notion of the collaboration quality by rating
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Figure 2. The user interface of the groupware application Synergo, consisting of the li-
braries toolbar, common workspace for the creation of diagrammatic representa-
tions and a chat tool that supports users’ communication. Synergo was used to
mediate the collaborative activities studied in the article.

each one of the six collaborative dimensions. The assessment of the generic dimen-
sion of collaboration quality (Collaboration Quality Average – CQA) is computed
as the average of the six collaborative dimensions ratings. The rating of the dataset
was carried out on a five-point Likert scale ([−2,+2]) by two previously trained
expert evaluators.

General Aspect of Collabora-
tion

Rating Scheme

Communication Collaboration Flow (CF)
Sustaining Mutual Understanding (SMU)

Joint Information Processing Knowledge Exchange (KE)
Argumentation (ARG)

Coordination Structuring the Problem Solving Process (SPSP)
Interpersonal Relationship Cooperative Orientation (CO)
Motivation Individual Task Orientation (ITO)

Table 1. Collaborative dimensions representing the aspects of collaboration, as defined by
the rating scheme

The ratings were examined regarding the absolute agreement between raters
and inter-rater reliability. The scores of the reliability tests were satisfying (ICC
ranged between 0.83 and 0.95 and Cronbach’s alpha ranged between 0.91 and 0.98)
suggesting that the rating scheme is a useful means for obtaining consistent measures
of overall collaboration quality.
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The final, evaluated dataset of 228 sessions was used in the current study. Each
session was split into time frames and the aggregated events per time frame were
used for the construction of multivariate time series. Earlier studies revealed that
certain event metrics, such as the number of messages partners exchange (COA),
the amount of workspace actions (WOA) and the number of role switches in both
the dialogue and workspace activity (CALT), (WALT) are significantly and highly
correlated with the quality of collaboration [23]. However, these metrics do not
capture the change of activity in time. We introduced a new set of metrics that
represent activity change – or difference – between consecutive time frames. The
new metrics are represented as (DCOA), (DCALT) for the chat tool and (DWOA),
(DWALT) for the common workspace. Table 2 presents the eight events that were
used overall.

In order to fully explore the significance of various event metrics, three case
studies were designed and carried out. Different combinations of events were used
for the construction of time series in each case study. The question we aim to
answer with this design is whether the combined use of event metrics of different
nature (sums, differences, rates) provides more information and leads to improved
classification. The three cases are described as follows:

Case A. Four metrics describing volume of activity were used for the construction
of the time series of the first case (COA), (CALT), (WOA), (WALT).

Case B. Four metrics describing changes of activity volume were used for the con-
struction of the time series (DCOA), (DCALT), (DWOA), (DWALT).

Case C. The total of the eight metrics of an activity were used for the construction
of the time series in the third case (COA), (CALT), (WOA), (WALT), (DCOA),
(DCALT), (DWOA), (DWALT).

Activity Volume Role Switches

Chat Tool number of chat messages per
time frame (COA)

sum of role switches in chat ac-
tivity per time frame (CALT)

difference of chat messages per
consequent time frames (DCOA)

difference of role switches in
chat activity per consequent time
frames (DCALT)

Common
Workspace

number of workspace actions per
time frame (WOA)

sum of role switches in workspace
activity per time frame (WALT)

difference of workspace actions
per consequent time frames
(DWOA)

difference of role switches in
workspace activity per conse-
quent time frames (DWALT)

Table 2. Event metrics used for the construction of time series
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In all three case studies, various time frames were studied. The size of time
frames is of great importance when it comes to time series of aggregated events.
Valuable information may be lost or concealed if the time frame is too small or too
wide [24]. On the other hand, the context and the domain of the research field
as well as the duration of the monitored activity should be taken into considera-
tion. It is obvious, for example, that for asynchronous communication as usually
employed in message boards different time frames should be used than for the syn-
chronous collaboration of two partners via an online messenger. Therefore, a wide
range of time frames should be tested. In a prior study [25], the time frames of 1,
5, 8 and 10 minutes were explored. The analysis pointed out that the best results
were obtained for the minimum time frame of 1 minute. In the current setting
we have extended the time range by adding the frames of 10, 15, 30 and 45 sec-
onds.

