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Abstract. The paper is devoted to the problem of extending the temporal logic
CTL so that it is more expressive and complicated properties can be expressed in
a more readable form. The specification language RegCTL, an extension of CTL,
is proposed. In RegCTL every CTL temporal operator is augmented with a regular
expression, thus restricting moments when the validity is required. We propose
a local distributed model checking algorithm for RegCTL and exactly state the
complexity of model checking RegCTL formulas.
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1 INTRODUCTION

Model checking is a very successful method for verification of complex reactive sys-
tems. A desired behavioural property of a reactive system is specified as a formula
of temporal logic, while a formal description of a system is usually transformed into
a transition system (Kripke structure). Model checking algorithms verify that the
system under study satisfies its expected behavioural specifications.

A key issue in developing model checking algorithms is the choice of a speci-
fication language in which a desired behaviour is described. The most common
specification languages are temporal logics. Linear time temporal logic formulas are
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interpreted over linear sequences, while in branching temporal logics each moment in
time may split into various possible futures. Among the linear time logics the logic
LTL can express precisely the star-free ω-regular behaviours. Nevertheless, there
are natural “regular” linear behaviours which cannot be expressed in this logic, as
e.g. the behaviour stating that an atomic proposition p is true in all even moments
of time. Beside this, the specification of many useful properties is cumbersome for
users. To widen its expressibility several extensions were proposed. [13] suggested
to use ω-automata as temporal connectives and [7] strengthens the until operator of
LTL by indexing it with regular programs of propositional dynamic logic. A similar
approach to widen expressibility of branching time logics has been advocated in [6]
using deterministic ω-automata connectives, in [3], [2] proposing the RCTL logic,
and in [10] for the alternation free µ-calculus.

In this paper we concentrate on branching time logics. The contribution of the
paper is twofold. Firstly, we generalise CTL logic adopting the approach from [7]
and augment the until operator with a regular expression. The resulting logic, which
subsumes both CTL and RCTL logics, is called RegCTL. Secondly, we elaborate
a model checking algorithm for RegCTL logic and exactly state the complexity of
model checking problem of RegCTL. We stress that the proposed model checking al-
gorithm is well-distributable and can be implemented within distributed verification
tools like DiVinE Development Library [1]. In fact, its distribution can be done in
the same manner as for the alternation-free µ-calculus. Thus, we have a logic which
extends both CTL and the previous extensions of CTL (namely RCTL), but at the
same time it admits effective model checking.

RegCTL is in fact a natural extension of CTL. Intuitively, if the system is defined
over a set AP of atomic propositions, then an infinite behaviour of the system
can be viewed as a word over the alphabet 2AP . A set of allowed behaviours can
be described by a regular expression whose alphabet consists of Boolean formulas
over AP . In RegCTL, every CTL temporal operator is augmented by a regular
expression restricting moments when the validity is required. Both CTL and RCTL
temporal operators can be directly formulated in RegCTL.

For model checking RegCTL logic we use an automata theoretic approach pre-
sented in [9]. It is based on a translation of RegCTL formula into hesitant/weak
symmetric alternating tree automaton. The model checking problem can be then re-
duced to checking nonemptiness of 1-letter simple weak alternating word automaton.
Employing methods from the paper [5] we attain a distributed local model checking
algorithm (i.e., it computes the necessary part of a transition system on-the-fly).

Contrary to CTL, the size of the automaton corresponding to the formula can
be exponential and therefore the model checking of RegCTL is in PSPACE. Ne-
vertheless, we identify a large subset of RegCTL formulas (so called det-RegCTL),
subsuming e.g. whole RCTL, for which the model checking problem is in P (in fact
it is quadratic with respect to the formula size and linear with respect to the size
of Kripke structure). We prove that the provided algorithms are optimal in the
sense that the model checking problem of RegCTL is PSPACE-hard and the model
checking problem for det-RegCTL is P-hard.
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The paper is organised as follows. We introduce the syntax and semantics of the
RegCTL temporal logic in Section 2, and come up with an alternating automaton
accepting models of a RegCTL formula in Section 3. Sequential model checking
algorithm for this logic is proposed in Section 4. The corresponding distributed
model checking procedure is presented in Section 5. Complexity results are provided
in Section 6. We give our conclusions in Section 7.

2 THE REGCTL LOGIC

In this section we define the syntax and semantics of Regular CTL (RegCTL) logic,
which extends the CTL logic [4] with regular expressions.

Given a finite set X, let B(X) be the set of all Boolean formulas over X
(i.e., Boolean formulas built from elements in X using ∧, ∨ and ¬), where we
also allow the formulas true and false. If only connectives ∧ and ∨ are allowed, we
talk about the set of positive Boolean formulas over X, B+(X). For a set S ⊆ X

and a formula φ ∈ B(X), we say that S satisfies φ, S |= φ, if assigning true to
elements of S and assigning false to elements in X \ S makes φ true. The length
‖f‖ of formula f ∈ B(X) is defined inductively: ‖true‖ = ‖false‖ = ‖p‖ = 1 for
p ∈ X; ‖g ∨ h‖ = ‖g ∧ h‖ = ‖g‖+ ‖h‖+ 1; ‖¬g‖ = ‖g‖+ 1.

