
Computing and Informatics, Vol. 35, 2016, 852–869

EVOLUTION OF REACTIVE STREAMS API
FOR CONTEXT-AWARE MOBILE APPLICATIONS

Przemys law Dadel, Krzysztof Zieliński

Department of Computer Science
AGH University of Science and Technology
Kraków, Poland
e-mail: {pdadel, kz}@agh.edu.pl

Abstract. This article describes the role of reactive streams concept as a core com-
munication pattern in mobile-first applications and proposes directions for evolution
of its classic API to better match mobile application requirements. By designing the
selected examples of mobile applications, the authors evaluate the Reactive Streams
API which is an increasingly accepted standard for asynchronous communication
with back-pressure. This design is then assessed with regard to solution expres-
siveness and the ability to satisfy functional and non-functional requirements of the
stated problems. It is observed that the used API does not allow for a context prop-
agation from a mobile subscriber to a publisher so that the streamed data can be
well adjusted to the variable reception context of a given mobile device. To address
this issues, a context-aware variant of this API is proposed and it is demonstrated
and discussed by presenting an alternative application design.

Keywords: Mobility, reactive manifesto, voluntary computing, context-aware com-
puting, distributed systems

Mathematics Subject Classification 2010: 68-M14

1 INTRODUCTION

This article aims to describe the role of reactive streams concept as a core commu-
nication pattern in mobile-first applications and proposes directions for evolution of
its classic API to better match mobile application requirements.

Evolution of Reactive Streams API for Context-Aware Mobile Applications 853

Reactive systems strive to be responsive by providing responses in a timely
manner and detecting problems quickly. They are aimed to be resilient – they stay
responsive in case of a failure. They should also be elastic so they stay responsive
under changing workload. Being message-driven is the last but certainly not the
least principle that is described in this manifesto. Actually, asynchronous message
passing is a cornerstone of reactive systems that makes achieving the aforementioned
goals feasible by encouraging communication patterns that ensure loose coupling,
isolation, location transparency and provide relevant means to delegate errors as
messages.

Work on Reactive Manifesto [5] has shown that the problems it addresses in
building distributed systems are very pervasive and Reactive Stream API [7] has
been proposed as a way to standardise how reactive software components should
communicate.

The wide-spread acceptance of the ‘reactive’ trend [2] and its successful im-
plementations by leading software vendors bring more scientific attention to this
approach to test its applicability and extensibility in more specialized domains of
distributed software development. Due to the increasing presence of mobile de-
vices and existing challenges in building software systems cooperating with them,
we have found that mobile-based applications will be a highly rewarding field of
research.

In our work the Reactive Stream API is evaluated by a design of selected classes
of mobile-centric distributed applications. We analyse how application of this API
allows to satisfy both functional and non-functional requirements, how complex
applications are as far as the implementation point of view is concerned and how
fit they are for running on the mobile device. We point out the strength of such
a solution as well as its shortcomings. Next, we provide an alternative design with
the state-of-the-art Context-aware Reactive Stream API that we propose and discuss
how it helps to alleviate the reported problems.

This article is structured in the following way: the next section provides a brief
introduction to the problem domain, in Section 3 we introduce the Reactive Streams
API and model two classes of applications with it. Section 4 shows an alternative
design for the same use cases with our modified API. Finally we present a related
work in Section 5, summarize our research in Section 6 and present our plans for
future development in Section 7.

2 PROBLEM DOMAIN

Mobile devices are rich resources of contemporary internet. When such devices are
in questions, one generally means smart-phones, tablets, smart-watches and other
portable, programmable appliances with human facing interface that can communi-
cate wirelessly.

To properly build a distributed system in which mobile components play a sig-
nificant role we need to take into account several factors. The first one would be

854 P. Dadel, K. Zieliński

inherent, limited available resources, for example the battery power and the variable
network connectivity. Heterogeneity is another one. In our work we focused on the
Android ecosystem as an open, mature and most widespread platform in the mobile
world. The applications we have developed in our study could work on over 2 000 dif-
ferent devices. Regardless of the software API differences of the Android Platform,
those devices are equipped with a diverse sensor set and present a wide spectrum
of raw computing power from very slow budget single-core devices to a multi-core
top-level smart phones.