4 METHODOLOGY OF ANALYSIS

The proposed approach uses memory-based learning for the classification of collab-
orative activities. Memory-based learning is a popular machine learning technique,
used in various research fields such as in robotics [26] and language processing [27].
It is commonly used for the classification and evaluation of unknown samples with
respect to their nearest match from a set of predefined or pre-evaluated samples.
Memory-based learning models that make use of time series have been proposed in
various fields [28].

4.1 Memory-Based Learning Classification Model TSCMoCA

As aforementioned, a memory-based model was built to classify collaborative ac-
tivities by finding the most similar match within a reference set of pre-evaluated
activities. The similarity of the activities is measured with respect to their time
series.

A memory-based learning model is characterized by three main components:

• The memory, where the reference set of previously evaluated sessions is stored.
The dataset of 228 collaborative activities described in Section 3 was used to
construct the reference set needed by the model.

• The distance function used to measure the similarity between the reference and
the test set samples. The Dynamic Time Warping (DTW) metric was chosen
as a distance function. The DTW has been widely used to measure time series
similarity and it is further described in Section 4.2

• The number of near neighbors, i.e. the number of similar matches of the under-
classification sample. In the present study, the number of near neighbors is set
to one.
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The memory-based model implements a k-neighbors classification algorithm
where k equals to 1 (1NN – Nearest Neighbor). The algorithm is presented in
Figure 3. To classify and assign an evaluative value to a new collaborative sample,
the most similar match is requested and acquired from the reference set. The ope-
ration of the memory-based model is divided into two stages: the classification of
the sample and the assessment of the quality of collaboration. The model requires
as input multivariate time series tsx of the collaborative activity x that we wish to
classify. The output of the model is the nearest matching neighbor and the quality
of collaboration of the activity x (CQAx).

4.1.1 Classification of a Query Sample

Every new collaborative session that has not been evaluated is named “query sam-
ple” and serves as an input to the model. The classification is carried out in regard
to the DTW distance between the query sample and each one of the samples of
the reference set. To evaluate the collaboration quality of a new session, its time
series is compared to the time series of the sessions in the reference set using the
DTW algorithm. DTW is further described in Section 4.2. The result is a dis-
tance matrix which contains the DTW distances of the query sample and the total
of samples placed in the memory. Since the DTW provides a distance metric, the
optimal match for the query sample is the one for which the DTW distance is min-
imum.

In order to assess the results of the model and in the same time to fully take
advantage of the large dataset, all 228 collaborative sessions were used for both the
training and test set in an iterative procedure where a different session was chosen
each time as an entry for the test set, leaving the remaining 227 in the training set
and placed back when the next session was chosen. This is a widely used cross-
validation technique known as Leave-One-Out.

4.1.2 Evaluation Assessment of the Query Sample

We argue that collaborative activities that unfold in similar ways will also share
similar qualitative characteristics. Consequently, collaborative sessions that are de-
scribed by similar time series will also have a similar evaluative value for the gene-
ral dimension of collaboration quality (CQA). In case we want to evaluate a new
collaborative session X that is represented by time series tsx, DTW algorithm is
used to determine the similarity of the query sample X with each sample in the
memory. If DTW distance is minimized for the sample Y of the reference set
(DTWy = minimum), then the value for collaboration quality of the session Y
(CQAY ) is assigned as the collaboration quality for session X (CQAX = CQAY ).
The classification and evaluation algorithm is displayed in Figure 3.

