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Abstract. The state of a system is expressed using PFL, a process functional lan-
guage, in an easily understandable manner. The paper presents PFL environment
variable – our basic concept for the state manipulation in the process functional lan-
guage. Then we introduce the style in which stateful systems are described using
monads and state transformers in pure lazy functional language Haskell. Finally,

we describe our approach to lazy state manipulation in PFL and correspondence
between state manipulation in PFL and the one in a pure lazy functional language
Haskell. The proposed translation from eager PFL to a lazy Haskell provides an
opportunity to exploit laziness for process functional programs and furthermore for
imperative programs. The approach described in this paper was used in imple-
mented PFL to Haskell code generator.
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1 INTRODUCTION

A purely functional language is concise, composable and extensible [14]. The rea-
soning about pure functional programs that are defined in terms of expressions and
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evaluated without side effects is much simpler than the reasoning about imperative
programs when describing stateful systems.

From the viewpoint of systems design, it seems more appropriate (at least to
most of programmers) to describe systems using an imperative language, expressing
the state explicitly by variables as memory cells. Although the reliability of an
imperative approach may be increased using object oriented paradigm, it solves
neither the problem of reasoning about the functional correctness of fine grains of
computation, since they are still affected by subsequent updating the cells in a
sequence of assignments, nor the problem of profiling the program to obtain the
execution satisfying the time requirements of a user.

An imperative functional approach using monads [15, 18], implemented in
Haskell [16], prevents the use of assignments still providing the opportunity to
a programmer for manipulating the state in a disciplined and well-defined manner.
Although the scripts written in Haskell are sometimes obscure, the idea of hiding
the assignments in mutable abstract types and optimising the lazy evaluation is
inspirative. On the other hand, impure languages, such as Standard ML [13], offer
efficiency benefits and sometimes make a more compact mode of expression [18].

Regarding aspect oriented paradigm [1, 4, 12, 20], we are strongly interested
in development of a multi-paradigmatic language, which preserves a software en-
gineering approach to manipulating the visible environments as it is in imperative
languages, at the same time providing the source form of expressions as it is in
purely functional languages. As we feel, to be able to extend a language adding new
aspect, it is necessary to have a highly reflective and a very simple source form of
the language without assignments.

From the viewpoint of a user, the layout of PFL – an experimental process
functional language is somewhere between imperative and pure functional languages,
since the variable environment is visible to a user, and the source definitions of
processes are purely functional, i.e. without assignments and without environment
variables [5, 6]. This supports, as we believe, the simplification of the systems design
and, at the same time, the simpler reasoning about the systems. The concept of
PFL variable environment is presented in Section 2. Detailed classification of PFL
variable environments can be found in [7].

It has been proved that imperative program constructions such as loops can be
easily transformed into PFL program constructions [8]. That is why our approach
shows the possibility of lazy evaluation of imperative programs.

The goal of this paper is twofold. In Section 4 we show the state manipulation
using monads in Haskell. In Section 5 we present how the state can be manipulated
lazily in PFL and we show informally the semantic equivalence of both approaches.
Our progress is presented in context of simplified version of PFL. Simplified PFL is
an extended subset of PFL programming language but without the loss of generality.
It is defined in Section 3. The presented approach was used in implemented PFL to
Haskell code generator. Extended example in Section 6 concludes the paper showing
the results of the proposed transformation from eager PFL to lazy Haskell.
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2 PFL VARIABLE ENVIRONMENT

PFL type system comprises unit type () as it is in Haskell. This type comprises
just control value, representing the control [5]. It means for example that it is
impossible to mix data and control arguments for constructors of algebraic data

types. Let T be a data type. Then the type
∼

T= T ∪ () ranges over a data type
and unit type. The PFL process is similar to a function. Definition of a PFL
process is the same as definition of a pure function. The only difference is in its
type definition. Type definitions for processes are obligatory. The type definition
of a process extends syntax and semantics of a pure function type definition. The
type definition of a process comprises either () for an argument or the value type,
or an argument type in the form x T , where x is an environment variable and T is
a data type. Examples of process type definitions are provided later. The idea of
incorporating some aspects in function type definitions is also presented in Clean
with its uniqueness attributes [17].

Functions are first-class values in PFL. On the other hand, processes are not.
Process cannot be passed as an argument to a function or returned as the result of
a function. There is no partial process application. This approach has been chosen
to simplify identification of program parts manipulating the state. The PFL static
analyzer finds parts of a program affected by the state – processes. Data gathered
by PFL static analyzer are used in compiler (Section 5).