Mobility does not have to be perceived as a restriction, it can be also a feature
enabler. Depending on sensors and available context data, devices can provide
context dependent functionality (e.g. position, velocity, vicinity of other appliances)
and this fact enables new classes of applications.

In our design experiment we chose two classes of mobile application that should
benefit from the reactive approach and use of Reactive Streams API and whose
behaviour is likely to be dependent on the properties that change due to the device
mobility.

The first class consists of mobile applications that are end consumers of a data
stream: e.g. traffic information, video, news feed, monitoring data and users (or
business model behind the application) expects this stream to be up-to-date and
adjusted to the current context of a user or device, e.g. location, currently played
song or vicinity of other users.

The second class consists of a more peculiar group of applications where opera-
tions executed by a mobile device contribute to a more complex, externally orches-
trated process and the device owner is not necessarily an active user of applications.
An example would be collaborative types of applications for data collecting (e.g.
traffic density), distributed offloading of operations in ad-hoc networks or a class of
voluntary computing applications on mobile devices. In such cases mobile applica-
tion requests a work stream that is executed on a device.

In our use cases we focus solely on the design of the mobile side of the software
system.

3 REACTIVE STREAM API

The Reactive Streams API [7] is a rapidly being accepted programming interface
with a couple of implementations in popular Java-running libraries e.g. Spring Re-
actor or Akka Streams. It allows software designers and developers to express and
program communication between distributed participants that would enable ‘reac-
tive’ characteristics of the application. Fundamentally it is a publisher-subscriber
based communication with back-pressure. While API does not enforce such imple-
mentation, it allows to express completely asynchronous interaction between the
participants so, in no case, one communicating side waits for another.

This fact is especially important when one builds a system which involves mobile
devices. The reception and processing of a message sent to a mobile component may

Evolution of Reactive Streams API for Context-Aware Mobile Applications 855

be delayed due to network connectivity and availability changes, battery depletion
and performance changes caused by e.g. OS level scheduling that aims at providing
maximum performance to the front user actions and preserving energy while a given
user does not actively use a particular device.

A standard interaction between participants (Figure 1) using this API (Listing 1)
can be described in the following steps:

1. using a Publisher object reference a Subscriber subscribes and receives subscrip-
tion confirmation through a callback method onSubscribe,

2. a subscriber receives a Subscription object through which it can request for next
n-elements to process, data is provided through a callback method onNext,

3. communication ends either by explicit Subscription cancellation or data stream
completion or error: onComplete, onError.

trait Publisher[Signal] {

def subscribe(subscriber: Subscriber[Signal])
}

trait Subscriber[Signal] {

def onSubscribe(subscription: Subscription[Signal])
def onComplete ()
def onNext(element: Signal)

def onError(err: Throwable)
}

trait Subscription[T] {

def cancel ()
def request(n: Long)

}

Listing 1. Reactive Stream API interfaces in Scala

3.1 Class A – Reactive Evacuation Application

To represent this class we chose an application for which the main functional require-
ment is to guide a user through a walking route with a variable traffic congestion
and traversal plan. One can think of an evacuation route e.g. out of his office, event
venue or a sightseeing plan in a crowded museum. While a need to continuously
evaluate a route on a mobile phone’s screen would be a severe usability limitation,
an increase in popularity of wearable appliances e.g. smart-watches or smart-glasses,
makes such information much more accessible to the user. To the contrary of a sim-
ple navigation application, this variable traffic and plan case puts more emphasis on
the relevance of a current user/device context.

In the designed application high-level logic would look the following way:

856 P. Dadel, K. Zieliński

Figure 1. Publisher-subscriber interaction representing situation of context expiry or re-
connection

• a user or an alarm signal controls when to start the emergency data delivery,

• the mobile application subscribes to an evacuation service (publisher) for the
next positions giving its start location,

• the navigation service (reactive stream publisher) provides a subscriber with
a stream of next-move commands,

• the mobile application controls the rate of those commands using the request
method on subscription.

The designed application will track the user movement through its location
service and adjust the rate of back-pressure request calls to the speed of location
changes. The application is then not flooded with data as it requests them when
needed.