The six dimensions of collaboration (Table 1) are also assessed in the same way as
the CQA. The ratings assigned to each dimension range within [−2,+2]. In order
to evaluate the assessments of the model, the automated ratings were compared
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Figure 3. Flowchart of the classification process of a new collaborative session tsx
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to the ratings of human evaluators. From that comparison, correlation and error
analyses were carried out. The correlation coefficient and the mean absolute error
were studied to assess the validity and accuracy of the model. The results of the
experimental procedure are presented in Section 5.

4.2 Dynamic Time Warping

The Dynamic Time Warping algorithm (DTW) is used to measure similarity between
two series of events that may vary in time or speed. It was originally used for
speech recognition and video processing. The DTW algorithm does not presuppose
a stationary time series and is not affected by missing values. It is widely used to
measure the similarity of series in various research fields such as sound and video
processing as well as time series analysis [29, 30].

In the current setting, the DTW algorithm was used to measure the similarity
between multivariate time series that represent collaborative activities. In particu-
lar, we made use of the DTW algorithm for the R-statistics software implemented
by Giorgino [31]. The DTW algorithm allows the identification of similar patterns
between two series X and Y with different phases. The first step of the algorithm is
the computation of the cross-distance matrix of X and Y , using a dissimilarity met-
ric such as Euclidean or Manhattan distance. Then the X and Y series are warped
and compared. The output of the Dynamic Time Warping algorithm is a distance
measure (DTW distance) per each couple that stands for similarity: the higher the
DTW distance, the more dissimilar the time series.

The aforementioned implementation allows the researcher to experiment with
various parameters such as the step patterns and dissimilarity methods used, e.g.
Euclidean and Manhattan distances. The choice of the most adequate dissimilarity
method is highly dependable on the context as well as on the nature of the data.
Previous work [25] has shown that the use of Manhattan distance as a dissimilarity
metric provides better results than Euclidean distance. It is evident that Manhattan
distance performs better than Euclidean in the case of high dimensional data [32,
33]. In the presented experimental setup we make use of multidimensional time
series. Therefore it is expected that the Manhattan distance will perform better, in
particular as the multi-dimensionality of the time series increases. For the purposes
of the study both distance metrics (Euclidean and Manhattan) were used and it was
confirmed that the Manhattan distance performs better. In this article we provide
the results only for the use of Manhattan distance.

5 RESULTS

The results of the experimental procedure are presented next. The dataset consists
of 228 collaborative sessions. A part of the dataset, where outliers were excluded,
was used in a preliminary study [25]. As outliers we identify collaborative sessions
which appeared to have some kind of anomaly in their logfiles such as large time gaps



600 I. A. Chounta, N. Avouris

of inactivity or violent interrupts. In the present study we use the full dataset since
large time gaps or breaks may occur due to network issues or other unexpected events
but they might also indicate a problematic turn in the activity. Nevertheless, this is
still a situation that the orchestrator has to deal with and recover from. Moreover,
in case we wish to provide real-time, online evaluation and feedback, such anomalies
should be dealt with. For each one of the 228 samples its nearest match was found in
the remaining 227 sessions of the data pool. The study was repeated for three cases,
regarding the event metrics used for the time series construction (see Section 3),
for eight time frames (10, 15, 30, 45, 60, 300, 480 and 600 seconds) and for the
Manhattan distance as a dissimilarity function.

Correlation and error analyses were used to gain understanding of both the va-
lidity and accuracy of the results. In particular, the ratings of the model for each
collaborative session were compared to ratings of human evaluators. The correlation
and the estimation error among the two were computed. Correlation is a popular
statistical method to describe the association or dependence between two variables.
Spearman’s Rank Correlation in particular, is a widely known, non parametric mea-
sure of dependence that can be used either for ordinal, interval or continuous vari-
ables not normally distributed. It is considered that a correlation coefficient of
ρ = 0.1 indicates a low correlation, a coefficient of ρ = 0.3 a medium one and a co-
efficient of ρ ' 0.5 or higher, denotes a high correlation [34, 35]. Although this rule
of thumb is usually applied when Pearson’s correlation is used, many studies use it
as well for the case of Spearman’s Rho correlation coefficient ρ [23]. In the present
study all correlations were calculated at the significance level of 0.05 (p = 0.05).

