
Computing and Informatics, Vol. 35, 2016, 792–818

USING PROGRAM SHAPING AND ALGORITHMIC
SKELETONS TO PARALLELISE AN EVOLUTIONARY
MULTI-AGENT SYSTEM IN ERLANG

Adam D. Barwell, Christopher Brown, Kevin Hammond

School of Computer Science
The University of St Andrews
St Andrews, U.K.
e-mail: {adb23, cmb21, kh8}@st-andrews.ac.uk

Wojciech Turek, Aleksander Byrski

Department of Computer Science
Faculty of Computer Science, Electronics and Telecommunications
AGH University of Science and Technology, Kraków, Poland
e-mail: {wojciech.turek, olekb}@agh.edu.pl

Abstract. This paper considers how to use program shaping and algorithmic skele-
tons to parallelise a multi-agent system that is written in Erlang. Program shaping
is the process of transforming a program to better enable the introduction of paral-
lelism. Whilst algorithmic skeletons abstract away the low-level aspects of parallel
programming that often plague traditional techniques, it is not always easy to intro-
duce them into an arbitrary program, especially one that has not been written with
parallelism in mind. Amongst other issues, data may not always be in a compatible
format, function calls may need to be replicated to support alternative uses, side-
effects may need to be isolated, or there may be dependencies between functions and
data that obstruct the introduction of parallelism. Program shaping can be used to
transform such code to a form that allows skeletons to be more easily introduced.
In this paper, we present a series of generic program shaping rewrite rules, provide
their implementation as refactorings, and show how they can be used to parallelise
an Evolutionary Multi-Agent System (MAS) written in Erlang. We show that we
can significantly speed up this application, obtaining super-linear speedups of over
70× the original sequential performance on a 64-core shared-memory machine.

Using Program Shaping to Parallelise an Erlang Multi-Agent System 793

1 INTRODUCTION

Parallel processors are now ubiquitous. Consequently, parallel programming is an in-
creasingly necessary skill for the average programmer. Traditional parallelisation
techniques consist of low-level primitives and libraries that require the program-
mer to manually introduce and manage detailed parallelism constructs, e.g. threads,
communication, locking, and synchronisation. This results in a process which is of-
ten tedious, difficult, and error-prone [27]. In response, a number of approaches have
been devised that aim to simplify the parallelisation process (e.g. [17, 39, 40, 41, 49]).
While these works take different approaches, they all abstract away low-level par-
allel mechanics, which is a common source of error. Although beneficial, these
abstractions only serve to address one specific problem: that the interfaces to par-
allel primitives and libraries are often too low-level. Other aspects of parallelism,
such as which part(s) of a program should be parallelised [1] or which parallel con-
figuration gives the best performance gains [31], must be similarly addressed. One
common and non-trivial aspect of parallelisation, which has so far received little
attention, is how to restructure code the best to enable the introduction of paral-
lelism. This may involve e.g. the detection and breaking of inter-task dependencies,
the detection of side-effects that inhibit parallelism, changing data representations
to avoid excessive memory use, and/or avoiding scheduler inefficiencies. This re-
quires extensive knowledge of the program code, the language used, and parallelism
itself. The difficulty of this task makes it a significant stage of the parallelisation
process. This restructuring stage is a form of program shaping, which we define
to be a series of intentional changes to source code that contribute towards some
goal.

At present, program shaping is generally a manual, ad hoc, and error-prone
process. This paper investigates how to increase the automation of the program
shaping task, using refactoring. A refactoring [23] is a conditional, source-to-source
program transformation that maintains functional correctness. While manual refac-
torings are possible, refactoring tools can perform transformations both automat-
ically and safely. Such tools exist for a wide range of languages, and are often
integrated with popular editors [42]. In the functional programming community,
well-known examples include Wrangler [37] and RefactorErl [28] for Erlang, and
HaRe for Haskell [38]. A recent work has demonstrated that refactoring can be used
to automate the introduction of parallelism [2]. Where that work focuses on intro-
ducing code to invoke parallel operations, this paper extends the idea to program
shaping, presenting refactorings that restructure programs to better facilitate the
introduction of parallel constructs.

While fully automatic approaches exist, and are generally desirable, they are
often limited by the patterns they can operate on. Conversely, algorithmic skeletons
and similar abstraction approaches are very flexible but depend upon the program-
mer to introduce them. Program shaping acts as an effective bridge between these
two approaches; offering increased automation to reduce the programmer’s burden
while maintaining the flexibility of skeletons through a programmer guidance of their

794 A.D. Barwell, C. Brown, K. Hammond, W. Turek, A. Byrski

application. We demonstrate how program shaping can be applied to a large-scale
evolutionary multi-agent system (EMAS) written in Erlang.

“Evolution” means that agents are able to reproduce (generate new agents),
which is a kind of cooperative interaction, and may die (be eliminated from the
system), which is the result of competition (selection). The idea of an Evolutionary
Multi-Agent System was first introduced by Cetnarowicz in 1996 [15]. Since then
it has been implemented a number of times (e.g. [8, 20]), analysed [10, 9, 45], and
extended [46, 7, 13]. Evolutionary Multi-Agent Systems have turned out to be
an efficient paradigm for solving a variety of complex optimisation problems [52, 11].

Evolutionary processes are by nature decentralized and therefore evolutionary
processes may be easily introduced in a multi-agent system at a population level. In
this paper, we demonstrate how such an evolutionary MAS, built in Erlang, might be
semi-automatically restructured and parallelised using new automated refactoring
techniques for program shaping. We provide a description of the refactorings used
below, and demonstrate that, in combination with the use of algorithmic skeletons,
we can achieve excellent performance gains (in the best case, over 70×, on a 64-core
multicore system).

2 BACKGROUND

2.1 Algorithmic Skeletons

Algorithmic skeletons abstract commonly-used patterns of parallel computation,
communication, and interaction [17] into parameterised templates. There has been
a long-standing connection between the skeletons community and the functional
programming community. In the functional world, skeletons are effectively higher-
order functions that can be instantiated with specific user code to give some concrete
parallel behaviour. For example, we might define a parallel map skeleton, where the
functionality is identical to a standard map function, but which creates a number of
processes (worker processes) to execute each element of the map in parallel. A recent
survey of algorithmic skeleton approaches can be found in [25]. Using a skeleton ap-
proach allows the programmer to adopt a top-down structured approach to parallel
programming, where skeletons are composed to give the overall parallel structure of
the program. This gives a flexible semi-implicit approach, where the parallelism is
exposed to the programmer only through the choice of skeleton and perhaps through
some specific behavioural parameters (e.g. the number of parallel processes to be
created, or how elements of the parallel list are to be grouped to reduce communi-
cation costs). Details such as communication, task creation, task or data migration,
scheduling etc. are embedded within the skeleton implementation, which may be
tailored to a specific architecture or class of architectures. This offers an improved
level of portability over the typical low-level approaches. However, it will still be
necessary to tune behavioural parameters in particular cases, and it may even be
necessary to alter the parallel structure to deal with alternative hardware architec-
tures (especially where an application targets different classes of architecture).

Using Program Shaping to Parallelise an Erlang Multi-Agent System 795

2.1.1 Skel

[x1, x2, x3, x4, . . . , xn]

Emitter

. . .f2f1 f(n−1) fn

Workers

Collector

Task Farm

[x′1, x
′
2, x
′
3, x
′
4, . . . , x

′
n]

Figure 1. A Task Farm Skeleton

The Skel [2] library defines a small set of classical skeletons for Erlang. Each
skeleton operates over a stream of input values, producing a corresponding stream
of results. Because each skeleton is defined as a streaming operation, they can be
freely substituted provided they have equivalent types. The same property also
allows simple composition and nesting of skeletons. This paper will consider the
following subset of the Skel skeletons:

• func is a simple wrapper skeleton that encapsulates a function, f : a → b, as
a skeleton, enabling the use of the function within Skel.