The well known and commonly accepted concept of the variable environment
in both imperative and impure functional languages is as follows. The variable
environment Env is a mapping from variables to their values. If ρ :: α → β is
environment and a ∈ α, b ∈ β then the update expression is as follows.

(ρ [ a 7→ b ]) x =











b , if x = a
ρ x , if x 6= a and ρ 6= ∅
⊥ , if x 6= a a and ρ = ∅

Symbol ∅ is used to define empty environment. The variable environment Env is
defined using the update expression.

Env = Var→ Value

access :: Var→ Env→ Value

access x e = e x
update :: Var→ Value→ Env→ Env

update x v e = e [ x 7→ v ]

In the type definition of Env, Var is a domain of environment variables and
Value denotes a disjunctive unification of all PFL data types values.

A syntactic form of a variable attributed type x T as an argument type of
a process allows a user to consider the visible variable environment in role of input
memory gate of process bodies, consisting of a subset of environment variables –
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memory cells, that are possibly shared by multiple definitions of processes in the
same scope.

The processes may be applied either to control values, and computed using
values accessed from the environment variables, or to data values and computed
using them, updating the environment variables by this value before.

Concluding, the state is defined by the environment that internally conforms
to that used in imperative and impure functional languages, but for the reasons of
its binding to process bodies, the PFL semantics is the same as the semantics of
monadic approach, as we will show in Section 5. In PFL, the access and the update
of environment is uniform in each scope, by processes defined in the same scope as
the environment – global, local or object one.

Suppose simple PFL process sum is defined in main scope, which has two envi-
ronment variables a and b defined in a process type definition, as follows.

sum :: a Int -> b Int -> Int

sum x y = x + y

Suppose an application (sum 3 4) exists somewhere in an expression of a PFL
program, such that sum is accessible (for example in a definition of a process in
main scope). Then the result of the application will be updating the environment
variables a by the value 3, updating the environment variables b by the value 4, as
an additional side effect to the evaluation of pure function. It means the value of
the application will be 7.

This is so because in the first stage of the translation the definition above is
transformed to the form of pure function, as follows

sum :: Int -> Int -> Int

sum x y = x + y

while each application of sum is transformed to the form, in which environment va-
riable is applied to corresponding argument. For example, (sum 3 4) is transformed
to (sum (a 3) (b 4)).

On the other hand, if original argument is control value (), then the transformed
application may be for example (sum (a ()) (b 5)), provided that the source form
is (sum () 5). Then the value of y will be 5 (updating b by 5), and the value of x
will be the value accessed from environment variable a by the application (a ()).
Provided that the value in a is 6, the value of (sum (a ()) (b 5)) will be 11. If no
value has been assigned to a before, then the value of the application is undefined.

Since the access and update instances are applied implicitly, i.e. they never occur
in the process definitions, the state change strongly depends on the order in which
the arguments of a process are evaluated. In Section 5 we present the transforma-
tion of eager PFL programs to the programs evaluated lazily with preserving the
determinism of computation.

We attend that abstract syntax of simplified PFL is in the form after the source
to source transformation mentioned above, which is something as weaving [1, 4, 12,
20] side-effect aspect of computation, implicitly into each application of a process.
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3 SIMPLIFIED PFL

For the purposes of the paper we present simplified PFL as an extended subset of
PFL programming language, its abstract syntax and operational semantics. Using
this PFL subset, our approach to imperative program lazy evaluation is presented
and can be formalized. This approach can be extended to all PFL language con-
structs. The meta-variables and categories for simplified PFL language are as fol-
lows:

Prg ∈ Program Def ∈ Definition e ∈ Expr x ∈ Var

f ∈ FncName ⊕ ∈ Primitive y ∈ EnvVar C ∈ Constructor

The meta-variables can be primed or subscripted. The syntactic category Pri-

mitive defines strict primitive operations like elementary arithmetic operations.
The syntactic category Var represents identifiers and syntactic category EnvVar

represents the identifiers of environment variables. The syntactic category Con-

structor comprises constructors of algebraic types. Numbers, integer or real, may
be viewed as nullary constructors and are included in the syntactic category Con-

structor (Int,Float ⊆ Constructor).

Program in simplified PFL consists of processes, functions and main expression
which is evaluated during the program execution. Abstract syntax of simplified PFL
is as follows.