A variety of error measures is proposed in literature to estimate the accuracy
of a model. Such measures are the root mean squared error (RMSE), the mean
squared error (MSE), the mean absolute error (MAE) and so on. For the purposes
of the study, the root mean squared error (RMSE) and mean absolute error (MAE)
in combination were used since they are simple to understand, interpret and they
are measured in the same units as the dataset. The RMSE is sensitive to occasional
large errors or outliers while this is not the case for MAE [36]. When RMSE and
MAE are used together, we gain insight on the variance in errors. The larger the
difference (RMSE-MAE), the higher the variance in errors. There is no absolute
or safe criterion to define a “good” or acceptable value of the mean absolute error
(MAE) or the root mean squared error (RMSE) since they rely heavily on a number
of factors such as the data scale and the research field. Therefore this metric should
be used in accordance with other metrics and for partial comparison to other models.
However, a rule of thumb followed in similar studies, implies that a value of MAE
of less than 1 is considered acceptable for the current setting [23].

In order to fully explore the possibilities and effectiveness of the model, various
cases were studied. Besides the various time frames, a combination of different event
metrics used for the construction of time series, was also explored in three case
studies. In Case A, time series were constructed from the sums of main events of
the groupware application and were used as a model input. In Case B, the difference
of sums of main events per consecutive time frames was used. In Case C, the total of
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the metrics of both Case A and Case B were used for the construction of time series.
In that way we aim to explore which kinds of events (sums or differences) are more
influential, describe the activity efficiently and examine whether their combination
leads to an improved outcome.

To evaluate the proposed method, the ratings of the model are compared to the
ratings of human evaluators. The correlation and error analyses are presented for the
three cases. Based on the results, the most appropriate setting is chosen and further
analysis is carried out, not only in regard to the generic dimension of collaboration
quality (CQA), but also to each one of the six, collaborative dimensions defined by
the rating scheme (Table 1). However, we must keep in mind that in order to fully
evaluate the quality of a model, there are other factors that should be taken into
account: the simplicity of the model, ease of adaptation in various settings and its
performance in comparison to other models in a particular field.

5.1 Correlation and Error Analyses of Case Studies

5.1.1 Case A

In the first case study (Case A), the time series used as model input were con-
structed from event metrics that represent the volume of activity. The assessments
of the model significantly correlate with the ratings of the qualitative rating pro-
cedure for all the time frames studied and for Manhattan distance (Table 3). The
correlation coefficient ρ takes values within the range [0.147, 0.297], indicating low to
medium correlations between the model and human ratings. The lowest correlation
is observed for the time frame of 480 seconds and the highest for the 30 seconds
frame. The behavior of the correlation coefficient does not follow a specific pattern
regarding the time frames. However it appears to maximize for the smaller time
frames (Figure 4). The first case study (Case A) appears to have the highest error
for the majority of time frames, for all the cases studied. The MAE and RMSE dis-
play similar behavior, indicating similar variation in errors for all time frames. The
frames of 15 to 60 seconds have the lowest error which increases in the border frames
(10, 600 seconds) (Figure 5). For all time frames the mean absolute error (MAE)
is greater that 1 which is considered high. Overall, the minimum error and the
highest correlation are both observed for the time frame of 30 seconds (ρ = 0.297,
MAE = 1.050).

