Computing and Informatics, Vol. 35, 2016, 890-913

MAKING PROPERTY-BASED TESTING
EASIER TO READ FOR HUMANS

Laura M. CASTRO

Facultade de Informadtica, Universidade da Coruna
Campus de Elvina S/N, 15071, A Coruna, Spain
e-mail: lcastro@udc.es

Pablo LAMELA, Simon THOMPSON

School of Computing, University of Kent
Canterbury, Kent, CT2 TNZ, UK
e-mail: {P.Lamela-Seijas, S.J.Thompson}@kent.ac.uk

Abstract. Software stakeholders who do not have a technical profile (i.e. users,
clients) but do want to take part in the development and/or quality assurance pro-
cess of software, have an unmet need for communication on what is being tested
during the development life-cycle. The transformation of test properties and models
into semi-natural language representations is one way of responding to such need.
Our research has demonstrated that these transformations are challenging but fea-
sible, and they have been implemented into a prototype tool called readSpec. The
readSpec tool transforms universally-quantified test properties and stateful test
models — the two kinds of test artifacts used in property-based testing — into plain
text interpretations. The tool has been successfully evaluated on the PBT artifacts
produced and used within the FP7 PROWESS project by industrial partners.

Keywords: Test artifacts, test models, stakeholders, semi-natural language, pro-
perty-based testing, quickcheck

Making PBT Eastier to Read 891

1 INTRODUCTION

Property-based testing (PBT) is a powerful approach to software testing [8], but it
may be as challenging for developers who first use it [39] as it is for non-technical
stakeholders to understand, in general, software-related artifacts [46].

Take, for instance, a QuickCheck [8] property such as:

PFORALL({1, L}, {int(), list(int())},
not lists:member(l, lists:delete(l,L)))

Despite its declarative style and universally-quantified abstraction, it cannot be
claimed to be readable for everyone, and it certainly is far less understandable than:

If you have a number
and you have a list of numbers
when you remove the number from the list
then the list does no longer contain the number.

The situation is much worse when the software under test is complex enough
to need a stateful model to be tested. On the other hand, agile approaches to
software development demonstrate that the involvement of all stakeholders in the
software life-cycle is a key factor for project success [9]. Specifically, enabling clients
or users to validate software requirements by direct inspection or even interaction
with software quality assurance artifacts such as tests cases and test suites brings
effective benefits [33].

Thus, it is in our own interest as computer scientists and software developers to
explore, formulate and build techniques and tools to fill in the gap that exists not
only between PBT and software developers, but also between the PBT artifacts and
the software clients and users.

This paper presents readSpec, a tool which automatically generates versions of:

e QuickCheck! properties which are readable for non-technical people. As criteria
for the requirement “readable for non-technical people”, we have adopted the
style used in the tool Cucumber [25], which uses a semi-natural language style
for describing tests.

e QuickCheck stateful models which are readable for non-technical people. In
this case, since there are no tools that use any artifacts similar to these, we
have developed our own semi-natural language representation, which is produced
through symbolic execution.

A prototype version of readSpec is publicly available as a GitHub repository
(https://github.com/prowessproject/readspec), which includes a folder with

I Specifically, Erlang QuickCheck, the most advanced version of QuickCheck available.

892 L. M. Castro, P. Lamela, S. Thompson

examples and a user manual. These are the same examples used throughout this

paper.
From the research point of view, the main contributions of our work are threefold:

e A way to close the communication gap that currently exists between stakeholders
with regard to the use of PBT.

e A proposal to use the Cucumber language, Gherkin [50], as semi-natural lan-
guage that can express the same abstractions typically represented by test prop-
erties in PBT.

e A text-based format to express the preconditions, postconditions and results
involved in tests derived from stateful PBT models.

The rest of the paper is organised as follows: Sections 2 and 3 present in de-
tail our proposals for textual representations of test properties and test models,
respectively. Then, Section 4 describes the evaluation of the tool into which we
implemented these proposals, in an industrial setting. We conclude by analysing
related work in Section 5 and final remarks in Section 6.

