
Computing and Informatics, Vol. 35, 2016, 764–791

STATIC ANALYSIS FOR DIVIDE-AND-CONQUER
PATTERN DISCOVERY

Tamás Kozsik

Eötvös Loránd University, Budapest, Hungary
e-mail: kto@elte.hu

Melinda Tóth, István Bozó, Zoltán Horváth

ELTE-Soft Nonprofit Ltd., Budapest, Hungary
e-mail: {tothmelinda, bozoistvan, hz}@elte.hu

Abstract. Routines implementing divide-and-conquer algorithms are good candi-
dates for parallelization. Their identifying property is that such a routine divides
its input into “smaller” chunks, calls itself recursively on these smaller chunks, and
combines the outputs into one. We set up conditions which characterize a wide
range of d & c routine definitions. These conditions can be verified by static pro-
gram analysis. This way d & c routines can be found automatically in existing
program texts, and their parallelization based on semi-automatic refactoring can
be facilitated. We work out the details in the context of the Erlang programming
language.

Keywords: Erlang, divide-and-conquer, pattern, parallelization

Mathematics Subject Classification 2010: 68-N19

1 INTRODUCTION

Divide-and-conquer is a principle that is in the heart of many useful algorithms in
different domains, including searching, sorting, FFT and number theory. By their
very nature, these algorithms can be implemented in a parallel way, and be efficiently

Static Analysis for Divide-and-Conquer Pattern Discovery 765

executed on a parallel machine. Divide-and-conquer is therefore often perceived as
a high-level parallel programming pattern [5].

This fact is recognized in the EU FP7 ParaPhrase project (Parallel Patterns for
Adaptive Heterogeneous Multicore Systems), which “aims to produce a new struc-
tured design and implementation process for heterogeneous parallel architectures,
where developers exploit a variety of parallel patterns to develop component-based
applications that can be mapped to the available hardware resources, and which
may then be dynamically remapped to meet application needs and hardware avail-
ability” [27]. In this project, software tools to facilitate parallel programming are
designed, which allow programmers to identify parallelizable components, and to
refactor them into occurrences of parallel patterns. These patterns can often be
expressed in terms of algorithmic skeletons [5]. The implementation of such skele-
tons may support the dynamic mapping (and re-mapping) of algorithm components
onto available hardware resources, and thus support efficient and adaptive resource
usage on a heterogeneous many-core machine [8]. Software developers, even when
they are not concurrency experts, can make a very good use of these skeleton im-
plementations, if they are collected in a reusable program library, such as the skel
library [24] for the Erlang programming language [11].

In this paper we focus on the identification of parallelizable components, viz.
pattern discovery, in particular the identification of divide-and-conquer structures
(or d & c for short). Pattern discovery is a technique to use static program analyses
to find those fragments of a possibly large code body which exhibit the same be-
haviour as a pattern; such code fragments are called pattern candidates. The pattern
discovery technique can be exploited in a software development tool, which may help
software developers make good programming decisions. If the tool finds a pattern
candidate, it may notify the programmer, who may decide to refactor the code to
make the pattern explicit, possibly implementing the pattern with some predefined
algorithmic skeletons. The tool may even help to perform the refactoring by apply-
ing automated program transformations on the source code under the supervision
of the software developer. The refactoring technology to introduce skel skeletons
is described e.g. in [4, 1].

The ParaPhrase Refactoring Tool for Erlang (a.k.a. PaRTE) offers exactly the
above services [2]: software developers can find pattern candidates in existing Erlang
code, and refactor them into applications of skel skeletons. Moreover, PaRTE is
able to estimate the speedup that can be achieved by transforming a candidate to
a skeleton-based parallel implementation, and hence prioritize candidates, in order
to propose the most promising ones to its user.

The main contribution of this paper is the technique of d & c candidate discov-
ery, implemented in a static analysis framework for Erlang (as part of PaRTE).
Additionally, the paper characterizes typical occurrences of the pattern using small
examples of well-known algorithms, and proves the applicability of the technique
on real-world source code bodies. The presentation of d & c pattern discovery is
concretized here for a nice and relatively simple language, Erlang, but the technique
can be generalized to other languages, or even paradigms.

766 T. Kozsik, M. Tóth, I. Bozó, Z. Horváth

Although the identification of a d & c algorithm in some source code is an in-
teresting problem by itself, its main benefit lies in its capability to facilitate the
parallelization of the code. Once we know where to introduce parallelism, we can
refactor the code either using a tool, or manually, to turn it into a parallel d & c. In
this scenario, some additional side conditions must be verified, which ensure that
the parallel components of the computation do not interfere with each other. Our
ultimate focus on parallelization has an effect also on how we define d & c: “degen-
erated” cases of d & c algorithms, i.e. those that should not be turned into a parallel
d & c implementation, will be exluded in our approach.

At the time of writing, support for the d & c pattern is limited in PaRTE. The
tool is already able to identify d & c pattern candidates using the ideas presented in
this paper. However, the introduction of the skeleton-based implementation of the
pattern is to be carried out manually, because the completely automated transfor-
mations are not available yet.

The rest of the paper is structured as follows. Section 2 elaborates on the concept
of pattern discovery. Section 3 points out the characteristics of d & c algorithms
using a sequence of examples. Section 4 reveals the (Erlang-specific) static analyses
required to discover d & c candidates. Section 5 describes the evaluation of the
presented method. Section 6 discusses related work, and Section 7 concludes the
paper.

2 PATTERN DISCOVERY

Pattern discovery is the act of finding pattern candidates in some source code by
applying static program analyses. Albeit its applicability is broader, we focus on
discovering parallel pattern candidates in general, and, in this paper, the d & c pat-
tern in particular. Pattern candidates are typically characterized with a syntactic
description and a set of properties that can be verified with some semantic analy-
ses. Therefore, discovery starts with locating certain program structures (e.g. list
comprehensions, function compositions, receive-expressions in Erlang), and then
it filters out irrelevant ones using a combination of different standard analyses (such
as control-flow, data-flow and data-dependence analyses), and specific ones (such
as side-effect analysis). Finally, a ranking of candidates found can be computed, if
a measure of “candidate goodness” is available. For example, in PaRTE a special
technique to estimate parallel speedup is used to rank found parallel pattern candi-
dates. In this paper, however, we will not consider this final step, we will focus on
the former two.

PaRTE is based upon RefactorErl [3], a static program analysis and transforma-
tion framework for Erlang. RefactorErl implements the standard control-flow and
data-flow analyses in an Erlang-specific way, taking into account the specificities
of a concurrent, dynamically typed, impure functional language (see Section 4.1).
RefactorErl also provides a rich representation of Erlang programs on which trans-
formations, e.g. refactorings, are easy to implement.

Static Analysis for Divide-and-Conquer Pattern Discovery 767

In a language like Erlang, the main sources of uncertainty in static analyses are
higher-order functions and the message-passing style inter-process communication.
In the presence of such constructs, higher-order analyses [23] may be necessary to
increase the precision of analysis results. However, for our purposes, first-order ana-
lyses will be sufficient in most of the cases. Firstly, the code fragments that should
be parallelized are likely to contain only computations, and no inter-process commu-
nication (such as Erlang/OTP behaviours1, callbacks, etc.). Secondly, higher-order
functions and lambdas are less frequently written, or even used, in Erlang than in
other functional languages; for instance, list comprehensions appear in code 5 to 10
times more often than the higher-order list processing functions of the Erlang/OTP
lists module [20].

It is important to understand the ultimate goal of pattern discovery. It will
not be built into a compiler in order to form the basis of a completely automatic
program transformation (compiler optimization). In contrast, pattern discovery will
be built into an integrated development environment (IDE): a software development
tool to help its users make good programming decisions. The user of the tool,
a software developer, should make those decisions; pattern discovery merely collects
information that can be used – or discarded – by the software developer. False
positives and false negatives are therefore tolerable. It is clear that in order to be
useful, pattern discovery should be as precise as possible, but in an interactive tool
there is always a trade-off between preciseness and response time.