5.1.2 Case B

In the second case (Case B), the metrics that were used represent the change
of activity volume between consecutive time frames. Statistically significant, low
to medium correlations occurred for a number of time frames, mostly the small
ones (ρε[0.178, 0.278]) (Table 3). The correlation coefficient ρ maximizes for the
small-sized time frame of 15 seconds and minimizes for time frames of bigger size
(Figure 4). Regarding the accuracy of the model, the error increases with the
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size of a time frame, being however lower than the error in Case A. The MAE
and RMSE follow a similar pattern (Table 4). The minimum MAE is observed
for the time frame of 15 seconds, likewise the highest correlation (ρ = 0.278,
MAE = 0.925) while it is less than 1 for most small-sized time frames (15–30 sec-
onds) (Figure 5).

5.1.3 Case C

In the third case (Case C), the time series are constructed from the combination
of event metrics used in Case A and Case B. The correlation coefficient ρ takes
values within the range [0.171, 0.365]. Correlations follow a certain pattern where
the lowest correlations occur for the border frames (10 and 600 seconds) and the
highest correlation appears for the middle time frame of 60 seconds. The behavior
of the correlation coefficient per time frame is displayed in Figure 4. The behavior of
MAE and RMSE for Case C is similar to Case B but the error is lower for most time
frames (Figure 5). The error is minimized for the 60 seconds time frame in which the
correlation coefficient (ρ) also scores the highest value (ρ = 0.365, MAE = 0.928).

CQA

Time Frame (sec) ρ A ρ B ρ C

10 0.178 0.171
15 0.256 0.278 0.271
30 0.297 0.201 0.304
45 0.223 0.266
60 0.204 0.219 0.365

300 0.259 0.178 0.249
480 0.147 0.243
600 0.221 0.180

Table 3. Correlations ρ between the model and human ratings of Collaboration Quality
(CQA) for the three case studies and per various time frames

Correlation and error analyses showed that the combined use of event metrics
of different nature improves the classification and evaluation results. Overall, the
size of the time frame does not appear to have a particular impact in Case A, either
in terms of correlation or error. The strongest correlations and minimum errors
occur in small sized time frames. However, the behavior of correlation coefficient
and mean absolute error on the whole, do not follow a certain pattern. In the second
case (Case B), the results of the two rating processes (human and model ratings) did
not reveal significant correlations for all time frames. However the ratings correlated
stronger and with a minimum MAE for the small time frames (15–60 seconds). In
Case B the event metrics portray activity rate. The results indicate that small
time frames are more appropriate to depict the change of activity volume in time.
Therefore the combined use of metrics from cases A and B is expected to improve
the results, especially in the case of small time frames, as confirmed in Case C. The
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improvement is particularly evident for the small time frames (15–60 seconds). As
the results suggest, smaller time frames capture meaningful activity more efficiently
than larger ones. In Figure 6, the correlation coefficient and the mean absolute
error (MAE) for Case C are displayed. The ratings of human evaluators and the
model ratings correlate significantly and with a mean absolute error of less than
1 for the majority of time frames. The best results occured for the 60 seconds
time frame where a high correlation coefficient and a low MAE error are combined
(ρ = 0.365, MAE = 0.928). Border frames show poor results due to little activity
or over-densed events which potentially lead to information loss. The correlations
and errors studied so far refer to the general dimension of Collaboration Quality
(CQA).

Figure 4. Correlation coefficient ρ for human vs. model ratings of Collaboration Quality
(CQA) per case study and various time frame

5.2 Assessments per Dimension of Collaboration

The rating scheme used to assess the quality of collaborative activities provides
an opportunity to evaluate collaboration with respect to six fundamental aspects
(Table 1). Various issues that affect a collaborative activity may be brought into
light, giving the opportunity to the orchestrator to provide specialized, real time
feedback. The use of the model, as presented in Case C, for the rating of each
collaborative dimension is further studied. The correlation coefficient per dimension
and time frame is provided in Table 5.
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Figure 5. Mean absolute error (MAE) of the model vs. human ratings of Collaboration
Quality (CQA) per case study and various time frames

Figure 6. Correlations ρ and mean absolute error of the model vs. human ratings of Col-
laboration Quality (CQA) for Case C and per time frame
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Time Frame MAE A RMSE A MAE B RMSE B MAE C RMSE C