2 GENERATING BEHAVIOUR-DRIVEN DEVELOPMENT
SCENARIOS FROM QUICKCHECK PROPERTIES

2.1 Behaviour-Driven Development: Cucumber

We know that when users and /or clients are not involved in the software development
process, this is more likely to fail [9, 5, 42]. Involving users and clients in the software
development process has led to the development or encouraged the adoption of
design artifacts that are approachable by non-technical people, such as UML [13] or
STEPS [16].

We also know that quality assurance activities are essential to the development
of the right software for the users. As such, quality assurance artifacts are key for
software development, since their purpose is to check the user requirements in the
software product that is being or has been built.

However, there have been few efforts to make quality assurance artifacts more
approachable to users and/or clients. Test cases, test suites and/or test models
remain a very technical area. One notable exception, though, is Cucumber [25],
a behaviour-driven development tool whose popularity is on the increase (cf. Fig-
ure 1).

Behaviour-driven development (BDD) takes test-driven development (TDD) one
step closer to the user or client. While TDD is a developer-oriented approach that
demands that tests are written before the implementation, and actually used as
a guide for development, BDD deals with the description of features in semi-natural
language, in order to make them accessible to people outside the development or
testing teams. On the one hand, functionalities are described in a similar way to
specifications; on the other hand, they are described using a set of keywords and

Making PBT Eastier to Read 893
Compare searchterms v

Cucumber

Software

Beta: Measuring search interest in topics is a beta feature which quickly provides accurate measurements of overall search interest. To
measure search interest for a specific guery, select the "search term" option

Interest over time

Forecast

i
/
]

A
I
/
AR
ATASY
I N VAT B
A F AN T
'~ A \\ ! A

Figure 1. Google Trends: increased interest about “cucumber (software)”

a layout template that allows the automatic processing of those scenarios into actual
test cases.

Cucumber is the most popular test tool for BDD, originally written in Ruby [25].
Since its first release in 2008, clone versions in a number of other languages have
seen the light, also including two Erlang implementations [35, 40]. All of them
execute plain-text functional descriptions as automated tests. Because Ruby is also
the implementation language of the popular framework Ruby on Rails [23], a full-
stack cross-platform web-app framework, the acceptance of Cucumber among web
application developers has been wide.

With Cucumber, specifications are written as acceptance tests in feature files.
Each feature can be described using a number of scenarios. Scenarios are trans-
formed into executable test cases by the implementation of sequences of steps.

2.1.1 Cucumber Features
Feature files [50] are text-only files with the following header:
FEATURE: <name of the feature>
In order to <general desc of the feature>

I need to <goal of the feature>

The purpose of this general description of what the feature accomplishes is not
operational, rather to provide context to the scenarios that follow.

894 L. M. Castro, P. Lamela, S. Thompson
2.1.2 Cucumber Scenarios

Each feature file can contain a number of scenarios which illustrate how the feature
is expected to behave. The more diverse the scenarios are, the more complete the
specification will be.

A Cucumber scenario [50] follows this template:

SCENARIO: <desc of scenario>
GIVEN <desc of input>
(AND <desc of additional input>)
WHEN <desc of action>
(AND <desc of additional action>)
THEN <desc of consequence of action>
(AND <desc of additional consequence of action>)

This template is the key to communication between developers, testers, and
non-technical stakeholders. It represents a common ground because, thanks to being
written in semi-natural language, it is understandable and assessable by users and
clients. At the same time, it has a clear procedural style, which developers and
testers can easily identify as a test scenario. Indeed, what tools like Cucumber do
is to automatically translate these into executable test cases (cf. Figure 2).