The interactive nature of pattern discovery opens up further possibilities. Soft-
ware developers may pass options to the discovery tool which can be used to filter
the search results, and they may re-run the analyses multiple times, with different
options, until satisfactory results are obtained. For instance, if the software devel-
oper believes that the discovery returns too many false positives for a given Erlang
module, he or she can increase the order of the analyses for that particular module,
and allow the tool a bit more time – a few minutes, or even hours – to work.

2.1 Refactoring a Pattern Candidate

One possible option which can be passed to pattern discovery would exclude candi-
dates that cannot be automatically refactored by the tool. Assume that a software
developer only wants to find those candidates that can be trivially transformed into
an application of a parallel skeleton library.

For example, consider the following expression, which may appear in the code of
a parser for a programming language. It reads, tokenizes and parses a list of source
code modules – which can be parallelized in a straightforward manner.

1 [parse(scan(read(Module))) || Module <- Modules]

1 OTP – a bit misleadingly – stands for Open Telecom Platform, which is “simultane-
ously a framework, a set of libraries, and a methodology for structuring applications” [11]
for Erlang.

768 T. Kozsik, M. Tóth, I. Bozó, Z. Horváth

This candidate, a list comprehension with a function composition in the head,
can be recognized as a pipeline pattern, and easily parallelized using a parallel
skeleton library. A pipeline applies n transformations on each element of an input
list, where n is the number of processes assigned to this task. Each process takes an
item from the previous process in the pipeline, applies its transformation (“stage”),
and passes the resulting item on to the next process in the pipeline. This is a parallel
programming pattern, since each of the processes can work on different items at the
same time. The list comprehension can be transformed into an application of the
skel skeleton library in the following way.

1 STAGE1 = { seq , fun read /1 },
2 STAGE2 = { seq , fun scan /1 },
3 STAGE3 = { seq , fun parse /1 },
4 PIPELINE = { pipe , [STAGE1 , STAGE2 , STAGE3] },
5 skel:do([PIPELINE], Modules)

Skeletons in skel are expressed as tuples tagged with specific atoms, such as
seq and pipe. The stages of the pipeline, the three functions, are “sequential
components” denoted with seq – such sequential components are the basic building
blocks of any skeletal descriptions. The skeleton is executed by calling the skel:do/2
function on the skeleton description and the input list, here Modules.

In order to further increase parallelism, one could wrap the pipeline in a task
farm, and process e.g. 5 instances of the pipeline in parallel.

1 skel:do([{ farm , [PIPELINE], 5 }], Modules)

Note that these transformations are really easy to carry out by a tool. However,
many pattern candidates are more hidden, or tangled with other code fragments.
Certain candidates can be automatically transformed at once, other candidates need
to be reshaped first with a sequence of small refactorings. We presented a method-
ology of this programmer guided, semi-automatic transformation technique in [1].
In the most complicated cases, manual refactoring of the code might be necessary.

2.2 Examples of Parallel Patterns

The previous section gave examples of two well-known parallel patterns: the pipeline
and the task farm (written in skel as pipe and farm, respectively). Parallel pattern
libraries in general, and skel in particular, offer some further patterns as well.

Pipeline is used when a function composition is applied on a (possibly long) se-
quence of data. The functions that make up the composition are deployed in
different processes, and hence form the stages of the pipeline.

{ pipe , [Stage | Stages] }

Task farm is suitable to perform an operation on a large data set using a number
of processes. Each process takes an element of the input data set, applies the

Static Analysis for Divide-and-Conquer Pattern Discovery 769

operation on it, puts the result in the output data set, and recurses until the
input is empty. If the input data set is a sequence, care must be taken to
produce the output in the same order. A task farm can also operate on a stream
of inputs.

{ farm , Task , NumOfWorkers }

Parallel map is also applied on a large data set. A process decomposes the data
set into smaller chunks, further processes perform the necessary operation on
these chunks, and the last process collects results and recomposes the output
data set.

{ map , Task , Decomp , Recomp }

Parallel d & c is the parallelized execution of a divide-and-conquer algorithm.
A divide-and-conquer algorithm is to be applied on a (large) problem, which
can be decomposed (divided) into smaller ones. This decomposition can be re-
cursive, until a small-enough subproblem (base case) is reached. An operation
(base function) is applied on the base cases, and the results are recombined
(following the same recursive structure as for decomposition).

It is important to note that a subproblem can be processed in parallel with
the processing of other (e.g. sibling) subproblems, where processing means ei-
ther applying the base function, or recursively calling the divide-and-conquer
operation. Hence we have a parallel pattern of the following structure.

{ dc , IsBase , BaseFun , Divide , Combine }

Note that the d & c pattern can be expressed as a recursive parallel map, as
illustrated by the following pseudo-code (based on [19]).

1 dc (IsBase , BaseFun , Divide , Combine) ->
2 fun (Data) ->
3 case IsBase (Data) of
4 true -> BaseFun (Data) ;
5 false -> (parmap (dc (IsBase ,BaseFun ,Divide , Combine),
6 Divide ,
7 Combine
8)
9)(Data)

10 end
11 end.

Practical implementations of the d & c parallel pattern may provide ways to
bound parallelism. For example, an upper bound of created processes could be
given,

{ dc , IsBase , BaseFun , Divide , Combine , MaxProcesses }

or subproblems satisfying a given property (e.g. subproblems of a given size)
could be processed sequentially (i.e. with a sequential divide-and-conquer oper-
ation) rather than recursively with the parallel divide-and-conquer operation.

770 T. Kozsik, M. Tóth, I. Bozó, Z. Horváth

SEQ_DC = { seq_dc , IsBase , BaseFun , Divide , Combine },
PAR_DC = { dc , IsSeq , SEQ_DC , Divide , Combine }

From all these patterns, we focus on the parallel d & c pattern in this paper. More-
over, we are interested here mainly on d & c pattern discovery.

3 CHARACTERIZATION OF D & C

Divide-and-conquer algorithms recursively divide a problem into subproblems, solve
those subproblems independently, and combine the results. Mou and Hudak gave
an algebraic model in [15], which characterizes a large class of d & c algorithms
as pseudomorphisms: a “divacon” is a function f that is defined as the function
composition

c ◦ h ◦ (map f) ◦ g ◦ d

on “non-basic inputs” (i.e. on inputs that are intended to be further divided), where d
is a divide function, c is a combine function, and g and h are “adjust functions”. The
last constituent of a divacon is the “base function”, which is applied on basic inputs.
Without going into details on further requirements on divacons, we emphasize that f
is applied multiple times on independent inputs within its own definition, as implied
by “map f”. Note that this simple characterization considers functions like map
or fold as divacons – from our perspective these examples are, in fact, degenerate
cases, since we prefer to recognize them as other patterns.

Let us remember the essence of the above structural description, but now we
should change the viewpoint. Rather than considering the algebraic characteri-
zation, which is a canonical form of the pattern, one could examine a range of
interesting syntactic occurrences of the pattern, which can appear quite naturally,
or maybe rather unnaturally, in a functional program. We will go through some
code examples, and see what we can learn from them – in order to develop a pattern
discovery technique that works well enough in practice.

Quicksort. The most obvious, syntactically recognizable, form of a d & c algo-
rithm is when we find multiple recursive calls in the body of a function.

1 qs(List)->
2 case List of
3 [] -> [];
4 [H | T] ->
5 {SubList1 , SubList2 } =
6 lists: partition (fun(X)-> X < H end , T),
7 qs(SubList1) ++ [H] ++ qs(SubList2)
8 end.