10 1.267 1.576 1.003 1.291
15 1.178 1.472 0.925 1.190 0.944 1.218
30 1.050 1.341 0.969 1.174 0.945 1.200
45 1.137 1.440 0.990 1.264
60 1.124 1.430 1.067 1.350 0.928 1.190

300 1.150 1.411 1.240 1.546 1.132 1.416
480 1.177 1.466 1.173 1.495
600 1.178 1.471 1.151 1.425

Table 4. Assessment error (MAE and RMSE) ρ of the model vs. human ratings of Collab-
oration Quality (CQA) for the three case studies and per various time frames

For most time frames, results indicate low (ρ ≈ 0.1) to medium (ρ ≈ 0.3) corre-
lations between ratings of the model and human evaluators. The assesments of the
model correlate with the assesments of evaluators on a medium level for the time
frame of 60 seconds and for the dimensions that describe communication (CF, SMU)
and joint information processing (KE, ARG). For the dimension of Structuring Prob-
lem Solving Process (SPSP) that stands for the general aspect of coordination, no
statistically significant correlation is observed. For Cooperative Orientation (CO),
representing the aspect of interpersonal relationship, a low correlation is observed.
Higher correlations occur for the time frames of larger size.

The mean absolute error (MAE) per each dimension of the rating scheme is
presented in Table 6. The mean absolute error is higher than 1 for all cases. For
the time frame of 60 seconds in particular, the error is minimized for the first three
dimensions (CF, SMU, KE). For the dimensions Argumentation (ARG) and Co-
operative Orientation (CO), the error for the 60 seconds time frame is the sec-
ond lowest. We should note, however, that the mean absolute error observed per
dimension is generally not acceptable and dictates the need for further improve-
ment.

Time Frame CF SMU KE ARG SPSP CO

10 0.268 0.147 0.132 0.132
15 0.271 0.189 0.283 0.282 0.208
30 0.267 0.150 0.313 0.308
45 0.276 0.146 0.231 0.194

60 0.310 0.245 0.327 0.249 0.173

300 0.236 0.145 0.247 0.139 0.294
480 0.257 0.228 0.134 0.201 0.185
600 0.256 0.191 0.214

Table 5. Correlations between the model and human ratings for six collaborative dimen-
sions and per various time frames
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Time Frame CF SMU KE ARG SPSP CO

10 1.180 1.268 1.285 1.386 1.232
15 1.276 1.351 1.250 1.263 1.118
30 1.149 1.162 1.114 1.171
45 1.096 1.197 1.224 1.298

60 1.075 1.114 1.114 1.241 1.145

300 1.237 1.390 1.246 1.360 1.224
480 1.202 1.333 1.504 1.289 1.338
600 1.171 1.325 1.263

Table 6. Mean absolute error (MAE) of the model vs. human ratings per collaborative
dimension and various time frames

6 DISCUSSION

In Section 5, we presented results of the proposed model for the classification and
evaluation of the collaboration quality (CQA) of joint activities. Three case studies
were carried out. For each case study, time series were constructed by various
combinations of event metrics and used as inputs to the model. Numerous time
frames were also employed and their effect was explored. Correlation and error
analyses were carried out to evaluate the results of the model. The results showed
that small time frames describe the change of the activity volume in time more
efficiently. The strongest correlations and minimum errors occurred in small time
frames for Case B. This also applies in Case A even though there was no obvious
pattern in the correlation coefficient/error behavior. The combined use of event
metrics from Case A and Case B was expected to act additively and to overall
improve the model behavior. This was proved in the third case study (Case C), in
which the highest correlations and lowest error values occurred. In this case, time
series were constructed from eight event metrics representing collaborative activity
in the chat tool as well as in the common workspace. The use of small time frames
(15–60 seconds) in time series construction further improved the results. Overall,
for the time frame of 60 seconds, the model rated the 66 % of the cases with an error
of less than 1 with respect to the human ratings. 91 % of the cases was rated with
an error of less than 2 and 99 % was rated with an error of less than 3. While this
is a satisfactory outcome, it still leaves room for further improvement.