• pipe models a parallel pipeline over a sequence of skeletons s1, s2, . . . , sn as
a skeleton, enabling parallel composition of skeletons.

• farm models a task farm (see Figure 1) with n workers, whose operation is the
skeleton s.

• feedback models a feedback skeleton that allows inputs to be applied to some
skeleton s repeatedly until some condition c is met.

2.2 Refactoring

Refactoring is the process of changing the internal structure of a program, while
preserving its (functional) behaviour. In contrast to general program transforma-
tions, refactoring focuses on purely structural changes rather than on changes to

796 A.D. Barwell, C. Brown, K. Hammond, W. Turek, A. Byrski

Figure 2. Wrangler’s menu in Emacs

program functionality, and it is generally applied semi-automatically, i.e. under pro-
grammer direction. This allows programmer knowledge about e.g. safety properties
to be exploited, and so permits a wider range of possible transformation than a fully
automatic approach. Refactorings can be described as either elementary or compos-
ite. An elementary refactoring is a single transformation that maintains functional
correctness. A composite refactoring may be composed of one or more elementary
or composite refactorings, and where intermediate transformations may not preserve
functional correctness, the composite refactoring taken as a whole does that. We
assume that the functions under refactoring are pure and do not contain side effects,
checking for these side effects as part of the condition checking is currently future
work. Refactoring has many advantages over traditional transformation and fully
automated approaches, including (but not limited to):

• Refactoring is aimed at improving the design of software. As programmers
change software to meet new requirements, so the code loses structure; regular
refactoring helps tidy up the code to retain a good structure.

• Refactoring makes software easier to understand. Programmers often write soft-
ware without considering future developers. Refactoring can enable the code to
better communicate its purpose.

• Refactoring encourages code reuse by removing duplicated code [5].

• Refactoring helps the programmer to program faster and more effectively by
encouraging good program design.

• Refactoring helps the programmer to reduce bugs. As refactorings typically
generate code automatically, it is easy to guarantee that this code is safe and
correct [48].

The term “refactoring” was first introduced by Opdyke in his 1992 PhD thesis [43],
but the concept goes back at least to Darlington and Burstall’s 1977 fold/unfold

Using Program Shaping to Parallelise an Erlang Multi-Agent System 797

transformation system [6], which aimed to improve code maintainability by trans-
forming Algol-style recursive loops into a pattern-matching style commonly used
today. Historically, most refactoring was performed manually with the help of text
editor “search and replace” facilities. However, in the last couple of decades, a di-
verse range of refactoring tools have become available for various programming lan-
guages, that aid the programmer by offering a selection of automatic refactorings.
For example, the most recent release of the IntelliJ IDEA refactorer supports 35
distinct refactorings for Java [21]. Typical refactorings include variable renaming
(changing all instances of a variable that are in scope to a new name), parameter
adding (introducing a new parameter to a function definition and updating all rele-
vant calls to that function with a placeholder), function extraction (lifting a selected
block of code into its own function) and function inlining (replacing the invocation
of a function with the body of that function).

2.2.1 Wrangler

While the refactoring community has produced a great deal of work for the object-
oriented paradigm [18], the concept can be applied to a wide range of programming
styles and approaches, including functional programming. Indeed, Darlington and
Burstall’s transformation system for recursive functions produces code that would
not be out of place in modern functional programs [6]. Li et al. have since produced
the HaRe [38] and Wrangler [37] refactoring tools for Haskell and Erlang respectively.
Both tools are implemented in their respective languages, and offer a number of
standard refactorings. Wrangler is implemented in Erlang and is integrated into
both Emacs (Figure 2) and Eclipse. In this paper, we exploit a recent Wrangler
extension which allows refactorings to be expressed as AST traversal strategies in
terms of their pre-conditions and transformation rules. The extension comes in two
parts: a user-level language for describing the refactorings themselves [35]; plus
a Domain-Specific Language (DSL) to compose the refactorings [35].

2.3 Evolutionary Multi-Agent System

A common approach to problem solving is to decompose that problem into smaller
tasks, to solve each (sub)task independently, and to subsequently combine the so-
lutions to produce an overall solution. This approach to problem solving lends
itself well to parallel and distributed computing, where subtasks can be run inde-
pendently on separate cores or machines. A typical example of this approach is
the master-slave evolution model [14]. Multi-agent systems extend this approach
by treating the processes that solve the tasks as intelligent, autonomous agents,
with each agent capable of interacting with their environment and other agents.
As their name implies, a multi-agent system (MAS) combines two or more of these
autonomous agents, making them ideally suited for representing problems that have
many solving methods, involve many perspectives, and/or may be solved by many
entities [51]. One of the major application areas of multi-agent systems is large-

798 A.D. Barwell, C. Brown, K. Hammond, W. Turek, A. Byrski

scale computing [50]. Evolutionary multi-agent systems are a hybrid meta-heuristic
which combines multi-agent systems with evolutionary algorithms. The idea con-
sists of evolving a population of agents to improve their ability to solve a particular
optimisation problem [12, 10].

agent

genotype
energy

agent

genotype
energy

agent

genotype
energy

agent

genotype
energy

agent

genotype
energyagent

genotype
energy

Environment

high energy:
reproduction

low energy:
death

evaluation
and energy transfer

A
A

immigration

A

emigration

Environment Environment

Amigrations

Figure 3. EMAS structure and principle of work

In a multi-agent system, no global knowledge is available to individual agents.
Agents should remain autonomous and no central authority should be needed.
Therefore, in an evolutionary computing system, unlike traditional evolutionary
algorithms, selective pressure needs to be decentralised. Using agent terminology,
we can say that selective pressure is required to emerge from peer-to-peer interac-
tions between agents instead of being globally-driven. In a basic algorithm, every
agent is assigned a real-valued vector that represents a potential solution to the
optimisation problem, together with the corresponding fitness measure. Emergent
selective pressure is achieved by giving agents a single non-renewable resource called
energy. Agents start with an initial amount of energy and meet randomly. If their
energy is below a threshold, they fight by comparing their fitness – better agents

Using Program Shaping to Parallelise an Erlang Multi-Agent System 799

take energy from worse ones. Otherwise, the agents reproduce and yield a new
one – the genotype of the child is derived from its parents using variation oper-
ators and it also receives some energy from its parents. Since the total energy
remains constant, the system is stable. However, the number of agents may vary
and adapt to the difficulty of the problem (see Figure 3). As in other evolutionary
algorithms, agents can be split into separate populations. Such sub-populations,
called islands, help preserve diversity by introducing allopatric speciation and can
also execute in parallel. Information is exchanged between islands through agent mi-
grations. It should be noted that the EMAS computing abilities have been formally
proven correct by constructing a detailed Markov-chain based model and proving
its ergodicity property [10]. This result shows that EMAS is a general optimisation
tool.

While the problems that can be solved by both evolutionary and standard multi-
agent systems are varied, the approach and design of the underlying systems is often
standard. The recent work by Krzywicki et al. [33] has developed patterns to describe
the operation of evolutionary and multi-agent systems, with an example implemen-
tation in Erlang. While this implementation was initially completely sequential,
through the use of the program shaping techniques and methodology described be-
low, we have now been able to parallelise it successfully to give an efficient and
scalable parallel implementation.