The functional-style quicksort algorithm divides a list to be sorted into two sub-
lists based on a pivot element (line 6), recursively sorts both lists, and concatenates
the results (line 7).

Static Analysis for Divide-and-Conquer Pattern Discovery 771

Mergesort. In its most straightforward form, mergesort is written very similarly
to quicksort – the main difference between the two is that in quicksort the divide-
phase is the computationally more expensive phase, while in mergesort it is the
combine-phase. Another, maybe less natural phrasing of mergesort shows that a case
with two recursive calls is just a special case of the map-form.

1 ms(L) ->
2 case L of
3 [] -> [];
4 [H] -> [H];
5 [H | T] ->
6 {SubList1 , SubList2 }=
7 lists:split ((length (L) div 2), L),
8 [L1 , L2] =
9 lists:map(fun ms/1, [SubList1 , Sublist2]),

10 merge(L1 , L2)
11 end.
12

13 merge ([] , L2)-> L2;
14 merge(L1 , []) -> L1;
15 merge ([H1|T1], [H2|T2] = L2) when H1 < H2 ->
16 [H1 | merge(T1 , L2)];
17 merge ([H1|T1] = L1 , [H2|T2]) ->
18 [H2 | merge(L1 , T2)].

What happens, if we extract the recursive calls to ms/1 and the call to merge/2
into a separate function?

1 ms(L) ->
2 case L of
3 [] -> [];
4 [H] -> [H];
5 [H | T] ->
6 {SubList1 , SubList2 }=
7 lists:split ((length (L) div 2), L),
8 sort_and_merge (SubList1 , SubList2)
9 end.

10

11 sort_and_merge (L1 ,L2) ->
12 merge(ms(L1), ms(L2)).

When pattern discovery tries to identify recursive calls, it must take into account
that recursion may happen indirectly, through other functions, as well.

Karatsuba. Our next d & c example is the well-known fast multiplication method
for large integers. The integer numbers are represented as bit-strings. When a prob-
lem is divided into subproblems, smaller bit-strings are constructed (half the size of
the original bit-strings). This example demonstrates a case when the original prob-
lem is divided into more than two subproblems: the karatsuba/2 function calls
itself three times in its body (lines 12–14). Moreover, the problem is represented
with two, and not only one formal argument.

772 T. Kozsik, M. Tóth, I. Bozó, Z. Horváth

For brevity, we skip the definition of the add/2, sub/2 and shift/2 functions,
which add, subtract and left-shift integers represented as bit-strings.

1 karatsuba (Num1 , Num2) ->
2 S1 = bit_size (Num1),
3 S2 = bit_size (Num2),
4 case {Num1 , Num2} of
5 {<<0:1>>, _} -> <<0:S2 >>;
6 {_, <<0:1>>} -> <<0:S1 >>;
7 {<<1:1>>, _} -> Num2;
8 {_, <<1:1>>} -> Num1;
9 _ ->

10 M = max(S1 , S2),
11 M2 = M - (M div 2),
12 <<Low1:M2/bitstring , High1/bitstring >> = Num1 ,
13 <<Low2:M2/bitstring , High2/bitstring >> = Num2 ,
14 Z0 = karatsuba (Low1 ,Low2),
15 Z1 = karatsuba (add(Low1 , High1),add(Low2 ,High2)),
16 Z2 = karatsuba (High1 , High2),
17 add(add(shift(Z2 , M2 *2) , Z0),
18 shift(sub(Z1 ,add(Z2 , Z0)), M2))
19 end.

Radix sort. The common property of the before mentioned algorithms is that
all of them contain multiple, but a small number of, recursive calls. However,
a function can call itself many times, and this may not be conveniently expressed
with a sequence of recursive calls in the code of the function – the canonical map-form
discussed above seems more appropriate. The following sort/2 function definition
nicely exhibits this canonical form. Note that sort/2 does not call itself directly,
but rather through the higher-order lists:map/2 function. This kind of implicit
recursion should be also handled properly by the pattern discovery analyses. One
way to achieve this is to build special knowledge about the functions of the lists
module into the analyses.

1 sort([], _) -> [];
2 sort([V], _) -> [V];
3 sort(List , Level) ->
4 Buckets = divide (List ,Level),
5 SortedLists = lists:map(fun(B) -> sort(B, Level +1) end ,
6 Buckets),
7 lists: append (SortedLists).

Erlang programmers prefer list comprehensions to lists:map/2. The third
clause of sort/2 can be written considerably shorter with this language construct.
A recursive call in the head of a list comprehension is the sign of a d & c function
with very high probability.

1 sort(List , Level) ->
2 lists: append ([sort(B,Level +1) || B<- divide (List , Level)]).

Static Analysis for Divide-and-Conquer Pattern Discovery 773

Minimax. The depth-limited minimax algorithm is our next example. The pre-
sented implementation uses two mutually recursive functions, where both functions
call the other one multiple times. Moreover, it can be the case that the number of
children is not fixed for all nodes, and hence the functions call each other in varying
number of times at different levels of the algorithm. Note that both of the mutually
recursive functions can be regarded as d & c functions.

1 mm_max (Node , Depth) ->
2 case Depth == 0 orelse terminal (Node) of
3 true ->
4 value(Node);
5 false ->
6 lists:max ([mm_min (C,Depth -1) ||C <- children (Node)])
7 end.
8 mm_min (Node , Depth) ->
9 case Depth == 0 orelse terminal (Node) of

10 true ->
11 value(Node);
12 false ->
13 lists:min ([mm_max (C,Depth -1) ||C <- children (Node)])
14 end.

3.1 Non-Trivial Occurrences of the Pattern

So far we have seen some natural program code structures, which implement d & c
algorithms. Our real-life examples revealed some classes of d & c pattern candidates.
We have learnt that a function may call itself explicitly multiple times within its own
body, within a called function, or as part of a mutually recursive set of functions.
The multiple recursive calls may appear lexically in the code, but they may take
place due to an iterative structure, such as a list comprehension, or to a special
higher-order function, such as lists:map/2 as well.

However, pattern discovery should be able to cope with trickier examples, too.
In some real-world code the programmer may write a function, which has the same
recursion structure as lists:map/2, but maybe tangled with some other function-
ality. In general, it is possible to rewrite these functions with map, and hence make
them more elegant, but pattern discovery should be able to find d & c functions in
inelegant code as well.

1 sort(List , Level) ->
2 lists: append (conquer (divide (List ,Level),Level)).
3

4 conquer ([], Level) ->
5 [];
6 conquer ([B|Bs], Level) ->
7 [sort(B,Level +1) | conquer (Bs , Level)].

In [1] we have defined an analysis to discover “map-like functions” – those that
basically work as lists:map/2, just like the above conquer/2 function. As we have

774 T. Kozsik, M. Tóth, I. Bozó, Z. Horváth

already noted, discovery of d & c candidates must investigate lists:map/2 calls, but
it must be able to recognize map-like functions as well.

The next complication arises when the mapping of the recursive calls and the
combine phase get tangled into a “fold-like function”, like, for instance, in the next
code fragment. If pattern discovery can identify fold-like functions, this knowledge
can be exploited in d & c discovery as well.

1 sort(List , Level) ->
2 conquer (divide (List ,Level),Level).
3

4 conquer ([], Level) ->
5 [];
6 conquer ([B|Bs], Level) ->
7 sort(B,Level +1) ++ conquer (Bs , Level).

One can construct even more contrived d & c functions, based on the ideas from
the following example.

1 x(P) ->
2 ...
3 r(fun x/1, partition (P))
4 ...
5

6 r(F,Q) ->
7 A = some_part_of (Q),
8 B = some_other_part_of (Q),
9 ...