Prg ::= Def main = e
Def ::= f x1 . . . xn = e Def

| ε
e ::= x V ariable

| f Function
| e1 ⊕ e2 Primitive
| y () Access
| y e Update
| C e1 . . . en Constructor
| e1 e2 Application
| case e of {Ci x1 . . . xmi

→ ei}
n
i=1

Case

Simplified PFL contains construction y () for accessing environment variable
and construction y e which is used to update variable with value of an expression.
PFL processes application can be transformed to simplified PFL according to the
transformation scheme Ta. Let p be a PFL process with type definition

p :: T1 → . . .→ Ti → . . . Tn →
∼

T

where n ≥ 1 and Ti = y Ti |
∼

Ti and
∼

Ti,
∼

T are PFL data type or unit type (), Ti is
data type and y is environment variable. Then application of a process p in the form
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p e1 . . . ei . . . en is transformed to simplified PFL as follows:

Ta [[p e1 . . . ei . . . en]] = p T ′

a [[e1]] . . .T ′

a [[ei]] . . .T ′

a [[en]]

where

T ′

a [[ei]] =















ei , if Ti =
∼

Ti

y () , if Ti = y Ti and ei = ()
y ei , if Ti = y Ti and ei 6= ()

The value v ∈ Value of an expression is either a lambda abstraction or a value
of an algebraic type

v ::= C v1 . . . vn
| λx.e

where n ≥ 0.
The runtime state is defined by environments envv, enve. Environment envf

is created during the compile time and represents function/process environment.
Environment envv represents the heap for the values of lambda variables and enve
is a set of memory cells for storing values of environment variables.

envf ∈ Envf = FncName→ Expr

envv ∈ Envv = Var→ Value

enve ∈ Enve = EnvVar→ Value

(envv, enve) = s ∈ State = Envv × Enve

The semantics of simplified PFL function/process definitions is in Figure 1 and
the semantic rules for expressions of simplified PFL are defined in Figure 2. All rules
are named corresponding to the abstract syntax. The predicate matches for pattern
matching and operator extract for extracting the ith item value of the structure
constructed by C v1 . . . vi . . . vn are defined as follows.

matches v (C x1 . . . xn)⇔ v = C v1 . . . vn
extract (C v1 . . . vi . . . vn) i = vi ,where 1 ≤ i ≤ n.

The notation
envf ⊢ 〈e, s〉 → (v, s′)

defines that expression e is evaluated in environment envf considering the state s and
produces the value v and new state s′. The state is defined by variable environments.

4 MONADS AND STATE TRANSFORMERS

In this section we illustrate the monadic approach to state manipulation in Haskell [3,
11, 15, 18, 19]. Both monads and state transformers have had big impact on func-
tional programming in the last few years. State transformers and their theory are
used in the paper as a basis for the transformation from eager PFL to lazy Haskell.
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D : Definition→ Envf → Envf

〈Def, envf 〉 →D env′f
〈f x1 . . . xn = e Def, envf 〉 →D env′f [f 7→ λx1. . . . .λxn.e]

〈ε, envf〉 →D envf

Fig. 1. The semantics of definitions

A monad [11, 18] is a triple (M, return, then) consisting of a type constructor
M and two polymorphic functions return and then.

The state transformer is a function which, given a state, produces a pair: a value
and a new state [10, 11]. Using Haskell notation, let us define type synonym as
follows:

type ST s a = s→ (a, s).

Using state transformer, the computation is the transformation of one state to
the new state, which is constructed by modifying the old one.

Now, let us define the state transformer in terms of monad (ST, returnST,
thenST ) where operations returnST and thenST are defined as follows:

returnST :: a→ ST s a
returnST a s = (a, s)

thenST :: ST s a→ (a→ ST s b)→ ST s b
thenST m k s = k x s′ where (x, s′) = m s.

Function thenST is defined by the expression using local definition in where

clause. The definitions above are purely functional. Informally, function returnST
takes a result of computation a and state s and produces pair (a,s), which can be
used for the next computation. Function thenST is used for composition of functions
in monadic form.

Although the monad semantics is well-defined and the state in Haskell is mani-
pulated lazily [10], programs using monads in Haskell [16] become sometimes obscure
even for an experienced programmer. That is why more expressive language con-
struct, such as monad comprehensions, are provided to a user.