The current API, however, does not allow the mobile application to report back
on its location and as result next-move commands with time may lose synchroniza-
tion from real users movements. One could argue that a given device knows its
location and how much it deviates from the guided route but there may be a good
reason for choosing a different path e.g. a blocked passage or other unexpected ob-
stacles. We could alleviate this by re-establishing a subscription after a time-out
(function of user’s velocity) or when the user gets further and further from the
planned route. However it makes the implementation complicated, forces appli-
cation to be an active communicating side (in contrast to only reacting to server
initiated on Message calls) and only temporarily mitigates a stale data problem.

There are other valid scenarios hard to achieve with current API. Firstly, mobile
devices are equipped with various sensors and an example of adding temperature
measurement to location information would allow navigation service to better adjust
the escape route e.g. in the case of a fire. Secondly, in the case of evacuation, more
users are likely to take part in it and live ‘feedback’ on individual users relocations

Evolution of Reactive Streams API for Context-Aware Mobile Applications 857

and sensor data would allow a navigation service to better adjust an evacuation plan
for each user to, for example, minimize bottlenecks or detect blocked paths faster.

Outstanding problems:

• adjusting the rate of incoming messages to the users current context (e.g. the
hotter the faster route is updated),

• delivery of information relevant from the perspective of the current user context,

• ability for a producer to adjust streamed data to the current context of multiple
subscribers,

• complex administration required to retain relevant subscription,

• back-pressure only on volume but not on the stream parameters.

We will present how these limitations could be avoided with the proposed
Context-aware Reactive Stream API.

3.2 Class B – Mobile Voluntary Computing Application

This application aims to use the power of a mobile device while it is not actively
being used. BOINC[3] is an example of the already existing projects that have
a mobile client[6] that executes computational tasks on a mobile device when it is
on Wi-Fi and is connected to a power supply.

With this use case we will focus on how to provide a stream of work to the
device that matches best its capabilities.

In the designed application high-level logic would look in the following way:

• a user installs a mobile application that can execute computation tasks as back-
ground process,

• the application subscribes to the publisher for a stream of tasks,

• the application describes the profile of the device (e.g. computation power) dur-
ing subscription,

• the computation orchestrator (stream publisher) provides a subscriber with
a stream of tasks,

• the application requests n-next tasks if it can process more of them (e.g. is on
Wi-Fi and is powered on),

• the application controls a task rate using request(n) method on subscription.

The Reactive Streams API’s back-pressure mechanism plays a vital role in this
type of application: it protects a mobile computation unit not only from being
flooded with data but also lets it to be responsive as it will only process tasks when
it is able to do so. This also protects the users’ Service Level Agreement (SLA)
under which they agree to contribute their device to the programme.

In this case we also notice a stale data problem but it is not so crucial as in the
first example. If we provide tasks with enough fine grained granularity, the impact

858 P. Dadel, K. Zieliński

on the device should be minimized if, at reception, it turns out that e.g. the device
is running back on battery.

However, there are other, more relevant problems that are not so easily handled
with the current API. The first is a situation when a change of device properties
would not disqualify the device from contribution but would rather require different
kind of tasks. A device low on battery, with reduced operational memory or with
worse network connectivity would still be able to responsively process the task if
these tasks would be suited for device condition e.g. split. Another example would
be tasks that should be only executed when a device is connected to a particular
network location to benefit from data locality. It is somewhat similar to the stale
view problem and it also could be alleviated with a re-subscription mechanism but
a burden of state tracking and subscription management remains on a mobile device.

The second problem is the publisher’s perception of a device state in long run-
ning processes and handling the device reconnection. On a regular basis we would
expect that computational tasks are delivered to the device soon after a request(n) is
invoked, but it may happen that the orchestrator has currently no tasks that match
device capabilities. Those tasks will be delivered to the device as soon as they show
up and a mobile application has previously expressed the desire to consume more
data. However at that point the request(n) may be long based on an outdated state
of device. The producer has no information on how long it can rely on the sub-
scriber’s request(n) call and has no way to express that the subscriber’s request has
expired.

Additionally, a subscribed device may simply get deactivated or go offline so
the producer needs a way to ‘wake up’ a subscriber so that it can repeat its re-
quest. Subscribers could try to actively track its relevant context and re-establish
subscription but a leaner approach would be to let the device be as passive as pos-
sible and orchestrator can take in turn responsibility of ordering re-request(n) or
re-subscription from the device.