10 C = F(A), % A does not depend on D
11 D = r(F,B), % B does not depend on C
12 ...

Function x/1 calls r/2 (line 3); r/2 is recursive (line 11), and contains a call to
x/1 (line 10). Now both x/1 and r/2 are d & c candidates (if some data independence
side-conditions hold). Here r/2 is responsible for an iterative call of x/1, and can
be regarded as a generalization of map-like functions.

3.2 Non-Trivial Occurrences of the Non-Pattern

Strictly speaking, every recursive function can be considered as d & c. The structure
of the simplest recursive definitions is the following.

1 f(Problem) ->
2 case base_case (Problem) of
3 true -> basic_function (Problem);
4 false -> SubProblem = divide (Problem),
5 SubSolved = f(SubProblem),
6 combine (SubSolved)
7 end.

This corresponds to the characterization of d & c definitions, especially if line 5
is replaced with the equivalent

Static Analysis for Divide-and-Conquer Pattern Discovery 775

5 [SubSolved] = lists :map(fun f/1, [SubProblem]),

line. However, we should regard similar definitions as degenerated cases of d & c.
In contrast, we want d & c discovery to focus only on the really profitable candidates,
ones that can benefit from pattern-based parallelization. Moreover, we expect d & c
discovery to choose the best pattern for a candidate. If a function is map-like,
pattern discovery should propose a task farm or a map pattern, and if it is fold-
like, a reduce pattern is completely suitable – although both map-like and fold-like
functions can be considered as special cases of d & c (indeed, [15] uses imbalanced
reduce as an example of divacon functions).

1 maplike (List) ->
2 case isempty (List) of
3 true -> [];
4 false ->
5 [SubList] = [tail(List))],
6 [SubSolution] = lists :map(fun maplike /1, [SubList]),
7 [someunaryoperation (head(List)) | head ([SubSolution])
8 end.
9

10 foldlike (List) ->
11 case isempty (List) of
12 true -> defaultvalue ;
13 false ->
14 [SubList] = [tail(List))],
15 [SubSolution] = lists :map(fun foldlike /1, [SubList]),
16 somebinaryoperation (head(List), head ([SubSolution]))
17 end.

Intuitively, pattern discovery should identify a function as d & c candidate, if it
calls itself more than once during the execution of a single instance of its body –
but we shall make this precise in Section 4.

Another important aspect in the analysis of d & c candidates is how we deal
with execution paths. If a function calls itself on different execution paths, as in the
following definition of binsearch/4, we should not consider it as d & c.

1 binsearch (Array , Pattern) ->
2 binsearch (Array ,0, array :size(Array) -1, Pattern).
3 binsearch (Array ,Lower ,Upper , Pattern) when Lower =< Upper ->
4 H = (Lower+Upper) div 2,
5 Val = array:get(H,Array),
6 if
7 Val < Pattern -> binsearch (Array ,H+1,Upper , Pattern);
8 Val > Pattern -> binsearch (Array ,Lower ,H-1, Pattern);
9 true -> true

10 end;
11 binsearch (_,_,_,_) -> false.

Moreover, depending on the capabilities of the control flow analysis, d & c dis-
covery may be able to tell the difference between the following two definitions:

776 T. Kozsik, M. Tóth, I. Bozó, Z. Horváth

a strangely written binsearch/4 function (which is non-d & c) and the quicksort on
non-empty lists (which is).

1 binsearch (Array ,Lower ,Upper , Pattern) when Lower =< Upper ->
2 H = (Lower+Upper) div 2,
3 Val = array:get(H,Array),
4 (Val == Pattern)
5 orelse
6 (Val < Pattern andalso binsearch (Array ,H+1,Upper , Pattern))
7 orelse
8 (Val > Pattern andalso binsearch (Array ,Lower ,H-1, Pattern));
9 binsearch (_,_,_,_) -> false.

10

11 qs([H|T]) ->
12 {List1 , List2} = lists : partition (fun(X)-> X<H end , T),
13 Left = if length (List1) > 1 -> qs(List1);
14 true -> List1
15 end ,
16 Right = if length (List2) > 1 -> qs(List2);
17 true -> List2
18 end ,
19 Left ++ [H] ++ Right
20 end.

In our final example, we reimplement the qs/1 function again. Note that this
new implementation can be slightly faster, because qs/1 is now defined in terms of
a tail-recursive helper function, qs/2.

1 qs(List) -> lists: reverse (qs ([] ,[List])).
2

3 qs(Result , []) ->
4 Result ;
5 qs(Result , [[] | Lists]) ->
6 qs(Result ,Lists);
7 qs(Result , [[H] | Lists]) ->
8 qs([H| Result],Lists);
9 qs(Result , [[H|T] | Lists]) ->

10 {SubList1 , SubList2 } =
11 lists: partition (fun(X)-> X < H end , T),
12 qs(Result ,[SubList1 , [H], SubList2 | Lists]).

Theoretically, this is the same computation: the two recursive calls are simply
replaced with an accumulator in the second argument of qs/2, which emulates
the call stack. However, we shall not consider this definition d & c anymore. The
recursion structure is completely changed: the qs/2 function does not call itself
“iteratively”, as qs/1 did in the original implementation. This kind of semantic
equivalence is out of the scope and the capabilities of our d & c candidate discovery.

4 CANDIDATE DISCOVERY FOR D & C

In order to find d & c candidates, function definitions in the program source code
shall be analysed. This section describes the required analyses: some of them are

Static Analysis for Divide-and-Conquer Pattern Discovery 777

standard, general analyses, such as the construction of a control-flow graph, others
are specific to d & c discovery. The description assumes that an abstract syntax tree
(AST) is already available for the program text to be analysed. In the context of the
Erlang language, this AST contains “forms” (such as module declarations, import
and export clauses, function definitions, etc.), function and expression clauses (e.g.
case and receive clauses), and expressions.

Section 4.1 summarizes how standard analyses map to a functional language like
Erlang. Then, Section 4.2 presents rules for the identification of d & c candidates.
These rules rely on the results of the standard analyses. Since these rules may be
computationally expensive, in practice an approximation of these rules may be very
useful. This idea is elaborated in Section 4.3.

4.1 Standard Static Analyses Customized for Erlang

Now we present a brief overview of some widely applied analyses, and show how these
can be interpreted for Erlang programs. More details on these analyses, including
a formal discussion, can be found in e.g. [28].

The “zeroth-order” analyses can be performed on an AST. It is well-known that
the results of one analysis can be used to refine the input for another, which in return
will provide more precise analysis results. Therefore, one can execute an analysis
sequence repeatidly – theoretically, until a fixed point is reached. This way higher
order analysis results are obtained. Since the iterative execution of all analyses is
definitely expensive for large programs, in practice first-order analyses are already
considered good enough. However, we are not restricted to lower order analyses. As
explained in Section 2, we envision an interactive software analysis tool, in which
the order of the analysis can be a customizable parameter, and the user can analyse
“seemingly interesting” parts of the source code more deeply and precisely.

4.1.1 Control-Flow Analysis

In a functional language, the execution of a program is the evaluation of its ex-
pressions. The control-flow analysis should therefore discover the evaluation order
of expressions. In a non-lazy language, like Erlang, this evaluation order can be
computed more easily that in a lazy one.

The control-flow analysis starts from an entry point of a program. In Erlang,
this is a call of an arbitrary exported function: a function that is visible from outside
of its containing module.

Based on the above observations, the inter-procedural control-flow graph (CFG)
of an Erlang program from an exported function f is denoted as GCF (f). This
is a directed graph with labeled edges. Its nodes are the nodes in the AST of
the program, plus some auxiliary nodes. Moreover, its edges correspond to the
evaluation order of expressions. Edge labels are conditions, as seen below.

For each function g which is called during the evaluation of the main entry point
(i.e. f), auxiliary graph nodes are created, with the following intended meaning.