5 LAZY STATE EVALUATION

PFL is a superset of a purely functional language. PFL purely functional program
may comprise variable environment, not however the applications of processes to
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E : Expr→ Envf → State→ Value× State

envf ⊢ 〈x, (envv, enve)〉 → (envv x, (envv, enve)) V ariable

envf ⊢ 〈envf f, s〉 → (v, s′)

envf ⊢ 〈f, s〉 → (v, s′)
Function

envf ⊢ 〈e1, s〉 → (v1, s1)
envf ⊢ 〈e2, s1〉 → (v2, s2)

envf ⊢ 〈e1 ⊕ e2, s〉 → (v1 ⊕ v2, s2)
Primitive

envf ⊢ 〈y (), (envv, enve)〉 → (enve y, (envv, enve)) Access

envf ⊢ 〈e, (envv, enve)〉 → (v, (env′v, env
′

e))

envf ⊢ 〈y e, (envv, enve)〉 → (v, (env′v, env
′

e[y 7→ v]))
Update

envf ⊢ 〈e1, s〉 → (v1, s1)
. . .
envf ⊢ 〈ei, si−1〉 → (vi, si)
. . .
envf ⊢ 〈en, sn−1〉 → (vn, sn)

envf ⊢ 〈C e1 . . . ei . . . en, s〉 → (C v1 . . . vi . . . vn, sn)
Constructor

envf ⊢ 〈e1, s〉 → (λx.e, s′)
envf ⊢ 〈e2, s′〉 → (v2, (envv, enve))
envf ⊢ 〈e[x/x], (envv[x 7→ v2], enve)〉 → (v, s′′)

envf ⊢ 〈e1 e2, s〉 → (v, s′′)
Application

envf ⊢ 〈e, s〉 → (v′, (env′v, env
′

e))
envf ⊢ 〈ej , (env′v[x1 7→ extract v′ 1] . . .

. . . [xmj
7→ extract v′ mj ], env

′

e)〉 → (v′′, s′′)
matches v′ (Cj x1 . . . xmj

)

envf ⊢ 〈case e of {Ci x1 . . . xmi
→ ei}ni=1

, s〉 → (v′′, s′′)
Case

envf ⊢ 〈λx.e, s〉 → (λx.e, s) Lambda

Fig. 2. The semantics of expressions



From Eager PFL to Lazy Haskell 69

expressions of unit type. Then the environment does not affect the function of
computation. For the reasons of strict semantics of variable updates, the eager eva-
luation for PFL programs is supposed, as a starting point for further optimisation.
In this matter we proceed in backward direction, as it is in lazy languages, where
a program is represented in a lazy form and then it is optimised using strictness
analysis.

It may be noticed that one of the reasons for the different approaches is that
the state in a lazy language is passed to evaluation explicitly via arguments while in
PFL the state represented environment is affected implicitly, i.e. by the application
of processes accessing and/or updating the environment variables.

In particular, we are interested in the semantical equivalence of PFL and mo-
nadic Haskell languages. We present its essential principle based on

• the transformation of a simplified PFL program into purely functional Haskell
monadic form, and

• the transformation of eager representation of a PFL program into ‘the most’
lazy form.

The transformation can be also extended to local and object variable environ-
ments.

The source program in simplified PFL is designated by P , program after the
transformation in Haskell language is designated by P ′:

P ; P ′.

5.1 State Transformer Definition

State manipulation in Haskell is performed by state transformers. In transformed
program P ′, the state transformer is defined by the new algebraic type, as follows.

data StateTrans s a = ST (s→ (a, s)).

The instance of class Monad for StateTrans type is defined as follows:

instance Monad (StateTrans s) where

(ST m) >>= k = ST (λs. let (a, sp) = m s in

let (ST q) = k a in q sp)
return a = ST (λs. (a, s)).

5.2 State Representation

State of the system in PFL is defined via current values of environment variables.
The count and types of environment variables in a program are known during the
compile time and do not change during the program runtime. Every environment
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variable is specified in the PFL source program explicitly. Let the program P in
simplified PFL contain environment variables

v1 :: T1, v2 :: T2, . . . , vn :: Tn , n ≥ 0

where vi is environment variable and Ti is its type in P , i.e. vi is included at least in
one process definition of the program P . Type Ti is a data type, not the unit type.
In transformed program P ′ in Haskell the variable environment is defined as n-tuple

type State = (T ′

1
, T ′

2
, . . . , T ′

n)

where T ′

i , 1 ≤ i ≤ n is Haskell type with the same domain as PFL Ti.