3 REWRITE RULES

In this section, we define a series of program shaping refactorings. All the refactor-
ings presented below can be described as semi-formal rewrite rules, operating over
the abstract syntax tree (AST) of the source program. Each refactoring has a set of
conditions that ensure that the transformation is valid, a description of the syntax
to be transformed, and a description of the revised syntax following the success-
ful transformation. Conditions are given as predicates to each rule. Each rewrite
rule operates within an environment, γ, allowing access and reference to the current
scope of the rewrite rule within the source program. This includes the set of all
available functions, F. The skeleton library, Skel, and the skeletons it provides are
denoted by the set S.

S = {skel, f̄ , pipe, farm}.

For all rewrite rules, S is assumed to be in scope. This is denoted in each rule by
extending γ:

Γ = γ ∪ S.

We define a series of semantic equivalences to allow for more concise rewrite rules.
Each equivalence is subject to a series of predicates under which it is valid, and is
defined in the form:

s̄, xs ∈ Γ, xs : list a ` skel(s̄, xs) = skel : do(s̄, xs)

800 A.D. Barwell, C. Brown, K. Hammond, W. Turek, A. Byrski

where s̄ represents any valid skeleton in S, i.e. S/{skel}; and xs evaluates to a list
where all elements have the same type. Semantic equivalences have been defined for
each skeleton in Skel, given in Figure 4. They are in the form:

Γ ` f̄ = {func, F}

where Γ represents the environment under which the rule is valid, f̄ is the simpli-
fied expression that represents, and can be rewritten as, {func, F}. Using these
semantic equivalences we can define rewrite rules for each refactoring. Due to space
limitations, we define two of our refactorings in this format (Extract Composition
Function and Introduce Func), giving textual descriptions of the others in Figure 5.

γ = Program Environment
F = Set of all functions in γ
L = Set of all lists in γ
S = {skel, f̄ , pipe, farm, feedback}
Γ = γ ∪ S

Γ ` F
= F
| fun ?MODULE :f/1
| fun(x)→ . . . end

Γ, xs ∈ L ` skel(s̄, xs)
= skel : do(s̄, xs)

Γ ` f̄
= {func, F}

Γ ` pipe(s̄1, . . . , s̄2)
= {pipe, [s̄1, . . . , s̄n]}

Γ ` farm(s̄, n)
= {farm, s̄, n}

Γ ` map(F , xs)
= lists : map(F , xs)

Figure 4. Environment definitions and semantic equivalences for refactoring notation

3.1 Extract Composition Function

The Extract Composition Function refactoring exposes sequential functionality that
may later be used as part of a parallel pipeline. While it is possible to immediately
introduce a skeleton over a list comprehension, e.g. via Intro Farm, such refactorings
commonly assume that the list comprehension is the top-level command. Where the

Using Program Shaping to Parallelise an Erlang Multi-Agent System 801

Refactoring Description
Compose Maps Lifts a series of map operations m1,m2, . . . ,mn−1,mn

such that the input of mi is the output of mi−1 where
1 < i < n, into a single anonymous function composing
the functions of the map operations respectively. The
function is then assigned to some user-provided variable
name.

Intro Skel Given some skeleton configuration, introduces a call to
the Skel library over some map operation or list com-
prehension.

Intro Feedback Transforms some map-equivalent recursive function con-
taining a call to Skel, such that the call to Skel is up-
dated with a feedback skeleton, removing the outer re-
cursive call.

Figure 5. Textual overview of refactorings

list comprehension is nested within a loop, or is just part of a solution, it can be
advantageous to lift each part of the solution into atomic closures of sequential func-
tionality which can later be arranged into an optimal configuration for parallelism.

The general case is defined as shown below:

Γ, F 6∈ Γ,AEx ` R = [Ex || x← xs]
7→ F = fun(x, AEx)→

Ex
end,
R = map(F, xs)

where F is a valid user-provided variable name; EX denotes a set of Erlang state-
ments parameterised over x; and AEx denotes the set of non-x arguments required by
Ex. In the general case, the statements that form the output expression are wrapped
in an anonymous function and parameterised according to the variable dependencies
of Ex. This function is assigned to a user-provided variable name. Only one input
variable may be provided by the input set. The result is a two-statement closure
containing the lifted output expression and a map operation which applies the origi-
nal input to the newly-created function. The refactoring can be extended to special
cases that account for e.g. specific forms of list comprehension. For example, one
variant lifts and assigns multiple nested functions. Given the code:

loop(Islands, Time, SP, Cf) ->
EndTime = mas_misc_util:add_miliseconds(os:timestamp(), Time),

TagFun = fun (Agent) -> {mas_misc_util:behaviour_proxy(Agent, SP, Cf), Agent} end,

GroupFun = fun (I) -> mas_misc_util:group_by(I) end,

MigrantFun =

802 A.D. Barwell, C. Brown, K. Hammond, W. Turek, A. Byrski

fun ({{migration, Agents}, From}) ->
Destinations = [{mas_topology:getDestination(From), Agent}

|| Agent <-Agents],
mas_misc_util:group_by(Destinations);

(OtherAgent) -> OtherAgent
end,

TGM = fun(Agents) ->
Tagged = lists:map(TagFun, Agents),
Migrants = lists:map(MigrantFun, Tagged),
GroupFun(Migrants)

end,
TGMs = {func, TGM},

Work = {func, fun (Activity) ->
mas_misc_util:meeting_proxy(Activity, mas_farm, SP, Cf)

end},
Map = {farm, [Work], Cf#config.skel_workers},

Shuffle = {func, fun (I) -> mas_misc_util:shuffle(lists:flatten(I)) end},

Pipe = {pipe, [TGMs, Map, Shuffle]},
Constraint = fun (_) -> os:timestamp() < Time end,
FinalIslands = skel:do([{farm, [{feedback, [Pipe], Constraint}],

Cf#config.skel_workers}], [Islands]).

it is possible to lift f and g into their own functions, producing:

loop(Islands, Time, SP, Cf) ->
EndTime = mas_misc_util:add_miliseconds(os:timestamp(), Time),

TagFun = fun (Agent) -> {mas_misc_util:behaviour_proxy(Agent, SP, Cf), Agent} end,

GroupFun = fun (I) -> mas_misc_util:group_by(I) end,

MigrantFun =
fun ({{migration, Agents}, From}) ->

Destinations = [{mas_topology:getDestination(From), Agent}
|| Agent <-Agents],

mas_misc_util:group_by(Destinations);
(OtherAgent) -> OtherAgent

end,

TGM = fun(Agents) ->
Tagged = lists:map(TagFun, Agents),
Migrants = lists:map(MigrantFun, Tagged),
GroupFun(Migrants)

end,
TGMs = {func, TGM},

Work = {func, fun (Activity) ->
mas_misc_util:meeting_proxy(Activity, mas_farm, SP, Cf)

end},
Map = {farm, [Work], Cf#config.skel_workers},

Shuffle = {func, fun (I) -> mas_misc_util:shuffle(lists:flatten(I)) end},

Pipe = {pipe, [TGMs, Map, Shuffle]},
Constraint = fun (_) -> os:timestamp() < Time end,
FinalIslands = skel:do([{farm, [{feedback, [Pipe], Constraint}],

Cf#config.skel_workers}], [Islands]).

Using Program Shaping to Parallelise an Erlang Multi-Agent System 803

3.2 Introduce Func

Once atomic sequential closures have been identified, perhaps through Extract Com-
position Function, it is then necessary to wrap the closures in a func skeleton in
order to enable their use in Skel. Introduce Func is defined as follows:

Γ ` F 7→ f̄

where, as defined in Figure 4, F denotes the multiple possible representations of
an Erlang function whose arity is 1. F will not be transformed if wrapping it into
a func skeleton would lead to syntactic errors.