778 T. Kozsik, M. Tóth, I. Bozó, Z. Horváth

• startg represents the start of the evaluation of g,

• end g represents the end of the evaluation of g,

• call cg represents the calling of g at a call site c,

• ret cg represents the returning from g at a call site c.

GCF (f) is constructed as a union of the intra-procedural control-flow graphs of
the called functions, connected through the above auxiliary graph nodes. Roughly,
an intra-procedural control-flow graph is constructed by visiting the AST of its body
expressions in post-order, respecting the natural “subexpressions first” evaluation
order. At branching expressions the control-flow graph contains branches as well,
and the appropriate conditions are added as edge labels. (All other edge labels are
considered true.) The intra-procedural control-flow graph of a function g contains
the auxiliary nodes startg and end g: there is an edge from startg to the first pattern
of the first function clause, and there are edges from each return expression of g to
end g. (If we regard the intra-procedural CFG as a partial order over the constituting
expressions, startg is the bottom, and end g is the top value of the partial order.)

If a call to a function g occurs in any of the intra-procedural CFGs (includ-
ing that of g), the graph node c representing the call is replaced with two new
nodes: call cg and ret cg. All incoming edges (a, c) (for some other node a) are replaced
with edges (a, call cg), and all outgoing edges (c, a) are replaced with edges (ret cg, a).
Moreover, the edges (call cg, startg) and (end g, ret cg) are also present in GCF (f).

There is one more important concept related to the control-flow graph, namely
execution paths (EP). An execution path is a path in GCF (f), which may visit
an edge multiple times. A finite execution path terminates with the end f node,
but infinite execution paths are also possible. Given a GCF (f), the set of execution
paths starting from a node v will be denoted by EP(v).

4.1.2 Data-Flow Analysis

Similarly to the inter-procedural control-flow graph, the data-flow graph GDF of
an Erlang program can be defined as a directed graph with labeled edges. Again,
the nodes are the nodes of the AST – representing the (sub)expressions of the
analyzed program.

The graph edges describe the flow of data. An edge from u to v represents the
fact that there may be an execution of the program where the value of the expression
u flows into expression v. Labels on the edges characterize the different types of data
flow.

• If the value of u provides the value for v, the flow label is used. For example, the
actual parameter of a function flows into the formal parameter, or the right-hand
side of a match expression flows into the left-hand side expression.

{A,B} = {X + Y, Y }

In this expression {X + Y, Y } flows into {A,B}.

Static Analysis for Divide-and-Conquer Pattern Discovery 779

• If v is a tuple, list, etc. expression, and u provides the value of a substructure
(i.e. an element of a tuple/list, the tail of a list, etc.), the label is construct –
more specifically, it is constructi , constructtail , etc. For the match expression
above, for example, there exists a construct1 edge from X + Y to {X + Y, Y }.
• If u is a tuple, list, etc. expression, and v extracts a component, then the label

select is used, e.g. selecti , selecttail , etc. For the match expression above, for
example, there exists a select1 edge from {A,B} to A.

• Other data flow dependences between expressions are labeled with dep, like the
edge from X to X + Y in the example above.

From the flow, construct and select edges of GDF , the data-flow reaching relation
can be computed. This data-flow reaching computation pairs construct and select
edges. For example, in the match expression above the expression A is reachable
from X + Y , because of the construct1–flow–select1 path in the GDF .

4.1.3 Derived Information

Function call graph. Being a functional language, Erlang supports higher-order
functions. Therefore, the function call analysis depends on the result of the data-flow
analysis (and vice-versa). As mentioned above, an approximation can be achieved by
applying a fixed (but customizable) number of iterations. The result of the function
call analysis is the function call graph, which will be denoted as GFC .

Dependence graph. The control dependence graph (CDG) can be computed
from the control flow graph as described in e.g. [16, 17]. Then the CDG is extended
with the dep-edges of the GDF and the data-flow reaching relation to form GD(f),
the dependence graph of the program with entry point f . When a dep-edge or
a data-flow reaching edge is to be added to the GD(f) from, or to, a function call
expression, then outgoing edges will start from the respective ret node of the CFG,
and incoming edges will arrive at the call node.

A path from u to v in GD(f) will be denoted by u
dep
 v.

4.2 Identifying Rules for D & C

The divide and conquer pattern describes a computation where a problem is re-
cursively divided into sub-problems (until a given condition), and after solving the
sub-problems the sub-solutions are combined to produce the final solution.

As we have seen in Section 3, there are many syntactic forms which express
a recursive d & c-like function. From semantical point of view, a canonical form can
be given as follows.

1 cdc(Problem) ->
2 case isbase (Problem) of
3 true -> solve(Problem);

780 T. Kozsik, M. Tóth, I. Bozó, Z. Horváth

4 false ->
5 SubProblems = divide (Problem),
6 SubSolutions = lists :map(fun cdc /1, SubProblems),
7 combine (SubSolutions)
8 end.

Therefore, we are looking for a function, which

• has at least one parameter, defining the problem to solve; and

• has, or triggers, multiple recursive calls in its body;

furthermore, these recursive calls satisfy the following properties:

• their actual parameters do not depend on the result of (other) recursive calls;

• their actual parameters depend on the formal parameters of the function defini-
tion,

• the return value of the function depends on the result of the recursive calls.

For pure computations, the above rules are sufficient. However, Erlang functions
are often impure [18]. Therefore, the concept of component hygiene should be
introduced [1]. Here the recursive calls must be possible to run in parallel, and
hence their side effects, if there are any, must not be conflicting. For simplicity, we
disregard this issue in this paper. Information on hygiene analysis can be found
in [1].

To formally define the rules for d & c identification, we consider a function f ,
as well as the control-flow graph GCF (f) and dependence graph GD(f) built from f
as a starting point. If the following conditions hold, f will be identified as a d & c
candidate.

1. f must be recursive: it has an execution path which contains a call to itself;

∃p ∈ EP(startf), ∃c such that callcf ∈ p

2. f must have a base case: it has an execution path which does not contain a call
to itself;

∃p ∈ EP(startf) such that (@c : callcf ∈ p) ∧ (endf ∈ p)

3. f must have multiple recursive calls in its body, as described by the following
three possibilities.

• It may contain an execution path that contains at least two independent
recursive calls2:

∃c1, c2,∃p ∈ EP(retc1f) such that callc2f ∈ p ∧ ∀a ∈ ARG(c2) : ¬(a
dep
 retc1f)

2 Obviously, there may be more than two recursive calls, but only the independent
recursive calls result in exploitable parallelism.

Static Analysis for Divide-and-Conquer Pattern Discovery 781

where ARG is the set of nodes representing the arguments of a function
call.

• It may have an execution path containing a list comprehension with head
expression h, which calls f directly or indirectly, that is:

∃p ∈ EP(h), ∃c such that callcf ∈ p.

• It may (directly or indirectly) call a farm candidate (see below) function g,
which in turn calls f in its every recursive execution paths.

∃p ∈ EP(startf),∃c1,∃g recursive function such that callc1g ∈ p ∧

∀q ∈ EP(startg) : (∃c2 : callc2g ∈ q)→ (∃c3 : callc3f ∈ q).

Farm candidates. The above rules refer to another important class of paral-
lelizable functions: those functions, which can be turned into a parallel task farm.
Such farm candidates operate on a collection (set, list or stream) of data by ap-
plying a computation on each data item independently of the others. A formal
characterization of map-like functions has been published in [1]. According to this
characterization, a function f is map-like, if it satisfies the following conditions. It
has a list parameter L, and returns a list. The head of the returned list may depend
on the head of L, but may not depend on the tail of L. Similarly, the tail of the
returned list may not depend on the head of L: it should simply be the result of
a recursive call to f on the tail of f . Moreover, f may have further parameters, but
all these parameters must be passed to the recursive call unchanged.