5.3 State Manipulation

In Haskell program P ′, two functions will be defined for every environment variab-
le yi located source PFL program P . The first one is the function accessYi for
accessing value of the variable and the second one is updateYi for assigning the
value into variable. These two functions manipulate the state and are defined as
state transformers.

accessYi :: StateTrans State T ′

i

accessYi = ST (λ(y1, . . . , yi, . . . , yn). (yi, (y1, . . . , yi, . . . , yn)))

updateYi :: T ′

i → StateTrans State T ′

i

updateYi val = ST (λ(y1, . . . , yi, . . . , yn). (val, (y1, . . . , val, . . . , yn)))

5.4 Process and Function Transformations

In the transformed program P ′, the order of the evaluation of arguments must be
preserved, corresponding to leftmost innermost reduction strategy defined for eager
PFL program evaluation.

Let f be PFL process or function with definition

f :: T1 → T2 → . . .→ Tn →
∼

T
f x1 x2 . . . xn = e

where n ≥ 0 and Ti = y Ti |
∼

Ti, where
∼

Ti,
∼

T is PFL data type or unit type.
Let us suppose that there is equivalent Haskell data type T ′

i and T ′ for PFL
data type Ti and T .

Type definition of PFL process or function can be transformed from P to P ′ as
follows:

T [[f :: T1 → T2 → . . .→ Tn →
∼

T ]] =
f :: T ′

1
→ T ′

2
→ . . .→ T ′

n → StateTrans State T ′.
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Process/function definition is transformed as follows:

D [[f x1 x2 . . . xn = e ]] = f x1 x2 . . . xn = E [[e]].

Let us assume that a process or a function application exist somewhere in PFL
source program, as follows:

f e1 e2 . . . en.

The application above is transformed to Haskell using the monadic operations
as follows

E [[f e1 e2 . . . en]] =

do {
E ′[[e1]];
E ′[[e2]];
. . .
E ′[[en]];
f v1 v2 . . . vn

}

where

E ′[[ei]] =















yi ← E [[ei]] , if Ti =
∼

Ti

yi ← accessY , if Ti = y Ti ∧ ei = ()
yi ← E [[ei]]; updateY yi , if Ti = y Ti ∧ ei 6= ()

The transformation scheme has two drawbacks.

• It is not possible to transform all functions into monadic form, such as the library
functions. In addition to this, it is not necessary to transform functions which
do not manipulate the state.

• Program is always defined as a sequence of statements even, but it is not neces-
sary – in case of program grains that do not manipulate the state.

Considering the above-mentioned facts, the transformation scheme can be im-
proved. The improved transformation scheme is defined for simplified PFL presented
in Section 3. Let us define the predicate (aff e). If (aff e) holds, then the evalua-
tion of the expression e depends on the state or it changes the state, otherwise the
state is not affected by the e. The predicate (aff e) is calculated during the static
analysis of a program in the compiler. Two sets are constructed for all expressions in
a program. AV(e) is the set of environment variables which can be accessed during
the evaluation of expression e. UV(e) is the set of environment variables which can
be updated during the evaluation of expression e.
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AV(x) = ∅
AV(f) = AV(envf f)
AV(e1 ⊕ e2) = AV(e1) ∪ AV(e2)
AV(y ()) = {y}
AV(y e) = AV(e)
AV(C e1 . . . en) = AV(e1) ∪ . . . ∪AV(en)
AV(e1 e2) = AV(e1) ∪ AV(e2)
AV(case e of {Ci x1 . . . xmi

→ ei}ni=1
) = AV(e) ∪ AV(e1) ∪ . . . ∪AV(en)

AV(λx.e) = AV(e)

UV(x) = ∅
UV(f) = UV(envf f)
UV(e1 ⊕ e2) = UV(e1) ∪ UV(e2)
UV(y ()) = ∅
UV(y e) = {y} ∪ UV(e)
UV(C e1 . . . en) = UV(e1) ∪ . . . ∪UV(en)
UV(e1 e2) = UV(e1) ∪ UV(e2)
UV(case e of {Ci x1 . . . xmi

→ ei}ni=1
) = UV(e) ∪ UV(e1) ∪ . . . ∪UV(en)

UV(λx.e) = UV(e)

The predicate (aff e) is defined using the calculated sets AV(e) and UV(e):

(aff e)⇔ AV(e) ∪ UV(e) 6= ∅.