4 REFACTORING THE MULTI-AGENT SYSTEM

We demonstrate how program shaping can be used by illustrating its application to
an example MAS. The MAS operates over a number of generations to find a solution.
Each generation may be modelled as an iteration of a loop, with each member of the
system’s population performing its own work within each iteration. Both the outer
generational loop and the work performed within that loop are highly suitable for
parallelisation. The code below has been slightly simplified for readability.

loop(Islands, Time, SP, Cf) ->
EndTime = mas_misc_util:add_miliseconds(os:timestamp(), Time),

TagFun = fun (Agent) -> {mas_misc_util:behaviour_proxy(Agent, SP, Cf), Agent} end,

GroupFun = fun (I) -> mas_misc_util:group_by(I) end,

MigrantFun =
fun ({{migration, Agents}, From}) ->

Destinations = [{mas_topology:getDestination(From), Agent}
|| Agent <-Agents],

mas_misc_util:group_by(Destinations);
(OtherAgent) -> OtherAgent

end,

TGM = fun(Agents) ->
Tagged = lists:map(TagFun, Agents),
Migrants = lists:map(MigrantFun, Tagged),
GroupFun(Migrants)

end,
TGMs = {func, TGM},

Work = {func, fun (Activity) ->
mas_misc_util:meeting_proxy(Activity, mas_farm, SP, Cf)

end},
Map = {farm, [Work], Cf#config.skel_workers},

Shuffle = {func, fun (I) -> mas_misc_util:shuffle(lists:flatten(I)) end},

Pipe = {pipe, [TGMs, Map, Shuffle]},
Constraint = fun (_) -> os:timestamp() < Time end,
FinalIslands = skel:do([{farm, [{feedback, [Pipe], Constraint}],

Cf#config.skel_workers}], [Islands]).

804 A.D. Barwell, C. Brown, K. Hammond, W. Turek, A. Byrski

While this code seems to be a good candidate for parallelisation, it cannot be
parallelised immediately, and so needs to be shaped first. We show how this code
may be shaped using some standard refactorings, plus the new refactorings from
Section 3. We give only the affected code for each stage of the transformation.

4.1 Stage 1

We start shaping loop/4 by extracting functions from the list comprehensions that
are assigned to Tagged, Groups, and Migrants using the Extract Comprehension
Function refactoring. This gives the following definitions.

loop(Islands, Time, SP, Cf) ->
EndTime = mas_misc_util:add_miliseconds(os:timestamp(), Time),

TagFun = fun (Agent) -> {mas_misc_util:behaviour_proxy(Agent, SP, Cf), Agent} end,

GroupFun = fun (I) -> mas_misc_util:group_by(I) end,

MigrantFun =
fun ({{migration, Agents}, From}) ->

Destinations = [{mas_topology:getDestination(From), Agent}
|| Agent <-Agents],

mas_misc_util:group_by(Destinations);
(OtherAgent) -> OtherAgent

end,

TGM = fun(Agents) ->
Tagged = lists:map(TagFun, Agents),
Migrants = lists:map(MigrantFun, Tagged),
GroupFun(Migrants)

end,
TGMs = {func, TGM},

Work = {func, fun (Activity) ->
mas_misc_util:meeting_proxy(Activity, mas_farm, SP, Cf)

end},
Map = {farm, [Work], Cf#config.skel_workers},

Shuffle = {func, fun (I) -> mas_misc_util:shuffle(lists:flatten(I)) end},

Pipe = {pipe, [TGMs, Map, Shuffle]},
Constraint = fun (_) -> os:timestamp() < Time end,
FinalIslands = skel:do([{farm, [{feedback, [Pipe], Constraint}],

Cf#config.skel_workers}], [Islands]).

4.2 Stage 2

To facilitate its eventual composition with TagFun and GroupFun, we inline the
function MigrantFun using the classical Inline Method refactoring.

loop(Islands, Time, SP, Cf) ->
EndTime = mas_misc_util:add_miliseconds(os:timestamp(), Time),

TagFun = fun (Agent) -> {mas_misc_util:behaviour_proxy(Agent, SP, Cf), Agent} end,

GroupFun = fun (I) -> mas_misc_util:group_by(I) end,

Using Program Shaping to Parallelise an Erlang Multi-Agent System 805

MigrantFun =
fun ({{migration, Agents}, From}) ->

Destinations = [{mas_topology:getDestination(From), Agent}
|| Agent <-Agents],

mas_misc_util:group_by(Destinations);
(OtherAgent) -> OtherAgent

end,

TGM = fun(Agents) ->
Tagged = lists:map(TagFun, Agents),
Migrants = lists:map(MigrantFun, Tagged),
GroupFun(Migrants)

end,
TGMs = {func, TGM},

Work = {func, fun (Activity) ->
mas_misc_util:meeting_proxy(Activity, mas_farm, SP, Cf)

end},
Map = {farm, [Work], Cf#config.skel_workers},

Shuffle = {func, fun (I) -> mas_misc_util:shuffle(lists:flatten(I)) end},

Pipe = {pipe, [TGMs, Map, Shuffle]},
Constraint = fun (_) -> os:timestamp() < Time end,
FinalIslands = skel:do([{farm, [{feedback, [Pipe], Constraint}],

Cf#config.skel_workers}], [Islands]).

4.3 Stage 3

Since MigrantsFun can now be composed with TagFun and GroupFun, we compose
these three functions using the Compose Functions refactoring.

loop(Islands, Time, SP, Cf) ->
EndTime = mas_misc_util:add_miliseconds(os:timestamp(), Time),

TagFun = fun (Agent) -> {mas_misc_util:behaviour_proxy(Agent, SP, Cf), Agent} end,

GroupFun = fun (I) -> mas_misc_util:group_by(I) end,

MigrantFun =
fun ({{migration, Agents}, From}) ->

Destinations = [{mas_topology:getDestination(From), Agent}
|| Agent <-Agents],

mas_misc_util:group_by(Destinations);
(OtherAgent) -> OtherAgent

end,

TGM = fun(Agents) ->
Tagged = lists:map(TagFun, Agents),
Migrants = lists:map(MigrantFun, Tagged),
GroupFun(Migrants)

end,
TGMs = {func, TGM},

Work = {func, fun (Activity) ->
mas_misc_util:meeting_proxy(Activity, mas_farm, SP, Cf)

end},
Map = {farm, [Work], Cf#config.skel_workers},

806 A.D. Barwell, C. Brown, K. Hammond, W. Turek, A. Byrski

Shuffle = {func, fun (I) -> mas_misc_util:shuffle(lists:flatten(I)) end},

Pipe = {pipe, [TGMs, Map, Shuffle]},
Constraint = fun (_) -> os:timestamp() < Time end,
FinalIslands = skel:do([{farm, [{feedback, [Pipe], Constraint}],

Cf#config.skel_workers}], [Islands]).

Here we note that the input to the list comprehension assigned to NewGroups

has been changed according to the newly introduced composition. Similarly we also
remove WithMigrants with the Remove Statement refactoring, which requires the
input to the list comprehension assigned to NewIslands to be changed to NewGroups.