Outstanding problems:

• delivery of content matching current mobile device capabilities,

• long running subscriptions and maintaining an up-to-date perception of device
properties,

• refreshing subscribers after periods of silence.

4 CONTEXT-AWARE REACTIVE STREAM API

In our design experiment we have found that Reactive Stream API is a great tool
to build mobile clients that require for content to be pushed like a stream to the
device. The ability to back-pressure plays an important role to ensure that a device
receives only the load it can handle and when that data is needed.

We observed that Reactive Stream API addresses the problem of adapting quan-
titative parameters of the data stream. It is useful for systems with fixed charac-
teristics (e.g. computing power, broadband network, constant power supply) to be

Evolution of Reactive Streams API for Context-Aware Mobile Applications 859

elastic under a changing load and with back-pressure they process only the amount
of data they claim they can.

However, characteristics of the mobile running consumers change over time.
The context under which mobile subscribers process data is variable. We find that
a solution to the design problems pointed in the previous sections would be that the
mobile subscribers could back-pressure on qualitative parameters of the data stream
under the same subscription.

To address that need, in this article an extended Context-aware Reactive
Stream API is presented. One can enumerate the following key differences:

• communicating parts are parametrized not only with the type of streamed data
but also the context information that may influence the stream,

• while requesting next elements to process, the current device context is passed
to a publisher,

• the context has its validity period and the publisher notifies the subscriber with
onContextExpired method when the context expires.

Presence of this onContextExpired extensions is a consequence of three factors:

• context is valid for a period of time,

• mobile clients are supposed to be passive (they do not spontaneously request
demand),

• mobile clients are expected to get out of signal, lose connectivity and they may
not be aware of being out producer’s reach – we want a subscription to hold
even in such cases. This contributes much to resilience of this communication
strategy.

While we could not provide binary compatibilities between APIs we can no-
tice that existing Reactive Streams API can be perceived as a specialization of our
proposal if we introduce an Empty context that never expires and leave onContex-
tExpired implementation empty.

trait Publisher[Signal , Context] {

def subscribe(subscriber: Subscriber[Signal , Context])
}

trait Subscriber[Signal , ContextType] {

def onSubscribe(subscription: Subscription[Context])
def onComplete ()
def onNext(element: Signal)
def onContextExpired(ctx: Context)

def onError(err: Throwable)
}

trait Subscription[Context] {

def cancel ()
def request(n: Long , ctx: Context)

860 P. Dadel, K. Zieliński

}

trait Context {
val expireAt: Int

}

Listing 2. Context-aware Reactive Stream API interfaces in Scala

Examples of context that can affect subscriber capabilities might be among
others:

• the position of the device – if the device position makes the device ineligible for
content, stream could be closed, but we may find applications with a requirement
to provide e.g. more customized/enriched context when the subscriber is in the
vicinity of a certain location,

• a change of the network speed by impact quality of the transmitted data e.g.
stream of video, images, synchronization depth,

• a device on battery – move intensive tasks to execute,

• higher blood pressure – adjust stream of music to calm down the user.

The presented API allows developers to express communication between dis-
tributed participants and update producer on the context of data reception result-
ing in context back-pressure. Contrary to the situation when a mobile application
itself manages validity of the subscription, with our approach a given mobile device
can stay very passive and only takes action on demand and the demand is mostly
controlled by the subscriber itself. The only exception are onContextExpired calls
that are publisher initiated (but context time-out is still subscriber defined).

The streamed data may not be dependent only on this current device context,
in a collaborative kind of mobile application data may change depending on the
context of other devices. When context information pushed up the data stream, the
publisher is allowed to make use of this data.

4.1 Class A – Context-Aware Reactive Evacuation Application

In this section, the design and code samples of a context-aware version of the pre-
viously proposed solution will be presented for the updated API. For the simplicity
of code examples we use the location context only.

In the designed application high-level logic would look the following way:

• a user or alarm signal controls when to start the emergency data delivery,

• the mobile application subscribes an escape service (producer) for the next po-
sitions giving its current location,

• the mobile application requests next n move-commands using request method
on subscription and provides current location with each request.

• the navigation service (reactive stream publisher) provides a subscriber with
a stream of next-move commands adjusted to current reported context and
reported locations of other users in the area.