For a given set B(X) of Boolean formulas, the set R of regular expressions

over B(X) is the least set containing B(X) and such that if P,Q ∈ R then also
P + Q, PQ, P ∗ ∈ R. Let us denote the language defined by a regular expression
R over B(X) as L(R) (the alphabet of L(R) is an appropriate subset of B(X)).
The length ‖R‖ of regular expression R is defined inductively: if R = f for some
f ∈ B(X), then ‖R‖ = ‖f‖; otherwise ‖P + Q‖ = ‖PQ‖ = ‖P‖ + ‖Q‖ + 1;
‖P ∗‖ = ‖P‖ + 1.

2.1 Syntax of RegCTL

Let AP be a set of atomic propositions. An RegCTL state formula is either:

• true, false, p, ¬p for all p ∈ AP ,

• φ ∨ ψ or φ ∧ ψ, where φ and ψ are RegCTL state formulas,

• Aφ or Eφ, where φ is a RegCTL path formula.

An RegCTL path formula is:

• φURψ or φŨRψ, where φ and ψ are RegCTL state formulas and R is a regular
expression over B(AP ) such that ǫ 6∈ L(R).

The closure cl(τ) of a RegCTL formula τ is the set of all RegCTL state subfor-
mulas including τ but excluding true and false. Moreover, we define the multiset
reg occ(τ) representing all occurences of regular expressions in formula τ . The
length ‖τ‖ of a RegCTL formula τ is defined as |cl(τ)|+ ΣR∈reg occ(τ)‖R‖.
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2.2 Semantics of RegCTL

The semantics of RegCTL is defined with respect to computation trees. A tree is
a set T ⊆ N

∗ such that if x.c ∈ T where x ∈ N
∗ and c ∈ N, then also x ∈ T , and for

all 0 ≤ c′ < c, x.c′ ∈ T . The elements of T are called nodes, and the empty word ǫ
is the root of T . For every x ∈ T , the nodes x.c, where c ∈ N are the successors of
x. The number of successors of x is called degree of x and is denoted by d(x). The
node with no successors is called leaf . A path π in a tree T is a minimal set π ⊆ T

containing some node as its root and such that for every x ∈ π, either x is a leaf
or there exists a unique c ∈ N such that x.c ∈ π. A tree containing a unique path
starting in ǫ is called an (in)finite word. Given an alphabet Σ, a Σ-labeled tree is
a pair T = 〈T, L〉 where T is a tree and L : T −→ Σ maps each node of T to a letter
in Σ. A computation tree is a Σ-labeled tree T , where Σ = 2AP .

The notation T , x |= φ indicates that a RegCTL state formula φ holds at the
node x of the computation tree T . Similarly, T , π |= ψ indicates that a RegCTL
path formula ψ holds true along the path π. When T is clear from the context,
we write x |= φ and π |= ψ. Also, T |= φ if and only if T , ǫ |= φ. For a finite
sequence of nodes x0, x1, . . . , xn and a regular expression R over B(AP ) we write
x0x1 . . . xn ∈ L(R) iff there exists a word f0f1 . . . fn ∈ L(R) such that L(xi) |= fi
for all 0 ≤ i ≤ n.

The relation |= is inductively defined as follows:

• x |= true and x 6|= false

• x |= p for p ∈ AP iff p ∈ L(x)

• x |= ¬p for p ∈ AP iff p 6∈ L(x)

• x |= φ ∨ ψ iff x |= φ or x |= ψ

• x |= φ ∧ ψ iff x |= φ and x |= ψ

• x |= Aψ iff for each path π = π0π1 · · · , such that π0 = x, we have π |= ψ

• x |= Eψ iff there exists a path π = π0π1 · · · , such that π0 = x and π |= ψ

• π |= φURψ iff there exists i ≥ 0 and π0π1 · · ·πi ∈ L(R) such that πj |= φ for all
0 ≤ j < i and πi |= ψ

• π |= φŨRψ iff for all i ≥ 0 such that π0π1 · · · πi ∈ L(R) the following property
holds: if πi 6|= ψ, then there exists 0 ≤ j < i such that πj |= φ.

Usual temporal operators can be expressed as follows: next operator Xφ as
trueU true·trueφ, until operator φUψ as φU true·true∗ψ, and release operator φŨψ as
φŨ true·true∗ψ.

Let us consider the RegCTL formula E(qŨ true·(true·true)∗p) which expresses the
fact that there exists a path where p holds at every even position and this proper-
ty can be released by q. This property can be expressed neither in CTL nor in
RCTL.
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The RegCTL formula A(falseŨw·b∗·a·(v∗·r+v∗·w·b∗·r)d) (see [3]) illustrates the way
how regular expressions can make the formulation of a property easier. The CTL
formula expressing the same property is

AG(¬(w ∧ (EX(E[bU(a∧ (EX(((E[vU(r ∧ ¬d])∧

(E[vU(w ∧ (EX(E[bU(r ∧ ¬d])))])))))])))).

3 ALTERNATING TREE AUTOMATON FOR REGCTL FORMULA

The model checking algorithm for RegCTL we are going to present is based on
a translation of a RegCTL state formula to an automaton over infinite trees which
accepts models of the formula (in a similar way as for CTL [9]).