4.4 Stage 4

We next focus our attention on the list comprehensions assigned to NewGroups and
NewIslands respectively, applying the Extract Comprehension Function refactoring
to both.

loop(Islands, Time, SP, Cf) ->
EndTime = mas_misc_util:add_miliseconds(os:timestamp(), Time),

TagFun = fun (Agent) -> {mas_misc_util:behaviour_proxy(Agent, SP, Cf), Agent} end,

GroupFun = fun (I) -> mas_misc_util:group_by(I) end,

MigrantFun =
fun ({{migration, Agents}, From}) ->

Destinations = [{mas_topology:getDestination(From), Agent}
|| Agent <-Agents],

mas_misc_util:group_by(Destinations);
(OtherAgent) -> OtherAgent

end,

TGM = fun(Agents) ->
Tagged = lists:map(TagFun, Agents),
Migrants = lists:map(MigrantFun, Tagged),
GroupFun(Migrants)

end,
TGMs = {func, TGM},

Work = {func, fun (Activity) ->
mas_misc_util:meeting_proxy(Activity, mas_farm, SP, Cf)

end},
Map = {farm, [Work], Cf#config.skel_workers},

Shuffle = {func, fun (I) -> mas_misc_util:shuffle(lists:flatten(I)) end},

Pipe = {pipe, [TGMs, Map, Shuffle]},
Constraint = fun (_) -> os:timestamp() < Time end,
FinalIslands = skel:do([{farm, [{feedback, [Pipe], Constraint}],

Cf#config.skel_workers}], [Islands]).

4.5 Stage 5

Having shaped our existing functions into a suitable form for parallelisation, we
now proceed to introduce the structures to pass to Skel. We start with the map

Using Program Shaping to Parallelise an Erlang Multi-Agent System 807

operation which applies TGM to each element in Islands, transforming it using the
Intro Func refactoring to introduce a func skeleton. We apply the same refactoring
to the NewGroupsInnerFun expression. Continuing this process, we next apply the
Intro Farm refactoring over the NewGroupsFun expression.

loop(Islands, Time, SP, Cf) ->
EndTime = mas_misc_util:add_miliseconds(os:timestamp(), Time),

TagFun = fun (Agent) -> {mas_misc_util:behaviour_proxy(Agent, SP, Cf), Agent} end,

GroupFun = fun (I) -> mas_misc_util:group_by(I) end,

MigrantFun =
fun ({{migration, Agents}, From}) ->

Destinations = [{mas_topology:getDestination(From), Agent}
|| Agent <-Agents],

mas_misc_util:group_by(Destinations);
(OtherAgent) -> OtherAgent

end,

TGM = fun(Agents) ->
Tagged = lists:map(TagFun, Agents),
Migrants = lists:map(MigrantFun, Tagged),
GroupFun(Migrants)

end,
TGMs = {func, TGM},

Work = {func, fun (Activity) ->
mas_misc_util:meeting_proxy(Activity, mas_farm, SP, Cf)

end},
Map = {farm, [Work], Cf#config.skel_workers},

Shuffle = {func, fun (I) -> mas_misc_util:shuffle(lists:flatten(I)) end},

Pipe = {pipe, [TGMs, Map, Shuffle]},
Constraint = fun (_) -> os:timestamp() < Time end,
FinalIslands = skel:do([{farm, [{feedback, [Pipe], Constraint}],

Cf#config.skel_workers}], [Islands]).

In order to aid readability, we also rename NewIslandsFun to Shuffle.

4.6 Stage 6

We again apply the Intro Func refactoring, this time over the renamed Shuffle

expression, completing all the skeletons that are required to introduce the Skel
invocation. We can then apply the Intro Skel refactoring over NewIslands and
NewGroups.

loop(Islands, Time, SP, Cf) ->
EndTime = mas_misc_util:add_miliseconds(os:timestamp(), Time),

TagFun = fun (Agent) -> {mas_misc_util:behaviour_proxy(Agent, SP, Cf), Agent} end,

GroupFun = fun (I) -> mas_misc_util:group_by(I) end,

MigrantFun =
fun ({{migration, Agents}, From}) ->

Destinations = [{mas_topology:getDestination(From), Agent}

808 A.D. Barwell, C. Brown, K. Hammond, W. Turek, A. Byrski

|| Agent <-Agents],
mas_misc_util:group_by(Destinations);

(OtherAgent) -> OtherAgent
end,

TGM = fun(Agents) ->
Tagged = lists:map(TagFun, Agents),
Migrants = lists:map(MigrantFun, Tagged),
GroupFun(Migrants)

end,
TGMs = {func, TGM},

Work = {func, fun (Activity) ->
mas_misc_util:meeting_proxy(Activity, mas_farm, SP, Cf)

end},
Map = {farm, [Work], Cf#config.skel_workers},

Shuffle = {func, fun (I) -> mas_misc_util:shuffle(lists:flatten(I)) end},

Pipe = {pipe, [TGMs, Map, Shuffle]},
Constraint = fun (_) -> os:timestamp() < Time end,
FinalIslands = skel:do([{farm, [{feedback, [Pipe], Constraint}],

Cf#config.skel_workers}], [Islands]).

4.7 Stage 7

While loop/4 is now parallel, the outer loop itself can also be folded into the Skel
invocation to improve efficiency. We do this by applying the Intro Feedback Loop
refactoring over loop/4 itself.

loop(Islands, Time, SP, Cf) ->
EndTime = mas_misc_util:add_miliseconds(os:timestamp(), Time),

TagFun = fun (Agent) -> {mas_misc_util:behaviour_proxy(Agent, SP, Cf), Agent} end,

GroupFun = fun (I) -> mas_misc_util:group_by(I) end,

MigrantFun =
fun ({{migration, Agents}, From}) ->

Destinations = [{mas_topology:getDestination(From), Agent}
|| Agent <-Agents],

mas_misc_util:group_by(Destinations);
(OtherAgent) -> OtherAgent

end,

TGM = fun(Agents) ->
Tagged = lists:map(TagFun, Agents),
Migrants = lists:map(MigrantFun, Tagged),
GroupFun(Migrants)

end,
TGMs = {func, TGM},

Work = {func, fun (Activity) ->
mas_misc_util:meeting_proxy(Activity, mas_farm, SP, Cf)

end},
Map = {farm, [Work], Cf#config.skel_workers},

Shuffle = {func, fun (I) -> mas_misc_util:shuffle(lists:flatten(I)) end},

Using Program Shaping to Parallelise an Erlang Multi-Agent System 809

Pipe = {pipe, [TGMs, Map, Shuffle]},
Constraint = fun (_) -> os:timestamp() < Time end,
FinalIslands = skel:do([{farm, [{feedback, [Pipe], Constraint}],

Cf#config.skel_workers}], [Islands]).

This completes the shaping and parallelisation process.

5 PERFORMANCE EVALUATION

The aim of the parallellization process presented in this paper is to convert a given
sequential code into a version efficiently using a multi-core architecture. In order
to evaluate the efficiency of the refactored code we compared it to different imple-
mentations of the same algorithm, which have been created manually – without
the SKEL library providing parallel patterns and without the presented program
shaping methods.

Two different implementations of the Evolutionary Multi-Agent System have
been created: concurrent and hybrid. The concurrent version follows Erlang good
practice for writing concurrent code, which assumes creating many fine-grained pro-
cesses for all individual tasks in the system. Every agent is represented by a different
process and all communication uses message-passing. Agent interactions are medi-
ated by special processes, called “meeting arenas”. This version is not influenced
by the target architecture of hardware – hundreds of truly concurrent agents are
created each second making Erlang scheduler responsible for managing hardware.
It can successfully run on one core as well as on hundreds of cores.