Evolution of Reactive Streams API for Context-Aware Mobile Applications 861

The presented data flow and code sample indicate that adhering to this API can
result in a simple, expressive subscriber implementation. We achieve a goal of a clean
design that allows the application to be responsive both from the communication
and the user reception perspective.

class EvacuationApp extends Subscriber[Move , Location] {

var subscription: Subscription[Location] = _

def start() {
NavigationPublisher.subscribe(this)

}

def currentContext (): Context[Location] = {
Context(expireAt = fromNow (60 sec), state = Location(fromGPS ()))

}

def onSubscribe(sub: Subscription[Location]) {
subscription = sub
// request next position
subscription.request(1, currentContext ())

}

def onComplete () {
println ("You are safe now .")

}

def onNext(move: Move) {
println ("Go to: " + move)
// two more steps
subscription.request(2, currentContext ())

}

override def onContextExpire () {
subscription.request(1, currentContext ())

}

}

Listing 3. Context-aware Mobile Evacuation Application

4.2 Class B – Context-Aware Mobile Voluntary Computing Application

By redesigning a mobile voluntary computing application attention is paid to a dif-
ferent aspect of the proposed API. While the context back-pressure is highly rele-
vant is this case, the importance of context validity management and maintaining
a stream in volatile connectivity environments is even more visible in this class of
applications.

In the designed application high-level logic would look the following way:

• a user installs a mobile application that can execute computation tasks as back-
ground action,

• the application subscribes to the producer for a stream of tasks,

• the application describes a profile of the device (e.g. computation power) during
subscription,

862 P. Dadel, K. Zieliński

Figure 2. Sequence diagram for evacuation service

• the application requests n-next tasks if it can process more of them (e.g. is on
Wi-Fi and is powered on) and provides its current context (e.g. free memory,
connectivity type),

• the computation orchestrator – stream publisher – provides a subscriber with
a stream of tasks adjusted to its profile and the reported context,

• in case of absence of matching tasks, the orchestrator will track validity of the
current context and report that it has expired to get fresh application demand,

• onContextExpired is also sent after a period when the application’s demand is
not reported, this allows an application to re-establish its demand in the case
when the device was restarted or temporarily lost connectivity.

Figure 3 represents a publisher-subscriber interaction when context expires or
reconnection is needed and code sample (Listing 4) demonstrates what the imple-
mentation would look like.

class VoluntaryComputingApp extends Subscriber[Move , ProcessingCtx] {

val executor = new TaskExecutor ()

def start() {
TaskProducer.subscribe(this , initialContext ())

}

def onSubsribe(s: Subscription) {

Evolution of Reactive Streams API for Context-Aware Mobile Applications 863

Figure 3. Publisher-subscriber interaction representing situation when context expires

this.s = s;
s.request(nextTasks (), currentContext(timeToLive));

}

def onNext(nextTask: Task) {
executor.process(nextTask);
s.request(nextTasks (), currentContext(timeToLive));

}

def onContextExpired () {
s.request(nextTasks (), currentContext(timeToLive);

}

private def nextTasks (): Int {
if (wifi = true && power = true) return 1 else return 0;

}

}

Listing 4. Context-aware voluntary computing worker

Both examples presented to contrast previous software design showed that the
gap between a context-aware publisher and a context-aware consumer can be filled
by a communication mechanism based on Context-aware Reactive Stream API (Fig-
ure 4).

4.3 Context-Aware Publisher Considerations

In this work, the authors focus on the use of the API from the client requirements and
the implementation perspectives. By following a bottom-up, use-case driven design
and starting with a client, the authors try to validate suitability of the Context-

864 P. Dadel, K. Zieliński

Figure 4. Context-awareness in a software system requires for the context to be propagated
across communication API

aware Reactive Streams approach especially in the parts of the system where its
owners have less control over – mobile applications. Usually, stream publisher will
reside on an application back-end server which is easer to administer and tune in
order to match the scalability requirements. Actually with the Reactive Streams
API we are more advantaged with ability to predict and handle a server load:

• client request n-items that are delivered back asynchronously by server – in case
of an increased load server can produce data slower or auto-scale,

• server “knows” when it can expect further demand – in response to onNext
message,

• ability to track context and make a load predictions based on it adds yet another
dimension to consider.