3.1 Alternating tree automata

A symmetric finite alternating tree automaton is a tuple A = 〈Σ, Q, δ, q0, F 〉, where
Σ is an input alphabet, Q is a finite set of states, δ : Q × Σ −→ B+({♦,�} × Q)
is a transition function, q0 is an initial state. The set F specifies an acceptance
condition. We define the size ‖A‖ of an automaton A as |Q|+ |F |+ ‖δ‖ where ‖δ‖
is the sum of the lengths of the non-identically false formulas that appear as δ(q, σ)
for some q ∈ Q and σ ∈ Σ.

A run 〈Tr, r〉 of an alternating automaton A over a Σ-labelled tree 〈T, L〉 is
a Σr-labelled tree where Σr = N

∗ ×Q and 〈Tr, r〉 satisfies the following:

• r(ǫ) = (ǫ, q0),

• Let y ∈ Tr with r(y) = (x, q) and δ(q, L(x)) = Θ. Then there is a (possibly
empty) set S = {(c0, q0), (c1, q1), . . . , (cn, qn)} ⊆ {0, . . . , d(x)− 1}×Q such that
the following holds:

1. S satisfies Θ, where (♦, p) ⇔ (0, p)∨ . . .∨ (d(x)− 1, p) and (�, p) ⇔ (0, p)∧
. . . ∧ (d(x)− 1, p) for p ∈ Q,

2. for all 0 ≤ i ≤ n, we have y.i ∈ Tr and r(y.i) = (x.ci, qi).

We consider an alternating word automaton to be a special case of a tree automaton
with transition function δ : Q× Σ −→ B+(Q).

Given a run 〈Tr, r〉 and an infinite path π in Tr, let inf(π) ⊆ Q be such that
q ∈ inf(π) iff there are infinitely many y ∈ π for which r(y) ∈ N

∗×{q} (i.e., inf(π)
is the set of states which appear infinitely often in π). A run 〈Tr, r〉 is accepting iff
all of its infinite paths satisfy the acceptance condition. We denote L(A) the set of
all computation trees for which there is an accepting run of A.

Here we consider two special types of alternating tree automata, so called hesi-

tant automata (HAA) and weak automata (WAA), with special restrictions on the
transition function and specific acceptance conditions.



86 T. Brázdil, I. Černá

In a hesitant automaton there exists a partition ofQ into disjoint setsQ1, . . . , Qm

and a partial order ≤ on the collection of Qi’s such that for each q ∈ Qi and q
′ ∈ Qj

for which q′ occurs in δ(q, σ) we have Qj ≤ Qi. In addition, each set Qi is classified
as either transient, existential or universal. The type of Qi is determined by the
following rules:

• Qi is a transient set iff for all q ∈ Qi and σ ∈ Σ, δ(q, σ) contains no element
with a state from Qi.

• Qi is an existential set iff for all q ∈ Qi and σ ∈ Σ, δ(q, σ) contains only
disjunctively related elements of the form (♦, p) where p ∈ Qi.

• Qi is an universal set iff for all q ∈ Qi and σ ∈ Σ, δ(q, σ) contains only conjunc-
tively related elements of the form (�, p) where p ∈ Qi.

The acceptance condition is a tuple 〈G,B〉, where G,B ⊆ Q. Every infinite path
π in Tr gets trapped within some existential or universal set Qi. The path π then
satisfies an acceptance condition 〈G,B〉 iff

• either Qi is an existential set and inf(π) ∩G 6= ∅

• or Qi is an universal set and inf(π) ∩ B = ∅.

The depth of HAA is defined as a maximal length of a chain in the partial order ≤
on the collection of Qi’s.

In a weak automaton there exists a partition of Q into Q1, . . . , Qm with the same
partial order as in HAA. The acceptance condition F is a subset of Q such that for
every Qi, 1 ≤ i ≤ m, either Qi ⊆ F (Qi is an accepting set) or Qi ∩ F = ∅ (Qi is
a rejecting set).

Next, we show how to complement hesitant and weak automata. For two al-
ternating automata A1 and A2 over the same alphabet Σ we say that A2 comple-
ments A1 iff L(A2) includes exactly all the Σ-labelled trees that are not in L(A1).

Given a transition function δ, let δ̃ denote the dual function of δ. That is, for
every q and σ with δ(q, σ) = θ, let δ̃(q, σ) = θ̃, where θ̃ is obtained from θ by
switching ∨ and ∧, by switching (♦, p) and (�, p) for each p and by switching true

and false. For example, if θ = ((�, p)∧(♦, q))∨true then θ̃ = ((♦, p)∨(�, q))∧false.

Theorem 1.

• Given a hesitant alternating automatonA = 〈Σ, Q, δ, q0, 〈G,B〉〉, the alternating
automaton Ã = 〈Σ, Q, δ̃, q0, 〈B,G〉〉 is a hesitant automaton that complements
A.

• Given a weak alternating automaton A = 〈Σ, Q, δ, q0, F 〉, the alternating au-
tomaton Ã = 〈Σ, Q, δ̃, q0, Q \ F 〉 is a weak automaton that complements A.