Project Development

Client methodology methodology Software Cucumber
requirements requirements

Software
implementation

Software
testing

Figure 2. Role of Cucumber in the software development workflow

2.1.3 Cucumber Steps

The automatic translation of the scenarios included in a feature file into executable
test cases is performed by defining each of the relevant steps (inputs, actions, and
consequences) and implementing their translation into data, function calls, and re-
sult values in the target software. This translation is application-specific, and there
is usually little room for code reuse [38, 19].

For the purpose of our research, we only focus on the automatic derivation of
features and scenarios, and not on the implementation of steps. Our intention is

Making PBT Eastier to Read 895

not to follow a BDD life cycle: we will not be writing cucumber-like specifications
from scratch. Instead, we take QuickCheck properties and models as input sources.
These test properties and test models are already executable and automatically
transformed into test cases by QuickCheck. The gap we aim to fill in with this work
is the one between the test properties and models, and the non-technical stakeholders
(cf. Figure 3). That being said, the features and scenarios that our readSpec tool
produces strictly follow the Cucumber conventions, so they can indeed be used with
any Cucumber-like tool to derive test cases in their corresponding implementation
languages (Ruby, Java, C++...).

Project Development

Client methodology methodology Software Cucumber
requirements » requirements
|
-
-
-
Software
implementation
-
-
-
-
Software
testing

readSpec

Figure 3. Role of readSpec in the software development workflow

2.2 Generation of Features and Scenarios from Properties

To illustrate how we have modelled and implemented the automatic generation of
features and scenarios from QuickCheck properties, we will use a simple example.
It is a basic QuickCheck module that contains only one test property, which follows
the usual universally-quantifiable declarative statement format, and declares that
any integer I should not be a member of the list that results from deleting that
integer from any given list of integers L.

prop_simple () —
PFORALL({!, L}, {int(), list(int())},
not lists:member(l, lists:delete(l,L))).
If we sample the generators int () and 1ist(int()) we can get and idea of the
sort of input combinations that the property will be using when generating specific
test cases:

> eqc_gen:sample({eqc_gen:int (), eqc_gen:list(eqc_gen:int())}).
{0, [-6, 10, —9]}

{4 [}
{-6, [5, 11]}

896 L. M. Castro, P. Lamela, S. Thompson

(-5, [7, 3, 11]}
{12, [-11, 15, 14]}

However, we would rather produce this output combined with the actual prop-
erty body, in a more user-friendly way. Also, when testing QuickCheck properties,
we would be running at least a hundred test cases, possibly many more, which will
make us confident about the coverage of the subject under test (SUT). But when
reporting a set of samples for human consumption, we would rather select a few
that instead illustrate reasonable coverage. In the following subsections we explain
how we have tackled this double challenge.

2.2.1 Selecting Sample Property Tests

In order to select a few test cases that we can transform into the scenarios that would
describe a feature (i.e. property), we have chosen to use the QuickCheck eqc_suite
library. This is an somewhat atypical subsection of QuickCheck features that allows
us, among other things, to generate a reduced set of test cases that fulfill some
criteria. One of those criteria is code coverage (eqc_suite:coverage based/2).

For the criteria to be applied successfully, a coverage tool must be used in
combination. We chose the coverage tool delivered with the rest of the Erlang/OTP
standard libraries, cover [14].

Thus, the algorithm we follow is:

1. Cover-compile the module we want to test, to enable the collection of coverage
measures.

2. Generate a reduced but representative set of test inputs using QuickCheck’s
eqc_suite:coverage_based/2 and eqc_suite:cases/1.

This is better than just randomly sampling the generators, because it ensures
a better distribution for our purposes (namely, that in addition to the random
factor, the test data is generated trying to enforce the execution of all non-dead
implementation code).

2.2.2 Property Features

As we already mentioned, each feature file has a header which only purpose is to
give a general description of the feature described by the scenarios that follow.

Given that our input source for generating the feature file is an Erlang Quick-
Check source file, we have assimilated this general description to the module header
that developers should write when documenting their source code. The standard
tool and format to document Erlang implementation modules is EDoc [15], a tag-
based Javadoc-like format and tool that uses ‘tags’ to identify pieces of commentary
that can later on be extracted and transformed into HTML documentation.