While Reactive Streams API itself does not define it, its implementations e.g.
RxJava, Akka Stream allow functional transformations of a Publisher by applying,
among others, map, filter, concat functions. The authors are aware that these opera-
tions may not be possible or may not have the same semantics with a less restrictive
context-aware generalisation of this approach. However, the most important re-
sponsibility of the Reactive Streams API is governing an asynchronous directional
channel with back pressure and this responsibility is satisfied.

The authors argue that the context propagation is vital on the mobile-server
boundary. The client-side code can eventually narrow the context-aware stream to
a simple data stream (Listing 5). As for the context propagation on a server-side,

Evolution of Reactive Streams API for Context-Aware Mobile Applications 865

in the current prototypes we assumed that the context is passed to the actual data
source and we did not consider any transformations possible on it.

val ctxAwarePublisher: CtxAwarePublisher[Task] = ...
val regularPublisher = ctxAwarePublisher.withContextEnrichment((

ctxAwareSubscription) -> new Subcription {

def request(n: Int) {
ctxAwareSubscription.request(n, computeContext ());

}

})

Listing 5. Narrowing of a client’s stream view

The code samples (Listings 6 and 7) demonstrate very high-level suggestions on
how context-aware publisher could be implemented for both presented applications.

class EvacuationMovePublisher extends Publisher[Move] {

// dynamically updates routes depending on position of all subscribers
val source: MoveSource = ...

private def request(n: Int , ctx: Context , subscriber: Subscriber) {
source.updatePosition(subscriber , ctx.position)
source.routeForSubcriber(subscriber , ctx)

.take(n)

.to(subscriber)
}

}

Listing 6. Context-aware evacuation route publisher

class VoluntaryComputingTaskSource extends Publisher[Task] {

val source: TaskSource = ...

private def request(n: Int , ctx: Context , subscriber: Subscriber) {
source.select(task -> matchContext(task , ctx)

.take(n)

.to(subscriber)
}

}

Listing 7. Context-aware voluntary computing task publisher

For current considerations, details of how a stream publisher would need to
handle and use the context information are not discussed thoroughly as this depends
much on the problem being solved. One could argue that this information can
increase back-end side complexity. It is likely to be true but context-awareness is
not something optional – it is an enabler for certain classes of applications. It means
it is an inherent complexity and the presented API aims to minimize accidental
complexity at client side by providing a clean programming model. Nevertheless,
the authors plan to develop this concept further and propose a set of patterns to
help reduce this complexity at publisher’s side.

866 P. Dadel, K. Zieliński

5 RELATED WORK

The concepts of Reactive Programming, Reactive Systems and Reactive Systems are
subject of an ongoing and growing interest of software development practitioners and
researchers. The reactive programming walk-through [13] indicates that it has roots
in functional programming. This style of programming has been demonstrated [12]
in implementing user interfaces (UI) as it provides clean programming model for
dealing with user triggered events. In the recent years Reactive Systems have been
seen as a clean model of designing and building a scalable distributed system and
the work on the commercial Typesafe Reactive Platform [14, 2] demonstrates power
of reactive programming in enterprise class distributed applications.

The study on “Context-Aware Mobile and Wireless Networking” [9] summarizes
taxonomy and current challenges in building context-aware software that is well inte-
grated across networking and computing environments. It calls for “standardization
initiatives dealing with scalability and interoperability issues in a future context
ecosystem” and “greater contextualization of communication services supporting
both context-triggered actions and context-dependent reactions”. These problems
are explicitly addressed in our work.

A number of projects have already aimed to solve the problems in communi-
cation, integration and management in mobile-based systems. Rx4DDS.NET [8]
addresses challenges in data distribution by integrating data-centric publish/sub-
scribe technologies, such as Object Management Group (OMG) Data Distribution
Service that handles distribution of data to interested subscribers with The Reactive
Extensions (Rx) library [1]. This reactive library is similar in many ways and concep-
tually compatible with the Reactive Streams API. Rx4DDS.NET allows subscribers
to conveniently compose and transform streams (clean programming model) and the
functional nature of composing operations enables scaling-up of an end-processing
node. This solution is validated against the problem of processing streams of sensor
data and emphasises the validity of reactive approach in Internet of Things (IoT)
applications. Even though a somewhat reverse situation is described in our paper, as
in our case mobile (IoT like) devices are subscribers, the reactive streams approach
is highlighted as a suitable technique in building clean and maintainable software
for Internet of Things (IoT).