Proof. For hesitant automata is the assertion proved in [9].
For weak automaton A one can easily see that Ã is weak as the partition of Q

into sets and the partial order over them hold also with respect to Ã. According
to [11], in order to prove that Ã complements A it is enough to prove that for every
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path π ∈ Qω, we have that π satisfies the acceptance condition of A in a run of A
iff π does not satisfy the acceptance condition of Ã in a run of Ã. However, for weak
automata this can be verified easily. �

Remark 1. We say that Ã is the dual of A.

3.2 Translation of a RegCTL formula to an automaton

Let us first fix some notation. For an RegCTL formula τ the multiset reg occ(τ) =
{R1, . . . , Rn} represents all occurences of regular expressions in the formula. For
every regular expression Ri we have a finite state automaton Ai = (Qi,Σi, δi, q

0
i , Fi),

Σi ⊆ B(AP ), which accepts exactly L(Ri). We suppose all Qi’s to be pairwise
disjunctive. For states of these automata we use symbols r, q (with indices, if neces-
sary). Moreover, let for r ∈ Qi and σ ∈ 2AP the symbol succ(r, σ) denote the set of
states

⋃

σ|=f δi(r, f).
Given a RegCTL formula τ we construct the weak symmetric alternating au-

tomaton Aτ = (2AP , Q, δ, τ, F ). The set of states of the automaton Aτ is Q =
(
⋃

i=1,...nQi) ∪ cl(τ). For all σ ∈ 2AP its transition function δ is defined inductively
as follows:

1. δ(p, σ) = true if p ∈ σ and δ(p, σ) = false if p 6∈ σ.

2. δ(¬p, σ) = true if p 6∈ σ and δ(¬p, σ) = false if p ∈ σ.

3. δ(φ ∨ ψ, σ) = δ(φ, σ) ∨ δ(ψ, σ).

4. δ(φ ∧ ψ, σ) = δ(φ, σ) ∧ δ(ψ, σ).

5. δ(E(φURiψ), σ) = δ(q0i , σ) and for r ∈ Qi

δ(r, σ) =

{

∨

q∈succ(r,σ)(♦, q) ∧ δ(φ, σ) if succ(r, σ) ∩ Fi = ∅

(
∨

q∈succ(r,σ)(♦, q) ∧ δ(φ, σ)) ∨ δ(ψ, σ) otherwise.

6. δ(A(φŨRiψ), σ) = δ(q0i , σ) and for r ∈ Qi

δ(r, σ) =

{

∧

q∈succ(r,σ)(�, q)∨ δ(φ, σ) if succ(r, σ) ∩ Fi = ∅

(
∧

q∈succ(r,σ)(�, q) ∨ δ(φ, σ)) ∧ δ(ψ, σ) otherwise.

7. δ(E(φŨRiψ), σ) = δ(q0i , σ) and for r ∈ Qi

δ(r, σ) =

{

∧

q∈succ(r,σ)(♦, q) ∨ δ(φ, σ) if succ(r, σ) ∩ Fi = ∅

(
∧

q∈succ(r,σ)(♦, q) ∨ δ(φ, σ)) ∧ δ(ψ, σ) otherwise.

8. δ(A(φURiψ), σ) = δ(q0i , σ) and for r ∈ Qi

δ(r, σ) =

{

∨

q∈succ(r,σ)(�, q) ∧ δ(φ, σ) if succ(r, σ) ∩ Fi = ∅

(
∨

q∈succ(r,σ)(�, q)∧ δ(φ, σ)) ∨ δ(ψ, σ) otherwise.
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Remark 2. We define an empty disjunction to be false and empty conjunction to
be true.

The automaton Aτ is weak. The acceptance condition is F =
⋃

Qi for all Qi’s
such that the regular expression Ri occurs in a subformula of the form E(φŨRiψ)
or A(φŨRiψ). The weakness partition over the set of states is formed by singletons
{ψ}, ψ ∈ cl(τ), and by all sets Qi, 1 ≤ i ≤ n.

The correctness of the given construction is guaranteed only for cases where for
every regular expression Ri which occurs in a subformula of the form E(φŨRiψ) or
A(φURiψ) the corresponding finite automaton Ai is deterministic.

GFED@ABCs2

// GFED@ABCs1
aiiiii

44iiiii

b
UUUUU

**UUUUU GFED@ABCs3

GFED@ABCs2

// GFED@ABCs1
a ∧ ¬bggggg

33ggggg

¬a ∧ b
WW

WW
W

++WW
WW

W GFED@ABCs3

Fig. 1. The automaton on the left hand side is non-deterministic while the automaton on
the right hand side is deterministic

Here deterministic automaton is an automaton such that for its arbitrary state
r ∈ Qi and σ ∈ 2AP the cardinality of the set succ(r, σ) is at most one (in the suc-
ceeding text we always use this notion of determinism). For example, the automaton
on the left hand side of Figure 1 is not deterministic as succ(s1, {a, b}) = {s2, s3}.
To explain problems caused by nondeterministic automata let us consider the for-
mula τ ≡ E(falseŨRg), with R specified in Figure 2, and the computation tree from
Figure 3.

// GFED@ABCq0 a //

a

((GFED@ABC?>=<89:;q1

b
ll GFED@ABC?>=<89:;q2

c
ll

Fig. 2. Finite state automaton A for the regular expression R; edges are labelled with
atomic propositions (i.e. formulas over AP ); q1 and q2 are accepting, q0 is initial

{b} // {b} // . . .