Note that the standard map function in Erlang, lists:map/2, satisfies these
conditions; it is indeed a map-like function.

The characterization of map-like functions can be generalized to cover tail-
recursive implementations of the same behaviour. Another generalization can cover
the case when the input is a stream of data items (generated or received concur-
rently to the processing of those items). These generalizations are described in [22].
Further generalizations can also be made, and hence even more farm candidates can
be identified – this way the scope of the d & c identification analysis also extends.

The rules given in this section are based on the studies presented in Section 4,
and are therefore suitable to identify the d & c pattern candidates, and discard the
non-patterns, as explained in that section.

4.3 Efficient Approximation of D & C Identification

The above rules are all based on the concept of EP , the execution paths in the
control-flow graph. The computation of all execution paths is extremely time-
consuming, which can turn d & c analysis impractical for larger code bodies. There-
fore less precise, but more efficiently computable conditions have to be applied for
such cases. Execution paths are used by our analysis for finding certain function

782 T. Kozsik, M. Tóth, I. Bozó, Z. Horváth

calls. One can substitute this analysis with a similar one working on the functional
call graph, GFC . This is clearly an approximation, since GFC only records which
functions call which other functions, and does not allow us differentiate calls on
different execution paths. Let the edges of GFC be denoted with the funcall la-
bel, and a path in GFC with funcall+ (which is an edge in the transitive closure of
GFC).

Our d & c discovery analyses GFC , and searches for patterns expressing iterative
evaluation of a function. Figure 1 shows such a call graph pattern. If a function
f calls (directly or indirectly) a recursive function g (i.e., g calls itself directly or
indirectly), and g calls f , then our analysis suspects that f is called in every recursive
step, so it is called multiple times by g.

Figure 1. A fragment in a function call graph typical for d & c

After collecting such suspicious f -g pairs, a more precise analysis can be applied
to determine whether f is really a d & c candidate.

5 APPLICABILITY OF D & C DISCOVERY

This section reports on our findings on the applicability of d & c pattern candidate
discovery. The analyses presented in this paper have been implemented within the
ParaPhrase Refactoring Tool for Erlang. In order to investigate the effectiveness
of our approach, we have analysed some small examples, some use cases developed
within the ParaPhrase project, and some open source projects as well. Our findings
were reported in ParaPhrase project deliverable D6.6 [21]. Here we demonstrate
two applications in which several d & c candidates were found.

We verified manually (some of) the pattern candidates found by the tool, to
see whether they really possess the properties that qualify them for the identi-
fied pattern. Most candidates (list comprehensions and applications of predefined
higher-order functions) are trivially appropriate, hence we checked them only by
random sampling. Map-like functions and divide-and-conquer algorithms are more
sophisticated to characterize and harder to find, and so we paid more attention
to them. We checked the dozen map-like functions the tool found, but used only
random sampling for the about one hundred divide-and-conquer candidates. Two
interesting d & c candidates are presented below in Section 5.2.

Static Analysis for Divide-and-Conquer Pattern Discovery 783

5.1 Discovery Statistics

First of all, we have analysed the source code of the distributed database man-
agement system Mnesia [25], which is part of the standard Erlang/OTP library.
The analyzed code body contains 1 693 function definitions in 31 files, and con-
sists of 22 653 effective lines of code. We could find 57 d & c candidates (Ta-
ble 1).

Candidate Number of Occurrences Kind of Pattern

various library calls 72 farm
various library calls 36 reduce
list comprehension 58 farm
map-like function 5 farm
d & c-like function 57 divide and conquer

Table 1. Mnesia

Then we have analyzed some components of the RefactorErl tool [26] as well.
The analyzed referl core component contains 1 534 function definitions in 53 files,
and consists of 19 694 effective lines of code. We could find 31 d & c candidates
(Table 2).

Candidate Number of Occurrences Kind of Pattern

various library calls 139 farm
various library calls 55 reduce
list comprehension 347 farm
map-like function 3 farm
d & c-like function 31 divide and conquer

Table 2. RefactorErl: referl core

5.2 Examples of Interesting Candidates

During the validation of pattern candidate discovery, we have encountered really
nice instances of map-like and divide-and-conquer definitions. Here we point out
two demonstrative cases.

The first example (Figure 2) shows a beautiful instance of the divide-and-conquer
pattern: the refcore_callanal:listcons_length/2 function almost completely
follows the “canonical form” of d & c. It operates on a list; it splits the list in the
divide-phase using lists:partition/2, it applies (through listcons_length/1)
itself iteratively with lists:map/2 in the non-base case, and finally combines the
results explicitly (with lists:append/1). The particularity of this example is that
the d & c function is not directly recursive: it calls itself indirectly through another
function.

784 T. Kozsik, M. Tóth, I. Bozó, Z. Horváth

1 listcons_length (ListExpr) ->
2 listcons_length (ListExpr , ? Graph :data(ListExpr)).
3 ...
4 listcons_length (N, #expr {}) ->
5 Ns = ? Dataflow :? reach ([N], [back], true),
6 L1 = [N2 || N2 <- Ns , N2 /= N,
7 ?Graph:class (N2) == expr],
8 {L2 , L3} = lists: partition (fun is_cons_expr /1, L1),
9 if L2 == [] orelse L3 /= [] ->

10 incalculable ;
11 true ->
12 lists: append (lists :map(fun listcons_length /1, L2))
13 end;
14 ...

Figure 2. Nice d & c in RefactorErl

The second example (Figure 3) is again from the code of RefactorErl, namely
the refcore_pp:realtoken_neighbour/3 function. At a first sight, this function
is a simple recursive function calling itself in line 16. If we further investigate
this function, we find another execution path that calls realtoken_neighbour_/4.
This function is a recursive function that calls realtoken_neighbour/3 in its every
recursive execution path. This is exactly the pattern in the function call graph which
can be detected by our faster d & c candidate discovery algorithm.

Our discovery analysis identifies realtoken_neighbour/3 as a divide-and-con-
quer definition, because it calls realtoken_neighbour_/4, which iterates through
the Parents list, and calls realtoken_neighbour/3 in each step. Note that the
identification of the base condition (and the corresponding base function) of this
d & c candidate is not straightforward, since the condition is scattered over several
case expression headers and patterns. Hence the automatic transformation of this
definition into a d & c pattern is indeed a challenge.

6 RELATED AND FUTURE WORK

Various approaches have been published related to parallel pattern identification.
Some of these methods use purely static information, but others monitor the dy-
namic behaviour of the system as well.

In [1] a formal definition of “map-like functions” is given in order to automati-
cally discover list-based elementwise computations. The paper also describes a vari-
ety of program shaping transformations to refactor the map-like pattern candidates
in a syntactic form that can be then transformed into an application of the farm
skeleton.

In [2] the ParaPhrase Refactoring Tool for Erlang was introduced. This tool pro-
vides pattern discovery, candidate ranking based on performance measurements and
estimates, as well as semi-automatic pattern introduction by refactorings. The cost
models used by the tool were defined in [4]. Our presented d & c candidate discov-

Static Analysis for Divide-and-Conquer Pattern Discovery 785

1 realtoken_neighbour (Node , DirFun , DownFun) ->
2 case lists: member (? Graph : class(Node),
3 [clause ,expr ,form ,typexp ,lex]) of
4 false -> no;
5 _ ->
6 case ?Syn: parent (Node) of
7 [] -> no;
8 [{_, Parent }] ->
9 case lists: dropwhile (

10 fun ({_T ,N}) -> N/= Node end ,
11 DirFun (? Syn: children (Parent))
12) of
13 [{_,Node },{_, NextNode }|_] ->
14 DownFun (NextNode);
15 _ ->
16 realtoken_neighbour (Parent , DirFun , DownFun)
17 end;
18 Parents ->
19 realtoken_neighbour_ (Parents , DownFun (Node),
20 DirFun , DownFun)
21 end
22 end.
23

24 % Implementation helper function for realtoken_neighbour /3
25 realtoken_neighbour_ ([], _FirstLeaf ,_DirFun , _DownFun) ->
26 no;
27 realtoken_neighbour_ ([{_, Parent }| Parents],
28 FirstLeaf , DirFun , DownFun) ->
29 case realtoken_neighbour (Parent , DirFun , DownFun) of
30 FirstLeaf ->
31 realtoken_neighbour_ (Parents , FirstLeaf ,
32 DirFun , DownFun);
33 NextLeaf ->
34 NextLeaf
35 end.