Ambient Clouds [11] is a project for representing collections of remote objects
in MANET networks that combines event-driven interaction, bases on publish/sub-
scribe model with reactive programming constructs: e.g. mapping, grouping con-
catenations, filtering. The result collection is transiently updated in the case of
changes in aggregated remote objects. While the nature of the used data structure
is different: bounded collection vs. unbounded stream we could model similar con-
structs with our API if we subscribe to a stream of collection updates and notice
that reactive operations on a stream are provided by most reactive stream libraries.
Context back-pressure could be used here by reactive operators to control granular-
ity of collection updates e.g. filter operation would push information up the stream
so that filtered property changes are propagated faster.

Evolution of Reactive Streams API for Context-Aware Mobile Applications 867

As far as robustness and communication efficiency are concerned, the work [10]
on Erlang-based sensor management systems has similar focus as the proposed API:
provide fault tolerance and increase the relevance of the transferred data. Those
aspects are emphasised with actor-based processing model as a mean to handle
sensor’s failures and to pre-process data by sensors locally. Our focus is put on
a communication strategy that expresses a way to preserve battery and throughput
(by minimizing pulling of data) and assumes communication faults in the system.
We perceive that both solutions could be combined in a similar way as Akka Streams
bridges classic Reactive Streams API with Akka – the actor model implementation
for Java Virtual Machine.

Work on CEMCloud [4] provides an excellent argument for testing boundaries
to which we can use mobile device as a worker by proving that mobile devices can
be a source of a very energy efficient computing power. What we strive to provide
is an equally efficient way of providing work to them.

6 CONCLUSIONS

Context-awareness is a crucial requirement that has to be addressed at the core
of architectural patterns used to build mobile applications. The Reactive Streams
API has a lot of advantages and enables reactive distributed communication, but
we have discovered that it is not open enough to fully bring reactive principles to
mobile clients. We have discussed examples when the user’s current context is a key
parameter that should be used to back-pressure not only on volume but also on qual-
ity and content selection of streamed data. We discovered that the stream publisher
for a mobile device has to be a lot more agile and allow for qualitative modification
of parameters of data streams depending on device context. e.g. lowering streamed
video quality for battery worn-out device.

To address these issues we have analysed existing standard of the Reactive
Streams API and used it as a basis to build a new Context-aware Reactive Stream
API. It allows mobile clients to request data for specific context of data reception
so that the publisher can adjust the streamed content accordingly. The specified
context has its validity period, so the publisher can determine how long it can rely
on this request and when it needs to ask the subscriber to refresh its demand.

Additionally, the presented API is much simpler to use from the perspective
of the mobile application implementation as the only state it needs to preserve is
an open subscription. A mobile application is off-loaded from complex subscription
monitoring and context tracking so that most of the application structure can be
devoted to the core domain implementation.

The cost of this approach is a more complex publisher implementation, but this
complexity is not accidental. It comes from the nature of the used components,
e.g. it is better to offload a mobile device from unnecessary responsibilities and it is
also a property of the class of the problem solved, e.g. group navigation services or
computation orchestration services are inherently stateful.

868 P. Dadel, K. Zieliński

7 FUTURE WORK

In this paper we have discussed an API proposal that is backed up by several de-
signed use cases. A prototype implementation has been provided so far for the
second – computational – use case and the authors would like to experiment more
with real life implementations. From a different perspective, we have optimized for
the simplicity of the mobile subscriber and we would also like to investigate more
and provide guidelines for effective implementation of context-aware publishers. We
plan to close our research on reactive streams in a mobile world by investigating
the role of mobile devices as data publishers as well as the mechanisms which would
allow to subscribe to a population of mobile devices, for example to get a heat map
or traffic density. We find these topics highly relevant due to the visible progress
both in the adoption of mobile devices and their capabilities.

REFERENCES

[1] The Reactive Extensions (Rx). http://msdn.microsoft.com/en-us/data/

gg577609.aspx.