{a, g} // {b, c, g}

44hhhhhhhh

**VVVVVVVV

{c} // {c} // . . .

Fig. 3. Computation tree; nodes are labelled with atomic propositions true in them

The automaton Aτ in state E(falseŨRg) (≡ q0) reading {a, g} proceeds con-
junctively to states q1 and q2 and to the node labelled {b, c, g}. Being in state q1
and reading {b, c, g}, Aτ remains in q1 and disjunctively proceeds to the node la-
belled {c}. Being in state q2 and reading {b, c, g}, Aτ remains in q2 and disjunctively
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proceeds to the node labelled {b}. Both paths are finite and accepting and thus Aτ

accepts, but τ is not true in the node labelled {a, g}.

Remark 3. Assuming the determinism of relevant finite automata, the automa-
ton Aτ is also hesitant. The hesitant partition is the same as the weakness partition.
The set Qi is existential iff the regular expression Ri occurs in a subformula of the
form E(φURiψ) or E(φŨRiψ). The set Qi is universal iff the regular expression Ri

occurs in a subformula of the form A(φURiψ) or A(φŨRiψ). Other sets are transient.
The acceptance condition for automaton Aτ is F = 〈G,B〉 where

• G =
⋃

Qi for all Qi such that the regular expression Ri occurs in a subformula
of the form E(φŨRiψ) and

• B =
⋃

Qi for all Qi such that the regular expression Ri occurs in a subformula
of the form A(φURiψ).

In what follows we suppose that finite automata for regular expressions Ri which
occur in subformulas of the form E(φŨRiψ) or A(φURiψ) are deterministic.

Theorem 2. Let T = 〈T, L〉 be a computation tree. Then the automaton Aτ

accepts T if and only if T |= τ .

Proof. We first prove that Aτ is complete. That is, given a computation tree T ,
a formula ϕ ∈ cl(τ) and a node x for which T , x |= ϕ, then Aτ accepts the subtree
of the computation tree T with root x starting in the state ϕ. Thus, in particular,
if T |= τ then Aτ accepts T .

To this end we use the following notation. For the finite automaton Ai, its
states r, q and a node x ∈ T we use q ∈ δi(r, x) as an abbreviation for q ∈ δi(r, f)
where f ∈ B(AP ) and L(x) |= f . A computation of Ai over x0 · · ·xn is a sequence of
states q0, . . . , qn such that q0 is an initial state and qj+1 ∈ δi(qj, xj) for 0 ≤ j < n. If,
moreover, the condition δi(qn, xn)∩Fi 6= ∅ is true, then the computation is accepting.
We prove the completeness by induction on the structure of ϕ. Cases ϕ = p, ϕ = ¬p,
ϕ = φ ∨ ψ, ϕ = φ ∧ ψ are simple.

• x0 |= E(φURiψ)
There is a path x0 · · · xn in T such that x0 · · ·xn ∈ L(Ri), xj |= φ for 0 ≤ j < n

and xn |= ψ. Let q0, . . . , qn be an accepting computation of Ai over x0 · · · xn.

Aτ disjunctively chooses states qj and input nodes xj . In every node xj automa-
ton Aτ conjunctively proceeds as if it were in the state φ. Because δi(qn, xn) ∩
Fi 6= ∅, Aτ in the state qn proceeds as if it were in the state ψ.

• x0 |= E(φŨRiψ)
There is a path x0 · · · in T such that for each of its prefixes x0 · · · xn, the following
holds: if x0 · · ·xn ∈ L(Ri) then either xn |= ψ or there exists 0 ≤ k < n such
that xk |= φ.

Aτ reading a node xj and being in a state q proceeds as follows: if xj |= φ then
it proceeds as if it were in the state φ. If δi(q, xj) = ∅ then Aτ does not continue
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along this path. Otherwise it proceeds to xj+1 and to the only successor state
of q according to δi. If δi(q, xj) ∩ Fi 6= ∅ then x0 · · ·xj ∈ L(Ri) and xk 6|= φ for
0 ≤ k < j and xj |= ψ, thus the automaton conjunctively proceeds as if it were
in the state ψ. If φ does not hold along x0 · · · , then the path is accepting due
to the acceptance condition.

We now prove that Aτ is sound. That is, given an accepting run 〈Tr, r〉 of Aτ

over a computation tree T = 〈T, L〉, we prove that for every y ∈ Tr such that
r(y) = (x, ϕ), ϕ ∈ cl(τ), we have T , x |= ϕ. Thus, in particular, T , ǫ |= τ .

Let 〈Tr, r〉 be a run of the alternating automaton Aτ over a computation tree
T = 〈T, L〉. We describe a path in the run Tr as a sequence of its labels (i.e.,
a sequence of tuples (x, q) where x ∈ T and q ∈ Q). Let (x0, q0) · · · be a finite
or infinite path in Tr. We say that its prefix pr is maximal in Q′ iff either pr =
(x0, q0) · · · (xn, qn), q0, . . . , qn ∈ Q′ and q 6∈ Q′ for every successor (q, x) of (qn, xn)
in Tr, or pr = (x0, q0) · · · is infinite and qj ∈ Q′ for 0 ≤ j. The projection of a path
π = (x0, q0) · · · is proj(π) = x0 · · · .