The hybrid version has been designed and manually tuned for best possible per-
formance of the EMAS algorithm. The number of individual evolutionary islands
is equal to the number of cores. Each evolutionary island is internally computed
sequentially, while different islands use different processes. This approach limits
context switching and communication to the minimum required by incidental oper-
ations of agents migrations between islands and result collecting.

Two different optimization benchmark problems have been compared: continu-
ous and discrete. The continuous problem was the Rastrigin function [19], a common
continuous benchmarking function used to compare evolutionary algorithms. This
function is highly multimodal with many local minima and one global minimum
equal 0 at ~x = 0. We used a problem size (the dimension of the function) equal
to 100, in a domain equal to the hypercube [50, 50]100

As this is a continuous optimization problem, real-valued encoding was used,
with Cauchy mutations and continuous recombination as genetic operators. The
Rastrigin function has a simple formulation and is easy to compute. Therefore, fit-
ness function computation is relatively cheep and the computation to communication
ratio is low.

The discrete problem was Low Autocorrelation Binary Sequences (LABS) [24].
LABS is an NP-hard combinatorial problem with a very simple formulation and with
many applications in telecommunication (synchronization, pulse compression, satel-
lite and space applications, digital signal processing, high-precision interplanetary

810 A.D. Barwell, C. Brown, K. Hammond, W. Turek, A. Byrski

radar measurements), meteorology (calibration of surface profile meteorology tools),
physics (Ising spin glasses, configuration state analysis, statistical mechanics) and
chemistry. The LABS problem has a very difficult search space and therefore fitness
function computation is far more complex than in case of the Rastrigin function,
making the computation to communication ratio much higher.

We ran our simulations on the ZEUS supercomputer provided by the Pl-Grid1

infrastructure at the ACC Cyfronet AGH2. We used nodes with 4 AMD Opteron
6 276 processors, with up to 64 cores and 1 GB of memory. On this architecture we
executed each of the three versions of the EMAS algorithm on configurations with
1, 4, 8, 16, 32, 48 and 64 cores. Each run took approximately five minutes, during
which we recorded overall number of reproductions per second. Each experiment
has been repeated 10 times – the charts below present average value of all runs.

Results of the system scalability during the Rastrigin function optimization are
presented in Figure 6.

1 4 8 16 32 48 64
0

10

20

30

40

50

60

Cores

S
p

e
e

d
u

p

Skel
Hybrid
Concurrent

Figure 6. Speedup of the three versions of the agent-based evolutionary algorithm execut-
ing the Rastrigin function optimization

The problem with the low computation to communication ratio clearly shows
that the overhead of creating hundreds of processes and passing hundreds of mes-
sages every second can reduce the scalability of the algorithm. The concurrent
version scales linearly up to 16 cores only, while both hybrid and SKEL-based imple-
mentations scale linearly up to 48 cores. Hybrid version shows best characteristics
in this case, outperforming the SKEL-based version especially when 64 cores are
used.

1 http://plgrid.pl/
2 http://www.cyfronet.krakow.pl/

Using Program Shaping to Parallelise an Erlang Multi-Agent System 811

Results of the system scalability during the LABS problem optimization are
shown in Figure 7.

1 4 8 16 32 48 64
0

10

20

30

40

50

60

70

80

Cores

S
p

e
e

d
u

p

Skel
Hybrid
Concurrent

Figure 7. Speedup of the three versions of the agent-based evolutionary algorithm execut-
ing LABS problem optimization

The results clearly show that in case of the problem with high computation to
communication ratio all three versions can scale linearly (or even super-linearly).
The SKEL-based version showing slight superiority above the other two implemen-
tations for large numbers of cores.

The experiments confirm that the pattern-based approach for sequential code
parallelization is valid and can provide efficient solutions. Highly tuned and dedi-
cated solutions can give better results for particular problems, however as general-
purpose tool the presented approach gives very good results.

6 RELATED WORK

The study of parallelism has a long and active history; often demonstrating the
difficulties associated with the style, and illustrating its core requirements [47]. Ap-
proaches designed to simplify its introduction and management are numerous and
varied; examples include: futures [22], evaluation strategies [49], monads [40], and
algorithmic skeletons [16]. Some approaches, such as futures and monads, can be
language-specific, or require significant changes to the language itself. Skeletons and
evaluation strategies are more generic; being reusable patterns that can be language-
agnostic, and implementable using existing language components. However, evalu-
ation strategies require the programmer to interact with those components at some
point. Skeletons, conversely, hide their implementation, instead presenting a high-

812 A.D. Barwell, C. Brown, K. Hammond, W. Turek, A. Byrski

level interface to the programmer, so making them more desirable here. Despite
the differences between these and other approaches, each is similar in that low-level
parallel mechanics are hidden to some degree from the programmer, and that each
have requirements for their introduction. These requirements are unlikely to be met
without the need for program transformation, however.

As with parallelism, the study of program transformation is not a new area, with
Partsch and Steinbrüggen describing early work in 1983 [44], and more recently by
Mens in 2004 [42]. In the functional programming community, refactoring tools have
been built for both Haskell and Erlang [34, 32].

Despite the work done for both algorithmic skeletons and program transfor-
mation, there have only been limited attempts at combining the two [27]. Some
attempts include high-level pattern-based rewrites including extensions to Haskell’s
refactoring tool HaRe [4], and similar, cost-directed refactorings for Wrangler [2].
These extensions are limited by the number of refactorings they include, and by
their focus on the introduction and manipulation of skeleton library invocations.
Transformations that allow the introduction of high-level parallel libraries remain
a predominantly manual process.

In [2], we introduced a parallel refactoring methodology for programming Er-
lang programs, to facilitate the introduction of parallel skeletons. In [3] and [30],
we presented parallel refactoring techniques for C++ programs. This paper goes
beyond that work in introducing novel program shaping rather than pure skeleton
introduction. As a technique, program shaping is relatively new and untouched by
both skeletons and refactoring communities. While [29] suggests the use of “canon-
ical forms”, in which skeletons can easily be introduced, and to which equivalent
code can be transformed, this work is limited by the number of forms identified.
Similarly, [36] uses an analysis technique called program slicing to better inform
refactorings to aid the introduction of programs. This work does not use skeletons,
however, instead relying upon Erlang’s concurrency primitives, restricting it to Er-
lang. In contrast to our work, most current research focuses in parallel refactoring
on simple compile-time optimisations instead of source-to-source refactorings [26].
The approach presented in our paper therefore not only improves upon current
methodologies by enabling their use on heterogeneous architectures, but also helps
to introduce some automation to the previously-manual program shaping stage.

7 CONCLUSIONS AND FUTURE WORK

Although advances in structured parallel techniques greatly simplify the task of
introducing the mechanics of parallelism, these techniques do not immediately fit
every program. In this paper, we have introduced novel program shaping techniques
and shown how they can be employed alongside the Skel library, an Erlang imple-
mentation of several algorithmic skeletons, to restructure and introduce parallelism
to an Erlang implementation of an Evolutionary Multi-Agent System, a real world
use case (universal optimisation meta-heuristics). However, although this technique

Using Program Shaping to Parallelise an Erlang Multi-Agent System 813

is described in terms of Erlang, it is in fact completely general and can be applied
to other languages, too.

Starting from an idiomatic Erlang implementation of the EMAS, where every
agent has been implemented as individual lightweight Erlang process, we have shown
that the efficiency of such system may be significantly improved, by applying pro-
gram shaping refactorings to introduce algorithmic skeletons. The described effect
was especially visible for Rastrigin function optimisation (where the fitness function
had a very low, linear cost, so communication-related issues could be significantly
improved). For LABS optimisation, the cost of the fitness function (approximately
quadratic) resulted in achieving similar speedups for all the tested configurations.
In the best case, we have achieved super-linear speedups over the original sequential
algorithm of over 70× on a 64-core machine.