The results follow a similar pattern in the case of the six collaborative dimen-
sions as well. For the dimensions that cover the general aspects of communication
and joint information processing, the best results occur for the time frame of 60
seconds. For the dimensions covering the aspects of coordination and interpersonal
relationship, the strongest correlations occur for larger time frames (300, 480 sec-
onds). Most of the event metrics used in time series construction (e.g. number of
chat messages, role changes in dialogue, etc.) provide rich information related to
communication aspects. This kind of events are found in high density and in small
time frames since the chat tool implements instant messaging, with no turn taking
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or blocking mechanisms and takes advantage of the students’ familiarity with similar
technologies. Therefore the messages are posted within short time intervals. The
aspects of coordination and interpersonal relationship are high-level constructs that
build up over longer periods of time. The complicated mechanisms that portray
the quality of these constructs, such as efficient management of shared-resources,
symmetry and reciprocal activity, require a deeper analysis of user interactions and
content analysis [16]. As a result, not only are larger time frames needed to describe
these collaborative dimensions but also low-level metrics might not be enough to
describe them to a full extent.

A number of related studies within the CSCL context address the temporal
nature of collaborative activities and look for patterns that reveal a “cause-effect”
or “action-reaction” activity. The notion of activity relevance in time has been
previously expressed as temporal proximity and has been used in the creation of
contingency graphs for analyzing distributed interaction [37]. It is assumed that
the closer any two (or more) actions take place in time, the more relevant they
are expected to be. However, it is hard to define what “close” means in terms of
time since this is highly dependent on the task, the form of communication and
the user characteristics. In similar studies for synchronous collaboration and col-
laborative puzzle solving, the time frame in which relevant activities took place was
experimentally calculated at 25 seconds [15], where for asynchronous interaction
over a shared workspace a temporal proximity of 2 minutes is considered evidence
of contingency [37]. The results presented here are in agreement with the aforemen-
tioned studies since the small time frames of less that one minute present better
results. It is therefore safe to assume that the meaningful interaction and significant
changes leading to the desirable cognitive effects, mutual knowledge building and
eventually successful collaboration, are taking place within the time frames of 30
to 60 seconds in the context of a particular collaborative setting.

The study described in this article was based on a preliminary one that had as
a purpose to explore whether time series could be used to describe and analyze col-
laborative activities [25]. In the present study, a larger dataset was used. Identified
outliers were not removed so that the data is representative of real-life scenarios.
Comparing the results of the present study (CS0B) to the preliminary one (CS0A),
it was found that for small-sized frames (60 seconds) the correlation coefficient in
the current study was improved. On the other hand, the error also increased due to
the presence of the outliers in the dataset. For the larger time frames both indices
had similar values. In Table 7 and Figure 7, we provide the comparison of the results
of the aforementioned studies for Case C and the time frames of (60, 300, 480, 600)
seconds.

The suggested setting can be easily adapted for real-life scenarios, to detect
undesirable phenomena and to assist the orchestrator of such activities. The clas-
sification model TSCMoCA can be integrated or used in combination with various
learning platforms for collaborative activities. The method uses logged activity that
is recorded by most applications. The classification algorithm is time-efficient and
requires minimum resources. The method requires the existence of a reference set
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Correlation MAE
Coefficient (ρ)

Time Frame CS0A CS0B CS0A CS0B

60 0.3 0.365 0.89 0.928
300 0.2 0.249 1.19 1.132
480 0.23 0.243 1.18 1.173
600 0.17 0.180 1.17 1.151

Table 7. Comparison of the results of related studies CS0A (preliminary) and CS0B (cur-
rent)