The proof proceeds by induction on the structure of ϕ. Cases ϕ = p, ϕ = ¬p,
ϕ = φ ∨ ψ, ϕ = φ ∧ ψ are simple. In the next construction we make use of the fact
that in Aτ we have several names for one state.

• r(y) = (x0, E(φU
Riψ))

Let pr be a prefix maximal in Qi of a path in Tr starting with (x0, E(φU
Riψ)).

Due to the acceptance conditions the prefix pr = (x0, E(φU
Riψ)) · · · (xn, qn) is

finite. Then Aτ in the state qn reading xn must proceed as if it were in the
state ψ assuring xn |= ψ and x0 · · · xn ∈ L(Ri). Moreover, along this prefix
it must conjunctively proceed as if it were in the state φ assuring xj |= φ for
0 ≤ j < n.

• r(y) = (x0, E(φŨ
Riψ))

Aτ disjunctively chooses a path in T following states of the only possible com-
putation of Ai. Let pr be a prefix maximal in Qi of a path in Tr starting with
(x0, E(φŨ

Riψ)).

Case 1: If pr is infinite (it is possible due to the acceptance condition) then
thanks to the definition of δ and determinism of Ai we have that whenever
a prefix of proj(pr) is in L(Ri) then Aτ proceeds as if it were in the state ψ.

Case 2: Otherwise pr = (x0, E(φŨ
Riψ)) · · · (xn, qn). If δi(qn, xn) = ∅, then no

word with the prefix x0 · · ·xn is in L(Ri). If δi(qn, xn) 6= ∅, then Aτ proceeds
in the state qn reading xn as if it were in the state φ, assuring thus xn |= φ.
Note that whenever a prefix of x0 · · · xn is in L(Ri) then Aτ proceeds as if
it were in the state ψ (similar arguments as in Case 1).

Formulas of the form A(φŨRiψ)) are treated in the following manner: formula
A(φŨRiψ) is dual to the formula E(φURiψ), that is, A(φŨRiψ) ≡ ¬E(¬φURi¬ψ).
Therefore the dual of an automaton for E(¬φURi¬ψ) is an automaton for A(φŨRiψ).
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However, this is the automaton for A(φŨRiψ) as we have defined it in the construc-
tion.

Formula A(φURiψ) is dual to the formula E(φŨRiψ) and thus analogical argu-
ments prove the correctness for formulas of the form A(φURiψ). �

4 SEQUENTIAL REGCTL MODEL CHECKING

At first we define the Kripke structure as a tuple K = 〈AP,W,E, w0, L〉 where AP
is a set of atomic propositions as defined above, W is a set of states, E ⊆ W ×W is
a transition relation that must be total (i.e., for every w ∈ W there exists w′ ∈ W

such that 〈w,w′〉 ∈ E), w0 is an initial state, and L : W → 2AP maps each state to
the set of atomic propositions true in that state.

We define the size ‖K‖ of K as |W | + |E|. Every Kripke structure K =
〈AP,W,E, w0, L〉 can be viewed as a 2AP -labelled computation tree TK = 〈TK , LK〉
obtained by unwinding K.

The model checking problem is for given temporal logic formula τ and Kripke
structure K to decide whether TK |= τ . The model checking algorithm for a given
RegCTL state formula τ and a Kripke structure K proceeds as follows:

1. construct the alternating automaton Aτ as defined above,

2. construct the product automaton AK,τ = K ×Aτ whose language is nonempty
iff TK |= τ ,

3. check nonemptiness of the product automaton AK,τ .

The product automatonAK,τ is defined as follows: Let Aτ = 〈2AP , Qτ , δτ , q0, Fτ〉
and K = 〈AP,W,E, w0, L〉. The product of Aτ and K is a 1-letter alternating word
automatonAK,τ = 〈{a},W×Qτ , δ, 〈w0, q0〉, F 〉 where δ and F are defined as follows:

• Let q ∈ Qτ , w ∈ W , succ(w) = 〈w0, . . . , wd(w)−1〉 and δτ (q, L(w)) = Θ.
Then δ(〈w, q〉, a) = Θ′, where Θ′ is obtained from Θ by replacing each (♦, p) by
〈w0, p〉 ∨ . . .∨ 〈wd(w)−1, p〉 and each (�, p) by 〈w0, p〉 ∧ . . . ∧ 〈wd(w)−1, p〉.

• The acceptance condition F respects the acceptance condition Fτ of Aτ . If
Aτ is weak then F = W × Fτ . If Aτ is hesitant and Fτ = 〈G,B〉 then F =
〈W ×G,W × B〉.

The product automaton is hesitant (weak) if Aτ is hesitant (weak).

Theorem 3. [9] AK,τ accepts aω iff TK |= τ .

Algorithms for nonemptiness check of weak and hesitant automata are given
in [9], their complexity is discussed in Section 6.

5 DISTRIBUTED REGCTL MODEL CHECKING

The distributed algorithm is based on a characterisation of the model checking
problem in terms of two-person games due to Stirling [12]. This approach has
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been used in [5] for model checking of alternation-free µ-calculus and formulated as
colouring of game graphs. As noted in [5], the procedure can also be understood as
a parallel procedure for checking the emptiness of 1-letter simple weak alternating
word automata.