For future work, we intend to apply our approach to other use cases and to
further evaluate its effectiveness. It would be interesting to apply it to the Erlang
Dialyzer, for example, and to compare our techniques with those that have been
applied manually. We also intend to expand our library of program shaping tech-
niques, incorporating static analysis techniques to further automate the process, at
the same time reducing the burden on the programmer.

REFERENCES

[1] Brown, C.—Janjic, V.—Goli, M.—Hammond, K.—McCall, J.: Bridging
the Divide: Intelligent Mapping for the Heterogeneous Programmer. High-Level Pro-
gramming for Heterogeneous and Hierarchical Parallel Systems, 2013.

[2] Brown, C.—Danelutto, M.—Hammond, K.—Kilpatrick, P.—Elliott, A.:
Cost-Directed Refactoring for Parallel Erlang Programs. International Journal of Par-
allel Programming, 2013, pp. 1–19.

[3] Brown, C.—Janjic, V.—Hammond, K.—Schöner, H.—Idrees, K.—
Glass, C.: Agricultural Reform: More Efficient Farming Using Advanced Parallel
Refactoring Tools. 22nd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, 2013.

[4] Brown, C.—Li, H.—Thompson, S.: An Expression Processor: A Case Study in
Refactoring Haskell Programs. In: Page, R. (Ed.): Eleventh Symposium on Trends
in Functional Programming, May 2010, 15 pp.

[5] Brown, C.—Thompson, S.: Clone Detection and Elimination for Haskell. Pro-
ceedings of the 2010 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation (PEPM ’10). ACM, New York, NY, USA, 2010, pp. 111–120.

[6] Burstall, R. M.—Darlington, J.: A Transformation System for Developing Re-
cursive Programs. Journal of the ACM (JACM), Vol. 24, 1977, No. 1, pp. 44–67.

[7] Byrski, A.—Kisiel-Dorohinicki, M.: Immunological Selection Mechanism in
Agent-Based Evolutionary Computation. In: K lopotek, M. A., Wierzchoń, S. T., Tro-
janowski, K. (Eds.): Intelligent Information Processing and Web Mining. Proceedings

814 A.D. Barwell, C. Brown, K. Hammond, W. Turek, A. Byrski

of the International IIS: IIPWM ’05 Conference, Gdansk, Poland. Advances in Soft
Computing, Springer Verlag, 2005, Vol. 31, pp. 411–415.

[8] Byrski, A.—Kisiel-Dorohinicki, M.—Nawarecki, E.: Agent-Based Evolution
of Neural Network Architecture. In: Hamza, M. (Ed.): Proceedings of the IASTED
International Symposium: Applied Informatics. IASTED/ACTA Press, 2002.

[9] Byrski, A.—Schaefer, R.: Formal Model for Agent-Based Asynchronous Evolu-
tionary Computation. 2009 IEEE Congress on Evolutionary Computation, May 2009,
pp. 78–85.

[10] Byrski, A.—Schaefer, R.—Smo lka, M.: Asymptotic Guarantee of Success for
Multi-Agent Memetic Systems. Bulletin of the Polish Academy of Sciences – Technical
Sciences, Vol. 61, 2013, No. 1.

[11] Byrski, A.: Tuning of Agent-Based Computing. Computer Science, Vol. 14, 2013,
No. 3, pp. 491–512.

[12] Byrski, A.—Drezewski, R.—Siwik, L.—Kisiel-Dorohinicki, M.: Evolution-
ary Multi-Agent Systems. The Knowledge Engineering Review, Vol. 30, 2015, No. 3,
pp. 171–186.

[13] Byrski, A.—Kisiel-Dorohinicki, M.: Immune-Based Optimization of Predict-
ing Neural Networks. In: Sunderam, V. S., van Albada, G. D., Sloot, P. M. A., Don-
garra, J.: Computational Science – ICCS 2005. Proceedings of 5th International Con-
ference, Atlanta, GA, USA, May 22–25, 2005, Part III. Springer Berlin Heidelberg,
Lecture Notes in Computer Science, Vol. 3516, 2005, pp. 703–710.

[14] Cantú-Paz, E.: A Survey of Parallel Genetic Algorithms. Calculateurs Parallèles
Réseaux et Systèmes Répartis, Vol. 10, 1998, No. 2, pp. 141–171.

[15] Cetnarowicz, K.—Kisiel-Dorohinicki, M.—Nawarecki, E.: The Application
of Evolution Process in Multi-Agent World (MAW) to the Prediction System. In:
Tokoro, M. (Ed.): Proceedings of the 2nd International Conference on Multi-Agent
Systems (ICMAS ’96), AAAI Press, 1996, pp. 26–32.

[16] Cole, M.: Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal
Parallel Programming. Parallel Computing, Vol. 30, 2004, No. 3, pp. 389–406.

[17] Cole, M. I.: Algorithmic Skeletons: A Structured Approach to the Management of
Parallel Computation. Ph.D. thesis, 1988, AAID-85022.

[18] Dig, D.: A Refactoring Approach to Parallelism. IEEE Software, Vol. 28, 2011,
pp. 17–22.

[19] Digalakis, J. G.—Margaritis, K. G.: An Experimental Study of Benchmarking
Functions for Genetic Algorithms. 2000 IEEE International Conference on Systems,
Man, and Cybernetics, 2000, Vol. 5, pp. 3810–3815.

[20] Dobrowolski, G.—Kisiel-Dorohinicki, M.—Nawarecki, E.: Some Approach
to Design and Realisation of Mass Multi-Agent Systems. In: Schaefer, R., Sedziwy, S.
(Eds.): Advances in Multi-Agent Systems. Jagiellonian University, 2001.

[21] Fields, D. K.—Saunders, S.—Belyaev, E.: IntelliJ IDEA in Action. Manning,
2006.

[22] Fluet, M.—Rainey, M.—Reppy, J.—Shaw, A.—Xiao, Y.: Manticore: A Het-
erogeneous Parallel Language. Proceedings of the 2007 Workshop on Declarative As-

Using Program Shaping to Parallelise an Erlang Multi-Agent System 815

pects of Multicore Programming (DAMP ’07), ACM, New York, NY, USA, 2007,
pp. 37–44.

[23] Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[24] Gallardo, J. E.—Cotta, C.—Fernández, A. J.: Finding Low Autocorrelation
Binary Sequences with Memetic Algorithms. Applied Soft Computing, Vol. 9, 2009,
No. 4, pp. 1252–1262.

[25] González-Vélez, H.—Leyton, M.: A Survey of Algorithmic Skeleton Frame-
works: High-Level Structured Parallel Programming Enablers. Software – Practice
and Experience, Vol. 40, 2010, No. 12, pp. 1135–1160.

[26] Groot, S.—Harmen, L. A.—van der Spek, E. M.—Bakker, H.—Wij-
shoff, A. G.: The Automatic Transformation of Linked List Data Structures. Pro-
ceedings of PACT, 2007.

[27] Hammond, K.—Aldinucci, M.—Brown, C.—Cesarini, F.—Danelut-
to, M.—González-Vélez, H.—Kilpatrick, P.—Keller, R.—Ross-
bory, M.—Shainer, G.: The ParaPhrase Project: Parallel Patterns for Adaptive
Heterogeneous Multicore Systems. Formal Methods for Components and Objects,
Springer Berlin Heidelberg, Lecture Notes in Computer Science, Vol. 7542, 2013,
pp. 218–236.