[2] Typesafe Case Studies. http://www.typesafe.com/resources/case-studies-

and-stories.

[3] Anderson, D. P.: BOINC: A System for Public-Resource Computing and Storage.
Proceedings ot the Fifth IEEE/ACM International Workshop on Grid Computing,
2004, pp. 4–10.

[4] Ba, H.—Heinzelman, W.—Janssen, C.-A.—Shi, J.: Mobile Computing –
A Green Computing Resource. 2013 IEEE Wireless Communications and Networking
Conference (WCNC), IEEE, 2013, pp. 4451–4456.

[5] Boner, J.—Farley, D.—Kuhn, R.—Thompson, M.: The Reactive Manifesto.
http://www.reactivemanifesto.org/.

[6] BOINCs Homepage. BOINC on Android. http://boinc.berkeley.edu/.

[7] Pivotal, Red Hat, Twitter, Typesafe, Kaazing, Netflix. Reactive Stream API. http:
//www.reactive-streams.org/.

[8] Khare, S.—An, K.—Gokhale, A.—Tambe, S.—Meena, A.: Reactive Stream
Processing for Data-Centric Publish/Subscribe. Proceedings of the 9th ACM Interna-
tional Conference on Distributed Event-Based Systems (DEBS ’15), ACM, New York,
NY, USA, 2015, pp. 234–245.

[9] Makris, P.—Skoutas, D. N.—Skianis, C.: A Survey on Context-Aware Mobile
and Wireless Networking: On Networking and Computing Environments’ Integration.
Communications Surveys Tutorials, IEEE, Vol. 15, 2013, No. 1, pp. 362–386.

[10] Niec, M.—Pikula, P.—Mamla, A.—Turek, W.: Erlang-Based Sensor Network
Management for Heterogeneous Devices. Computer Science, Vol. 13, 2012, No. 3,
pp. 139–151.

[11] Pinte, K.—Lombide Carreton, A.—Gonzalez Boix, E.—De Meuter, W.:
Ambient Clouds: Reactive Asynchronous Collections for Mobile Ad Hoc Network

Evolution of Reactive Streams API for Context-Aware Mobile Applications 869

Applications. In: Dowling, J., Täıani, F. (Eds.): Distributed Applications and Inter-
operable Systems. Springer Berlin Heidelberg, Lecture Notes in Computer Science,
Vol. 7891, 2013, pp. 85–98.

[12] Prokopec, A.—Haller, P.—Odersky, M.: Containers and Aggregates, Muta-
tors and Isolates for Reactive Programming. Proceedings of the Fifth Annual Scala
Workshop (SCALA ’14), ACM, New York, NY, USA, 2014, pp. 51–61.

[13] Salvaneschi, G.—Margara, A.—Tamburrelli, G.: Reactive Programming:
A Walkthrough. 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering (ICSE), May 2015, Vol. 2, pp. 953–954.

[14] Typesafe. An Introduction to Reactive Streams, Akka Streams and Akka HTTP
for Enterprise Architects – White Paper. Typesafe Whitepaper. https://info.

typesafe.com/COLL-20XX-Enterprise-Architect-Akka-Streaming-Guide_

TY-RP.html.

Przemys law Dadel is a computer science Ph.D. student at
the AGH University of Science and Technology. He pursues his
interest in distributed, cloud and mobile computing. He is an ex-
perienced software engineer with over 5 years of commercial ex-
perience in Java and related technologies.

Krzysztof Zieli�nski is Head of the Department of Computer
Science at AGH University in Krakow. His research concen-
trates on networking, mobile and wireless systems, distributed
computing, and service-oriented distributed systems engineer-
ing. He is the author of over 200 papers in these topic areas. He
was the Project/Task Leader of numerous EU-funded projects,
e.g. PRO-ACCESS, 6WINIT, Ambient Networks. He served as
an expert for the Ministry of Science and Education. Currently,
he is leading an SOA oriented research performed by the IT-
SOA Consortium in Poland. His research interests evolve around

adaptive SOA solution stack, services composition, service delivery platforms and method-
ology. He is an active member of IEEE, ACM and The Polish Academy of Sciences. He
served as a program committee member, chairman and organizer of several international
conferences including MobiSys, ICCS, ICWS, IEEE SCC and many others.