Figure 3. Really complex d & c in RefactorErl

ery method extends this framework – although candidate ranking based on speedup
estimates is not implemented yet for d & c (pattern discovery reports currently all
d & c candidates without evaluating their parallel speedup potential).

The skel library [24] provides a set of reusable algorithmic skeleton implemen-
tations for Erlang. In [19] some high-level pattern implementations are presented
as an extension to skel, including d & c. As future work, we plan to implement
d & c transformations as well. To achieve our goal, we can rely on this high-level
skeleton library. Two useful features of this library are that we can limit the num-
ber of started parallel processes, and force sequential evaluation where beneficial.
Although skel does not support distributed skeletons such as D-Clean [29], it is
possible to extend it based on the Erlang concepts.

The Eden skeleton library [12] offers even more advanced d & c pattern imple-
mentations, for instance, the one based on the distributed expansion scheme. The

786 T. Kozsik, M. Tóth, I. Bozó, Z. Horváth

three main properties of this implementation are: (1) a branching degree is given by
a parameter representing the number of subproblems; (2) the process creation and
allocation is controlled by a ticket list; and (3) every process keeps a subproblem for
local evaluation. We are not aware of any pattern discovery tools for Eden, but it is
definitely possible to implement one based on the approach of this paper. Moreover,
it is also possible to re-implement Eden’s sophisticated d & c patterns for Erlang.

Several other researches focus on efficient d & c implementations, including for
example, Herrmann [9]. Note that the refactoring-centric approach of ParaPhrase
(and hence PaRTE) fosters experimentation with the various implementations and
parameter values, including thresholds controlling the parallel-sequential balance.

Although discovering d & c candidates is an interesting problem by itself, it
becomes the most beneficial when a tool introduces parallelism (semi)automatically
to the source code by replacing the sequential d & c with its parallel equivalent. In
this case two problems have to be addressed: the efficiency of the parallel d & c (and
hence the usefulness of parallelizetion) has to be investigated, and a transformation
framework has to be capable of introducing the parallel d & c implementation.

In [6] an automated transformation framework was introduced to transform
sequential d & c algorithms to parallel equivalents. The transformation uses a few
annotations (which are required to be provided by the programmer) to identify the
places where parallelism should be introduced.

The automatic transformation of d & c candidates motivated our research, but
it is not covered in this paper. We set out this research topic for future work, based
on the above mentioned papers.

Optimizing compilers are able to identify parallelizable code fragments, and also
to parallelize them automatically. Of course, such transformations are, and should
be, ultra-conservative, not allowing to change the semantics of the code. Our ap-
proach, on the contrary, can be more flexible and more effective, since we have a hu-
man in the loop: the final decision on parallelization is always made by our tool user.
To mention but one parallelizing compiler, SkelML [13] is a parallel skeleton-based
compiler for SML. It can automatically identify applications of certain higher-order
functions as pattern candidates and transform them to applications of equivalent
parallel skeletons. For instance, SkelML can transform fold function applications to
application of d & c skeletons. However, the pattern discovery technique applied by
SkelML is less generic than ours. Our tool is able identify various syntactic forms
of pattern candidates which are not necessarily just applications of special higher
order functions. Indeed, the strength of our tool is the analysis of recursive function
calls.

Similar parallelization techniques have been developed for non-declarative lan-
guages as well. The tool AutoFutures [14], for example, uses static analysis of Java
programs to discover source code fragments that have no data dependences, and can
be candidates for parallelization.

The static analysis approach that we also follow can be replaced (or combined)
with dynamic analyses as well. We can examine execution traces, like the tool [7]
based on JavaSlicer, which uses dynamic dependence graphs to identify independent

Static Analysis for Divide-and-Conquer Pattern Discovery 787

program paths in Java code, and recommends code fragments with a high potential
for parallelization. We can also integrate a static analysis based approach into one
using run-time monitoring of executions, which we plan for our future work.

7 CONCLUSION

This paper investigated the concept of divide-and-conquer pattern discovery, a static
program analysis technique to automatically identify parallelizable code fragments.
This analysis can cope with the many syntactically different occurrencies of d & c
behaviour. Depending on how conservative the analysis is, the technique can be
exploited in an optimizing compiler, or in an integrated software development envi-
ronment, which supports refactoring. We focused on the latter use case. This allows
our analysis to find d & c candidates which are too hard to transform automatically
into a skeleton-based parallel pattern implementation – in an IDE the user may in-
deed be able to carry out the transformation manually, or semi-automatically. Since
the final decisions are made by the user, this approach tolerates false positives, and
hence the analysis can be parametrized (and the discovery tool be dynamically con-
figured) by the level of conservativeness and that of aggressivity. This allows the
user to make the necessary practical trade-offs between effectiveness and safety, and
between effectiveness and latency.

Our analysis is built on top of control-flow, data-flow, reaching, function-call,
and control-dependence analyses. Therefore, the presented d & c candidate discov-
ery is applicable for a wide range of programming languages. However, we have
worked out the details of the analysis for the Erlang language, and for this the
paper summarized the Erlang-specific details of the CFG and DFG construction.
We have implemented the analysis in a software development tool, the ParaPhrase
Refactoring Tool for Erlang.

The numerous examples shown in the paper are also written in Erlang. As a final
evaluation of the approach, we applied the analysis on real-world open-source code
bases.

The lessons learned from the presented research are the following. Divide-and-
conquer algorithms are often implemented using recursion: indeed, we have defined
d & c as a function which calls itself recursively multiple times. Therefore, a static
analysis of (direct and indirect) recursive calls is able to detect (many) occurrences of
d & c. Such an analysis can be defined in the presence of an interprocedural control-
flow and data-flow analysis, and hence it is language and paradigm independent. In
an imperative language, for instance, a d & c function may include a loop construct
with a body containing a recursive call. Of course, it is possible to implement a d & c
algorithm without recursion, for instance using only iteration (loops in an imperative
language) and a stack data structure – such an implementation will not be found
by the proposed analysis.

The analysis of recursive calls can be defined using the concept of execution
paths. It turned out that this analysis is rather time-consuming. However, a faster,

788 T. Kozsik, M. Tóth, I. Bozó, Z. Horváth

though less precise, analysis based on the function call graph also performs very well
in practice.

Acknowledgement

The research presented in this paper was supported by the Seventh Framework
Programme (FP7) under the contract number 288570.

REFERENCES

[1] Bozó, I.—Fördős, V.—Horpácsi, D.—Horváth, Z.—Kozsik, T.—
Kőszegi, J.—Tóth, M.: Refactorings to Enable Parallelization. Trends in Func-
tional Programming, 15th International Symposium (TFP 2014). Springer Interna-
tional Publishing, Lecture Notes in Computer Science, Vol. 8843, 2015, pp. 104–121.

[2] Bozó, I.—Fördős, V.—Horváth, Z.—Tóth, M.—Horpácsi, D.—
Kozsik, T.—Kőszegi, J.—Barwell, A.—Brown, C.—Hammond, K.: Dis-
covering Parallel Pattern Candidates in Erlang. Proceedings of the Thirteenth ACM
SIGPLAN Workshop on Erlang, ACM, New York, NY, USA, 2014, pp. 13–23.