Let f be a PFL process or function with definition

f :: T1 → T2 → . . .→ Tn →
∼

T
f x1 x2 . . . xn = e.

Then modified transformation scheme has the form

T [[f :: T1 → T2 → . . .→ Tn →
∼

T ]] =
f :: T ′

1
→ T ′

2
→ . . .→ T ′

n → T ′, if not (aff e)
f :: T ′

1
→ T ′

2
→ . . .→ T ′

n → StateTrans State T ′, otherwise.

D [[f x1 x2 . . . xn = e ]] =











f x1 x2 . . . xn = Eexpr[[e]] if not (aff e)

f x1 x2 . . . xn = do { M[[e]] } otherwise.

M [[e]] =































Ests[[e]]
return Eexpr[[e]];

if not (st e)

Ests[[e]]
Eexpr[[e]];

otherwise.



From Eager PFL to Lazy Haskell 73

Just processes are transformed to monadic form, not the functions. The transfor-
mation scheme E for PFL expressions produces a pair. The first item of the pair is
a Haskell expression containing state transformers sts. The state changes are made
by these transformers before the expression is evaluated. The second item of the
pair is a Haskell expression expr which should be evaluated producing the value of
an expression. The expression expr can be a state transformer.

E [[e]] =
sts
expr

Ests = fst ◦ E
Eexpr = snd ◦ E

Let us define predicate (st e). If (st e) holds, then the transformation scheme
E [[e]] produces expression expr in the form of a state transformer, otherwise not.
Predicate st is defined as follows:

st x = false
st f = aff f
st ⊕ = false
st (y ()) = false
st (y e) = false
st C = false
st (e1 e2 . . . en) = st e1
st (case e of {Ci x1 . . . xmi

→ ei}ni=1
) = aff e1 ∨ . . . ∨ aff en.

It can be seen from the definition above that (st e) holds only if (aff e) holds.
Also, if not (aff e) holds then not (st e) holds. The transformation scheme for
expressions is presented on Figure 3 and Figure 4. Symbol v used in transformation
scheme represents unique lambda variable. If the symbol is used in both items of
a pair (in sts and expr), then it denotes the same variable. The symbol ∅ used in
transformation denotes empty sts item of a pair.

5.5 Properties of Transformation

This section concludes the transformation presenting the properties of the transfor-
mation with sketch of proofs.

Property 1. Expressions that do not manipulate the state are not transformed to
state transformer form by the presented scheme.

If the expression e does not manipulate the state then not (aff e) and not (st e)
holds. According to the definition of the predicate (aff e) it is clear that any subex-
pression within the expression e does not manipulate the state. Expressions that do
not manipulate the state surely do not contain the constructions for accessing y ()
or updating y e the variable environment. It can be seen from the transformation
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E [[x]] =
∅
x

E [[f ]] =
∅
f

E [[y ()]] =
v← accessY ;
v

E [[y e]] =



























































Ests[[e]]
v← updateY Eexpr[[e]];
v

, if not (st e)

Ests[[e]]
v← Eexpr[[e]];
updateY v;
v

, otherwise

E [[e1 e2 . . . en]] =

Ests[[e1]]
E ′sts[[e2]]
. . .
E ′sts[[en]]
Eexpr[[e1]] E

′

expr[[e2]] . . . E ′expr[[en]]

E [[C e1 . . . en]] =

E ′sts[[e1]]
. . .
E ′sts[[en]]
C E ′expr[[e1]] . . . E ′expr[[en]]

E [[e1 ⊕ e2 ]] =
E ′sts[[e1]]
E ′sts[[e2]]
E ′expr[[e1]] ⊕ E

′

expr[[e2]]

E ′[[e]] =







































Ests[[e]]
Eexpr[[e]]

, if not (st e)

Ests[[e]]
v← Eexpr[[e]];
v

, otherwise

Fig. 3. The transformation scheme for expressions
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E [[case e of {Ci x1 . . . xmi
→ ei}

n
i=1

]] =

=















































































































Ests[[e]]
case Eexpr[[e]] of {Ci x1 . . . xmi

→ Eexpr[[ei]]}ni=1

,
if not (st e) ∧
∧ not aaf

Ests[[e]]
case Eexpr[[e]] of {Ci x1 . . . xmi

→ M[[ei]]}ni=1

,
if not (st e) ∧
∧ aaf

Ests[[e]]
v← Eexpr[[e]];
case v of {Ci x1 . . . xmi

→ Eexpr[[ei]]}
n
i=1

, if st e ∧ not aaf

Ests[[e]]
v← Eexpr[[e]];
case v of {Ci x1 . . . xmi

→ M[[ei]]}ni=1

, if st e ∧ aaf

aaf = aff e1 ∨ . . . ∨ aff en

Fig. 4. The transformation scheme for expressions – continued

scheme for expressions that Ests[[e]] is empty and Eexpr[[e]] is not a Haskell state
transformer.