The product automaton AK,τ we have constructed in Section 3 is a 1-letter
weak alternating word automaton. We propose an algorithm for translating it into
a simple automaton. Our algorithm is a modification of the one from [9] and is more
appropriate for the use in the distributed on-the-fly setting. Consequently we can
apply the local distributed model checking algorithms from [5] to the logic RegCTL.

Definition 1. A formula in B+(X) is simple if it is either atomic or has the form
x ∗ y, where ∗ ∈ {∧,∨} and x, y ∈ X. An alternating automaton is simple if all its
transitions are simple.

Let AK,τ = 〈{a},W × Qτ , δ, 〈w0, q0〉,W × Fτ 〉 be the weak product automaton
from Section 4. LetW×Q1, . . . ,W×Qm be the weak partition of its states such that
W ×Q1 ≤ . . . ≤ W ×Qm is an extension of the partial order to a total order. Our
aim is to translate AK,τ to a simple automaton As

K,τ = 〈{a}, Qs, δs, 〈w0, q0〉, F
s〉.

We define Qs inductively as follows:

• for every q ∈ W ×Qτ , we have q ∈ Qs

• for every q ∈ W ×Qτ with δ(q, a) = θ1 ∗ θ2, we have θ1, θ2 ∈ Qs

• for every θ1 ∗ θ2 ∈ Qs, we have θ1, θ2 ∈ Qs.

Thus a state in Qs is either q ∈ W ×Qτ or a strict subformula of a transition in δ.
The transition function δs is

• δs(q, a) = δ(q, a) for q ∈W ×Qτ

• δs(θ1 ∗ θ2, a) = θ1 ∗ θ2.

We claim that the new automaton is weak as well. The partition of Qs into
Qs

1, . . . , Q
s
m is as follows. A state q ∈ Qs is in Qs

i iff either q ∈ W × Qi or q = θ

and i = max{j | r occurs in θ and r ∈ W × Qj}. The new acceptance condition
is F s =

⋃

Qs
i where W × Qi ⊆ W × Fτ . The weakness of As

K,τ can be easily seen
from the definition of the partition. The fact L(AK,τ ) 6= ∅ iff L(As

K,τ ) 6= ∅ can be
argumented in the same way as in [9].

We note that the simple version of the product automaton can be computed on-
the-fly from the formula and the Kripke structure. The size of the simple product
automaton is asymptotically the same as the size of the original one. The important
fact is that the partition of the states of the simple automaton can be computed
on-the-fly as well using only the knowledge of the partition of Aτ .

All in all, we have transformed the model checking problem of RegCTL into
the emptiness problem of 1-letter simple weak alternating word automata. These
automata are in a straightforward manner (as noted in [5]) related to games and
therefore we can use distributed algorithms from [5] for checking the emptiness of
this kind of automata.
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6 COMPLEXITY RESULTS

The complexity of the model checking algorithm depends on the type of the formula.
As we have shown in Section 3, the necessary condition for Aτ to be correct is
the determinism of finite automata for regular expressions occuring in subformulas
of the form E(φŨRψ) and A(φURψ). For this reason we define a deterministic

fragment of RegCTL, called det-RegCTL. In this fragment R occuring in A(φURψ)
or E(φŨRψ) are restricted to regular expressions which have deterministic finite
automata with the number of states linear with respect to the size of R. For a det-
RegCTL formula τ it is guaranteed that the number of states of Aτ is linear in ‖τ‖.
For a general RegCTL formula the number of states can be 2O(‖τ‖) due to the
necessary determinization. In both cases the length of δτ (q, σ) (for fixed q and σ) is
linear in ‖τ‖.

The complexity of the model checking algorithm problem is measured with re-
spect to the size of K and τ . The key point is the size of the product automaton.

The number of states of AK,τ is |W | · |Qτ | and the size of F is O(|W | · |Qτ |).
The length of δ(〈w, q〉, a) is equal to the length of δτ(q, L(w)) times the degree
of w. Summing up lengths of δ((w, q), a) for fixed q and all states w ∈ W gives us
O(|E| · ‖τ‖). The total size of the transition function is O(|E| · ‖τ‖ · |Qτ |). Thus
the total size of the product automaton AK,τ is O(‖K‖ · ‖τ‖2) for a det-RegCTL
formula τ and O(‖K‖ ·2O(‖τ‖)) for a general RegCTL formula. The depth of AK,τ is
O(‖τ‖). We note that AK,τ can be computed on-the-fly in time linear with respect
to its size.

Theorem 4. [9] The 1-letter nonemptiness problem for hesitant alternating word
automata is decidable in linear running time.

Theorem 5. [9] The 1-letter nonemptiness problem for hesitant alternating word
automata of size n and depth m is decidable in space O(m.log2n).

By Theorem 4 we have that the model checking problem for det-RegCTL is in P
(in fact it can be done in time O(‖K‖.‖τ‖2). As the model checking of CTL is
P-complete we have that model checking of det-RegCTL is P-complete too.

According to Theorem 5 the complexity of the model checking problem for
RegCTL is in PSPACE. In what follows we prove that the provided algorithm is
optimal in the sense that the problem is PSPACE-hard.