[3] Bozó, I.—Horpácsi, D.—Horváth, Z.—Kitlei, R.—Kőszegi, J.—
Tejfel, M.—Tóth, M.: RefactorErl – Source Code Analysis and Refactoring in
Erlang. Proceedings of the 12th Symposium on Programming Languages and Software
Tools, 2011, pp. 138–148.

[4] Brown, C.—Danelutto, M.—Hammond, K.—Kilpatrick, P.—Elliott, A.:
Cost-Directed Refactoring for Parallel Erlang Programs. International Journal of Par-
allel Programming, Vol. 42, 2014, No. 4, pp. 564–582.

[5] Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Cambridge, MA, USA, 1991.

[6] Freisleben, B.—Kielmann, T.: Automated Transformation of Sequential Divide-
and-Conquer Algorithms into Parallel Programs. Computing and Informatics, Vol. 14,
1995, No. 6, pp. 579–596.

[7] Hammacher, M.—Streit, K.—Hack, S.—Zeller, A.: Profiling Java Programs
for Parallelism. Proceedings of ICSE Workshop on Multicore Software Engineering
(IWMSE ’09), 2009, pp. 49–55.

[8] Hammond, K.—Aldinucci, M.—Brown, C.—Cesarini, F.—Dane-
lutto, M.—González-Vélez, H.—Kilpatrick, P.—Keller, R.—Ross-
bory, M.—Shainer, G.: The ParaPhrase Project: Parallel Patterns for Adaptive
Heterogeneous Multicore Systems. Formal Methods for Components and Objects,
Springer Berlin Heidelberg, Lecture Notes in Computer Science, Vol. 7542, 2013,
pp. 218–236.

[9] Herrmann, C. A.: The Skeleton Based Parallelization of Divide and Conquer Re-
cursions. Logos-Verlag, 2001. ISBN 9783897225565.

[10] Horpácsi, D.—Kőszegi, J.: Static Analysis of Function Calls in Erlang. e-Infor-
matica Software Engineering Journal, Vol. 7, 2013, pp. 65–76.

Static Analysis for Divide-and-Conquer Pattern Discovery 789

[11] Logan, M.—Merritt, E.—Carlsson, R.: Erlang and OTP in Action. Manning
Publications Co., 2010. ISBN 9781933988788.

[12] Loogen, R.: Eden – Parallel Functional Programming with Haskell. Central Euro-
pean Functional Programming School, Springer Berlin Heidelberg, Lecture Notes in
Computer Science, Vol. 7241, 2012, pp. 142–206.

[13] Michaelson, G.—Ireland, A.—King, P.: Towards a Skeleton Based Parallelis-
ing Compiler for SML. Proceedings of 9th International Workshop on Implementation
of Functional Languages, 1997, pp. 539–546.

[14] Molitorisz, K.—Schimmel, J.—Otto, F.: Automatic Parallelization Using Au-
tofutures. Proceedings of 2012 International Conference on Multicore Software Engi-
neering, Performance, and Tools, Springer Berlin Heidelberg, Lecture Notes in Com-
puter Science, Vol. 7303, 2012, pp. 78–81.

[15] Mou, Z. G.—Hudak, P.: An Algebraic Model for Divide-and-Conquer and Its
Parallelism. Journal of Supercomputing, Vol. 2, 1988, No. 3.

[16] Muchnick, S. S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers, Inc., 1997.

[17] Nielson, F.—Nielson, H. R.—Hankin, C.: Principles of Program Analysis.
Springer, 1999, corrected 2005.

[18] Pitidis, M.—Sagonas, K.: Purity in Erlang. Proceedings of 22nd International
Conference on Implementation and Application of Functional Languages, Springer
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 6647, 2011, pp. 137–152.

[19] ParaPhrase Project WP2: Initial Implementation of Application-Specific Patterns.
Technical report, University of Pisa, September 2013.

[20] ParaPhrase Project WP4: Specification of Pattern Candidate Refactoring Rules.
Technical report, ELTE-Soft Nonprofit Ltd., July 2014.

[21] ParaPhrase Project WP6: Final Report on Experimental Evaluation. Technical re-
port, University of Stuttgart, March 2015.

[22] ParaPhrase Project WP2: Final Pattern Discovery. Technical report, ELTE-Soft Non-
profit Ltd., March 2015.

[23] Shivers, O.: Control Flow Analysis in Scheme. Proceedings of SIGPLAN ’88 Con-
ference on Programming Language Design and Implementation, 1988, pp. 164–174.

[24] Skel Tutorial. Available on: http://chrisb.host.cs.st-andrews.ac.uk/
skel-test-master/tutorial/bin/tutorial.html, 2014.

[25] Source code of Mnesia. https://github.com/erlang/otp/tree/maint/lib/
mnesia/src.

[26] Source code of RefactorErl. http://plc.inf.elte.hu/erlang/dl/refactorerl-0.
9.14.09.zip.

[27] The ParaPhrase Project. http://www.paraphrase-ict.eu, 2014.

[28] Tóth, M.—Bozó, I.: Static Analysis of Complex Software Systems Implemented in
Erlang. Central European Functional Programming School, Springer, Lecture Notes
in Computer Science, Vol. 7241, 2012, pp. 440–498.

790 T. Kozsik, M. Tóth, I. Bozó, Z. Horváth

[29] Zsók, V.—Hernyák, Z.—Horváth, Z.: Designing Distributed Computational
Skeletons in D-Clean and D-Box. Central European Functional Programming School,
Springer, Lecture Notes in Computer Science, Vol. 4164, 2006, pp. 223–256.

Tamás Kozsik is Associate Professor at Eötvös Loránd Uni-
versity (Budapest, Hungary), where he is Vice Dean for projects
and innovation at the Faculty of Informatics. He teaches pro-
gramming paradigms and languages. His research is focused on
language technologies including type systems, domain specific
languages, source code analysis and transformations, parallel
programming, and formal methods. Recently he was Principal
Investigator in the Parallel Patterns for Adaptive Heterogeneous
Multicore Systems (ParaPhrase) EU FP7 project.

Melinda T�oth works as a researcher at ELTE-Soft Nonprofit
Ltd. (Budapest, Hungary), leading the ELTE-Ericsson Software
Technology Lab. She is also Assistant Lecturer at Eötvös Loránd
University, teaching distributed systems and Erlang/OTP tech-
nology. Melinda Tóth is the chief architect of RefactorErl, a sta-
tic source code analysis and transformation system for Erlang.
She co-chairs ACM SIGPLAN Erlang Workshop in 2015 and
2016.

István Boz�o is a researcher at ELTE-Soft Nonprofit Ltd. (Bu-
dapest, Hungary), and Assistant Lecturer at Eötvös Loránd Uni-
versity. His main research topic is impact analysis of functional
programs based on control-dependence graphs. He is working on
static program analysis and refactoring in the RefactorErl and
the ParaPhrase projects. He teaches functional programming as
well as formal methods for distributed systems.

Static Analysis for Divide-and-Conquer Pattern Discovery 791

Zoltán Horv�ath is Project Manager at ELTE-Soft Nonprofit
Ltd. (Budapest, Hungary), and Full Professor at Eötvös Loránd
University, heading the Programming Languages and Compilers
Department. He is also Dean of the Faculty of Informatics, and
Director of the EIT Digital Budapest Associate Partner Group.
He is teaching and researching functional programming and for-
mal methods for distributed systems. He supervised numerous
national and international projects, among others he was Prin-
cipal Investigator in the Parallel Patterns for Adaptive Hetero-
geneous Multicore Systems (ParaPhrase) EU FP7 project.