Figure 7. Correlations and mean absolute error of model vs. human ratings for related
studies CS0A (preliminary) and CS0B (current)
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consisting of pre-evaluated activities of similar nature to the ones we wish to classify.
The classification algorithm can be used for the post-classification of collaborative
activities but also in real time. Real-time classification can provide insights to the
orchestrator in order to give feedback and guidance when needed. In Figure 8, the
hypothetical use of the model in a real-life setting is displayed. The collaborative
activity CA is supported by a groupware application that also allows the orches-
trator to monitor it. It starts at to and at the time instance ti the orchestrator
requests an evaluation of the activity CA so far. The model is invoked and provides
the orchestrator with an evaluative value CQACA[ti,to]. The orchestrator is then able
to decide whether to provide feedback in order to improve the activity or to let it
unfold as is.

Figure 8. The TSCMoCA model integrated in a real-life setting

7 CONCLUSIONS AND FUTURE WORK

This article suggests the use of time series for the automated classification and eval-
uation of collaborative activities. Based on the findings presented here, we conclude
that the quality of collaborative activities may be related to their time series char-
acteristics. The proposed approach involved the evaluation of collaborative learn-
ing activities expressed as time series data, based on their similarity to previously
evaluated ones. The method proposes an innovative way to represent and classify
collaborative activities in an automated manner. To that end we introduced the use
of time series analysis in a CSCL setting.

In the present study we employed a memory-based learning model for the classi-
fication of collaborative activities with the use of a reference set. Three case studies
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were carried out to evaluate the performance of the model. In each case study,
a different combination of event metrics (regarding the nature of the events) was
used for the time series construction (Table 2). The ratings of the model for the
general aspect of collaboration quality (CQA) as defined by Kahrimanis et al. [22],
were compared to the assessments of human evaluators. The analysis of the results
revealed a significant positive correlation between the ratings of the model and the
ratings of evaluators.

The best results in terms of correlation and error were observed when activity
metrics of different nature (sums, differences and rates) were used for the time series
construction (Case C). The use of a variety of event metrics and multidimensional
time series improved the performance of the model. In addition, the model per-
formed more efficiently for the small sized time frames for all the cases studied.
In the case of large time frames, important information regarding users interac-
tion may be lost due to the density of the activity. Likewise, the smallest time
frames may fail to include the volume of activity required. This finding indicates
that meaningful interaction takes place within small time frames and can be cap-
tured adequately using time series techniques. This comes in agreement with other
studies [15, 37].

The proposed automated classification and evaluation schema will not only min-
imize the efforts of human evaluators but could also be used to provide real-time
feedback to users. Therefore, the method was also used to evaluate the quality
of collaborative sessions with respect to certain aspects of collaboration. The as-
sessment of an activity on various collaborative dimensions could make possible the
identification of specific issues. That would further allow the orchestrator to provide
users with detailed, personalized feedback when and if needed. The results of the
model were satisfactory for the collaborative aspects of communication and joint
information processing. More complicated constructs, such as coordination and in-
terpersonal relationship either require larger time frames or low-level activity metrics
and are not enough to describe effectively high-level collaborative practices. To that
end, future work has to be done to improve the efficiency of the proposed model.
The use of advanced classification algorithms, such as the K-Nearest-Neighbor al-
gorithm (where K>1) is expected to improve the results of the model in terms of
accuracy.

The method is solely based on activity metrics extracted from logfiles. The
content of user activity is expected to provide additional information regarding the
quality of collaboration and therefore the use of content and conversation analysis
methods can be further explored. Time series also provide the means for visual
representation of data. However, apart from traditional visualization techniques,
a rich set of methods from graph theory and social network analysis can be applied
to time series data [38]. The graphical description of a collaborative activity as
a dynamically evolving social network could provide further insight with respect to
the sequential nature of the activity and possible patterns of interaction that relate
to collaboration quality.
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