Theorem 6. The RegCTL model checking problem is PSPACE-hard.

Proof. We prove the PSPACE-hardness by reduction from the membership problem
for polynomialy space-bounded Turing machines, which is known to be PSPACE-
hard.

Let T = (S, γ, δ, Start) be a deterministic Turing machine with space complex-
ity nc (c is a fixed constant). Wlog. we can suppose that T has two special states
Accept, Reject ∈ S such that every computation of T eventually gets trapped either
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in the state Accept or in Reject and keeps running forever in this state. Moreover,
we suppose that the transition function of T is complete. Let us denote w the input
of T . Our aim is to construct a Kripke structure K and an RegCTL state formula τ
such that T accepts w if and only if K is a model of τ .

Every configuration of the computation of T on an input word w of length n

can be written down as a string of length m = nc + 1 over the alphabet Γ = γ ∪ S.
The computation of T on w is a sequence of configurations. Let us denote the
computation σ as σ = σ1, σ2 . . ., where σi ∈ Γ for i ≥ 1. Now we can define
a function f capturing the dependences between symbols in σ. Namely, for each
i ≥ 1, f(σi, σi+1, σi+2, σi+3) = σi+m+1 is the symbol in the subsequent configuration,
whose value is completely determined by symbols σi, . . . , σi+3. For a, b, c, d ∈ γ and
s ∈ S the function defined as follows:

f(a, b, c, d) = b

f(s, a, b, c) =

{

a′ if δ(s, a) = (s′, a′, L)

s′ if δ(s, a) = (s′, a′, R)

f(a, s, b, c) =

{

a if δ(s, b) = (s′, b′, L)

b′ if δ(s, b) = (s′, b′, R)

f(a, b, s, c) =

{

s′ if δ(s, c) = (s′, c′, L)

b if δ(s, a) = (s′, c′, R)

f(a, b, c, s) = b

For remaining quadruples the values can be defined arbitrarily. Now we are prepared
to define a regular expression R describing all words over the alphabet Γ, which do

not code an accepting computation of T on w = w1w2 · · ·wn (string σ1σ2 · · · σm is
the code of the initial configuration) :

R = ¬Correct+ ¬Init+ Γ∗Reject

¬Correct =
∑

a,b,c,d∈Γ

Γ∗a b c d Γm−3(Γ \ f(a, b, c, d))

¬Init = (Γ \ {σ1}) + σ1(Γ \ {σ2}) + σ1σ2(Γ \ {σ3}) + . . .

+ σ1σ2 · · · σm−1(Γ \ {σm})

The RegCTL formula we are looking for is τ = E(falseŨRfalse). It remains to
define the Kripke structure. We do it in such a way that (labels of) infinite paths
in K correspond exactly to words in Γω starting with the initial state Start of the
Turing machine T . Let K = 〈Γ,W, E, s1, L〉 where W = {s1, . . . , s|Γ|}, E =W ×W

and for Γ = {γ1, . . . , γ|Γ|}, γ1 = Start , we define L(si) = {γi} for 1 ≤ i ≤ |Γ|.
The correctness of the construction is given by the following arguments. Suppose

that T accepts w. Then there is an accepting computation of T on w. Let us consider
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an infinite path π in K which corresponds exactly to this accepting computation.
Then no prefix of π is in L(R) and K |= τ .

On the contrary, suppose that T does not accept w. Then each path π in K

corresponds either to an incorrect computation or to a rejecting computation. In
the first case there is a prefix u of π such that the last letter of u is the first
symbol violating the property “to be a computation”. Then u belongs to L(¬Init+
¬Correct). In the latter case let u be a prefix of π ending with the symbol Reject.
Then u belongs to L(Γ∗Reject). In both cases K 6|= τ . �

Corollary 1. Let R be a regular expression over the alphabet {0, 1}. The problem
whether each infinite word u ∈ {0, 1}ω has a finite prefix v ∈ L(R) is PSPACE-hard.

Proof. Follows immediately from the proof of Theorem 6 as symbols from Γ can be
encoded binary and from the fact that PSPACE is closed under complementation.

�

The other way how the complexity of the model checking problem can be mea-
sured is through the program complexity. Here the formula τ is fixed and the com-
plexity is measured with respect to the size of Kripke structure only. By Theorem 5
and its proof the program complexity of RegCTLmodel checking is in NLOGSPACE.
As the program complexity of CTL model checking is NLOGSPACE-complete [9], we
have that program complexity of RegCTLmodel checking is NLOGSPACE-complete
too. Figure 4 summarises the complexity of both RegCTL and det-RegCTL model
checking.

overall complexity program complexity

det-RegCTL P-complete NLOGSPACE-complete

RegCTL PSPACE-complete NLOGSPACE-complete

Fig. 4. The complexity of RegCTL and det-RegCTL model checking

7 CONCLUSIONS

We studied an extension of the branching time logic CTL with regular expressions.
We defined a new branching time logic RegCTL that extends CTL with regular
expressions. The model checking problem for RegCTL is PSPACE-complete. How-
ever, we identify a large family of RegCTL formulas (including e.g. whole RCTL)
that can be checked in P. For constructing the model checking algorithm we adopted
the automata-theoretic approach which allows for an effective distribution.
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