Property 2. Pure PFL function is transformed to a pure non-monadic Haskell
function.

Pure PFL function is a function which does not manipulate state. Let f be
a pure function with definition f x1 x2 . . . xn = e, then not (aff e) holds. Ac-
cording to the property 1 and transformation scheme for definitions the function is
transformed to a non-monadic form.

Property 3. In the transformed program P ′, the order of the evaluation of argu-
ments is preserved, corresponding to leftmost innermost reduction strategy defined
for eager PFL program evaluation.

Property 4. The Haskell program P ′ is semantically equivalent to PFL program P .
Informally, the last two properties were essentials for the transformation scheme

definition. Coming out from the semantics of Haskell monad and state transformers
and PFL variable environment semantics we have defined the presented transfor-
mation. Formally, they can be proved using the semantics of Haskell programming
language and simplified PFL semantics, showing the semantical equivalence of pro-
gram P in PFL and the Haskell program P ′.
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It means that PFL programs can be evaluated lazily as those written in purely
functional languages even the process functional programs have side effects.

6 EXTENDED EXAMPLE

The final example presents results from translation in already implemented PFL
compiler. A fragment of PFL program P

incrX :: x Int -> Int -> Int

incrX x y = x+y

setXY :: x Int -> y Int -> ()

setXY x y = ()

swapXY :: x Int -> y Int -> ()

swapXY x y = setXY y x

...

swapXY () ()

...

incrX () 5

...

is transformed to Haskell form P ′, as follows.

data StateTrans s a = ST (s -> (a,s))

instance Monad (StateTrans s) where

(ST m) >>= k = ST (\s -> let (a,sp)=m s in let (ST q)=k a in q sp)

return a = ST (\s -> (a,s))

type State = (Int,Int)

accessX :: StateTrans State Int

accessX = ST (\(x,y) -> (x,(x,y)))

updateX :: Int -> StateTrans State Int

updateX xn = ST (\(x,y) -> (xn,(xn,y)))

accessY :: StateTrans State Int

accessY = ST (\(x,y) -> (y,(x,y)))

updateY :: Int -> StateTrans State Int

updateY yn = ST (\(x,y) -> (yn,(x,yn)))

incrX :: Int -> Int -> Int
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incrX x y = x+y

setXY :: Int -> Int -> ()

setXY x y = ()

swapXY :: Int -> Int -> StateTrans State ()

swapXY x y = do {

v1 <- updateX y;

v2 <- updateY x;

return (setXY v1 v2)

}

...

do {

v1 <- accessX;

v2 <- accessY;

swapXY v1 v2

}

...

do {

v1 <- accessX;

return (incrX v1 5)

}

...

7 CONCLUSION

In this paper, we have presented the way in which visible variables are bound to
expressions in PFL – a process functional language. Introducing the state mani-
pulation using monads in Haskell, we have shown that the state manipulation by
the application of PFL processes is equivalent to that using monads. As a result
of our transformation of PFL programs can be expressed in terms of Haskell mo-
nads, which means that process functional paradigm supports the laziness, providing
the opportunity for transformations needed when profiling PFL programs in both
sequential and parallel environments.

Application of functional programming languages looks very promising even in
real time and embedded systems. Mostly functional language, like Hume [2], is
suitable for design of embedded systems because of its time and space predictable
behavior.

The subject of our current research is to exploit the process functional paradigm
for integrating functional, imperative and aspect orientedmethodology, using simple,
uniform and still practical basis, appropriate for source-to-source transformations,
reasoning on the behavior and verification experiments. Currently we have imple-
mented the compiler from simplified PFL to both Java and Haskell languages. The
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Haskell target code is about of the same length as source PFL code, while Java’s
code is about six times longer. Using PFL, the level of abstraction has increased,
preserving all abilities of imperative languages, including the visibility of all environ-
ments, providing a single tool for affecting the state in the form of the application
of processes.
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