[28] Horpácsi, D.: Extending Erlang by Utilising RefactorErl. Proceedings of the
Twelfth ACM SIGPLAN Erlang Workshop, 2013.

[29] Horváth, Z.: Refactoring Rules. Technical report, ELTE-Soft, July 2014, Deliver-
able 4.5 of the ParaPhrase Project.

[30] Janjic, V. et al.: RPL: A Domain-Specific Language for Designing and Implementing
Parallel C++ Applications. 2016 24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP), February 2016.

[31] Hammond, K.: Discovering Parallel Pattern Candidates in Erlang. Proceedings of
the Thirteenth ACM SIGPLAN Workshop on Erlang (Erlang ’14), ACM, New York,
NY, USA, 2014, pp. 13–23.

[32] Kozsik, T.—Csörnyei, Z.—Horváth, Z.—Király, R.—Kitlei, R.—Lö-
vei, L.—Nagy, T.—Tóth, M.—V́ıg, A.: Use Cases for Refactoring in Erlang.
Central European Functional Programming School, Springer Berlin Heidelberg, Lec-
ture Notes in Computer Science, Vol. 5161, 2008, pp. 250–285.

[33] Krzywicki, D.—Turek, W.—Byrski, A.—Kisiel-Dorohinicki, M.:
Massively-Concurrent Agent-Based Evolutionary Computing. Journal of Com-
putational Science, Vol. 11, November 2015, pp. 153–162.

[34] Li, H.—Thompson, S.: Tool Support for Refactoring Functional Programs.
Proceedings of the 2008 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM ’08), ACM, New York, NY, USA,
2008, pp. 199–203.

[35] Li, H.—Thompson, S.: A Domain-Specific Language for Scripting Refactorings in
Erlang. Proceedings of the 15th International Conference on Fundamental Approaches
to Software Engineering (FASE ’12). Fundamental Approaches to Software Engineer-

816 A.D. Barwell, C. Brown, K. Hammond, W. Turek, A. Byrski

ing, Springer Berlin Heidelberg, Lecture Notes in Computer Science, Vol. 7212, 2012,
pp. 501–515.

[36] Li, H.—Thompson, S.: Safe Concurrency Introduction Through Slicing. Pro-
ceedings of the 2015 Workshop on Partial Evaluation and Program Manipulation
(PEPM ’15), ACM, New York, NY, USA, 2015, pp. 103–113. 2015, ACM.

[37] Li, H.—Thompson, S.—Orosz, G.—Tóth, M.: Refactoring with Wrangler, Up-
dated: Data and Process Refactorings, and Integration with Eclipse. Proceedings of
the 7th ACM SIGPLAN Workshop on Erlang (Erlang ’08), ACM, New York, NY,
USA, 2008, pp. 61–72.

[38] Li, H.—Thompson, S. J.—Reinke, C.: The Haskell Refactorer, HaRe, and Its
API. Electronic Notes in Theoretical Computer Science, Vol. 141, 2005, No. 4,
pp. 29–34.

[39] Marlow, S.: Parallel and Concurrent Programming in Haskell: Techniques for
Multicore and Multithreaded Programming. O’Reilly Media, Inc., 2013.

[40] Marlow, S.—Newton, R.—Peyton Jones, S.: A Monad for Deterministic Par-
allelism. Proceedings of the 4th ACM Symposium on Haskell (Haskell ’11), ACM, New
York, NY, USA, 2011, pp. 71–82.

[41] McCool, M.—Robison, A.—Reinders, J.: Structured Parallel Programming.
Morgan Kaufmann, 2012.

[42] Mens, T.—Tourwé, T.: A Survey of Software Refactoring. IEEE Transactions on
Software Engineering, Vol. 30, 2004, pp. 126–139.

[43] Opdyke, W. F.: Refactoring Object-Oriented Frameworks. Ph.D. thesis, 1992.

[44] Partsch, H.—Steinbrüggen, R.: Program Transformation Systems. Computing
Surveys, ACM, Vol. 15, 1983, No. 3, pp. 199–236.

[45] Schaefer, R.—Byrski, A.—Smolka, M.: The Island Model as a Markov Dy-
namic System. International Journal of Applied Mathematics and Computer Science,
Vol. 22, No. 4, pp. 971–984.

[46] Siwik, L.—Dreżewski, R.: Agent-Based Multi-Objective Evolutionary Algorithms
with Cultural and Immunological Mechanisms. In: Wellington Pinheiro dos Santos
(Ed.): Evolutionary Computation, In-Teh, 2009, pp. 541–556.

[47] Skillicorn, D.: Foundations of Parallel Programming. Cambridge University Press,
New York, NY, USA, 1995.

[48] Sultana, N.—Thompson, S.: Mechanical Verification of Refactorings. Workshop
on Partial Evaluation and Program Manipulation, ACM SIGPLAN, January 2008,
pp. 182–196.

[49] Trinder, P. W.—Hammond, K.—Loidl, H.-W.—Peyton Jones, S. L.:
Algorithm + Strategy = Parallelism. Journal of Functional Programming, Vol. 8,
1998, No. 1, pp. 23–60.

[50] Uhruski, P.—Grochowski, M.—Schaefer, R.: A Two-Layer Agent-Based Sys-
tem for Large-Scale Distributed Computation. Computational Intelligence, Vol. 24,
2008, No. 3, pp. 191–212.

[51] Wooldridge, M. J.: An Introduction to Multiagent Systems. John Wiley & Sons,
2009.

Using Program Shaping to Parallelise an Erlang Multi-Agent System 817

[52] Wróbel, K.—Torba, P.—Paszyński, M.—Byrski, A.: Evolutionary Multi-
Agent Computing in Inverse Problems. Computer Science, Vol. 14, 2013, No. 3,
pp. 367–383.

Adam Barwell is a Ph.D. student at the University of St
Andrews. He is interested in programming languages, static ana-
lysis, refactoring, and parallel programming.

Christopher Brown received his Ph.D. degree from the Uni-
versity of Kent in 2009. He now works as Senior Postdoctoral-
Research Fellow at the University of St Andrews, where his re-
search focuses on pioneering advanced refactoring techniques for
multi-core systems.

Kevin Hammond is Full Professor of Computer Science at the
University of St Andrews, where he leads the functional pro-
gramming research group. His research interests lie in pro-
gramming language design and implementation, with a focus
on parallelism and real-time properties of functional languages,
including modelling and reasoning about extra-functional prop-
erties. In total, he has published around 100 research papers,
books and articles, and held over 20 national and international
research grants, totalling around 11M of research funding. He
was a member of the Haskell design committee, co-designed the

Hume real-time functional language, and is co-editor of the main reference text on parallel
functional programming. He currently coordinates the RePhrase project, a 3-year EU
research project that aims to develop new refactoring technology targeting heterogeneous
parallel architectures. He is a keen hill-walker, whisky connoisseur and enjoys early music.

818 A.D. Barwell, C. Brown, K. Hammond, W. Turek, A. Byrski

Wojciech Turek received his Ph.D. degree in 2010 from the
AGH University of Science and Technology in Cracow. He works
in the area of multi-robot systems, multi-robot planning, au-
tonomous and agent-based systems, concurrent and parallel pro-
gramming, mostly in functional languages.

Aleksander Byrski received his Ph.D. in 2007 and his D.Sc.
(habilitation) in 2013 from the AGH University of Science and
Technology in Cracow, Poland. He works as Assistant Professor
at the Department of Computer Science of AGH-UST. His re-
search focuses on multi-agent systems, biologically-inspired com-
puting and other soft computing methods.