The following is the EDoc header documentation for our simple example:

Making PBT Eastier to Read 897

%%% @author Laura M. Castro <lcastro@udc.es>
9%%% @copyright 2014

9%%% ©doc Simple QuickCheck properties

%% ©end

In this case, we are interested only in the ‘doc’ tag, which is the one used to
provide the general purpose of the module, namely the QuickCheck test module that
contains the test properties.

The EDoc tool provides some utility functions to extract the EDoc comments
from an Erlang module as an XML structure (edoc_extract:source/2), which we
have used to our advantage. Obtaining not only the module description, but also the
description of each property that has been written using the ‘doc’ tag, is a matter
of transversing the structure and locating the tags of interest.

%% ©@doc Deleting an integer from a list should result in a list
%% that does not contain that integer.
%% ©end

2.2.3 Property Scenarios

Once we have the input samples and have statically extracted from the module
and properties documentation as much information as we can, it is the turn for
generating the scenarios: one for each input sample.

There are two things we need to generate to comply with the Cucumber tem-
plate:

1. A characterisation of the input data (GIVEN + ANDs part of the template),
using the specific samples we have.

2. A description of the property (WHEN/THEN part of the template), in which
we substitute variable names with their sample values.

The first task can be achieved by simple inspection of the generated sample data.
For the second, we rely on the symbolic execution of the test property, as presented
and discussed in Section 3 of this document. The symbolic execution capabilities
are used to obtain a tree-like internal representation of the body function, which is
then transversed (both in depth and width) to replace variable names with variable
values.

The result of this process is a feature file which, for our simple example, includes
scenarios such as:
FEATURE: simple

Simple QuickCheck properties
SCENARIO: Deleting an integer from a list should result
in a list that does not contain that integer.

GIVEN 1 have the integer 19
AND | have the list [7, —24, —-18, 17, -8, -9, —8§]
THEN 1T IS FALSE THAT

898 L. M. Castro, P. Lamela, S. Thompson

the integer 19 is in
the result of calling lists:delete/2
with 19 and [7, —24, —-18, 17, -8, —9, -8].

Using readSpec, obtaining the complete feature file is a matter of just running
readspec:suite(simple_eqc, prop_simple), where simple_eqc is the name of
the test module, and prop_simple the name of the property.

2.2.4 Features and Scenarios for Counterexamples

An additional functionality that we have incorporated into readSpec is the possi-
bility of generating these scenarios not only from properties for which we sample
their generators, but also from their counterexamples. We consider that obtaining
a semi-natural language version of a failed test case (i.e., property counterexample)
can be very useful for involving (and maintaining the involvement of) non-technical
stakeholders in the decision of whether a given error is an implementation or a spec-
ification problem [34] (cf. Figure 4).

Identify

Attract

Stakeholder cycle
Maintain
readSpec

Involve
cucumber

Figure 4. The optimal circle of stakeholder involvement in software development

Thus, when a counterexample is found during regular QuickCheck operation:

> eqc:quickcheck(simple_eqc:prop_simple()).
...... Failed! After 51 tests.

{14, [-11, 14, -9, 12, 14, 14, -22, 18]}
Shrinking .. (2 times)

{14, [14, 14]}

we can turn it into a cucumber-like scenario using readspec:counterexample/3,
which generates a prop_simple.counterexample.feature file.

Making PBT Eastier to Read 899

3 EXTRACTING HUMAN-READABLE DESCRIPTIONS
FROM STATEFUL MODELS BY USING SYMBOLIC EXECUTION

Symbolic execution is a broadly researched topic for testing and test generation [31,
32, 51], for specification verification [43], and for invariant generation [11]. Symbolic
execution has also been used sparingly for program comprehension as shown in [52],
but we could not find it linked to natural language explanation generation.

Aside of symbolic execution, there is some work on automatic program docu-
mentation [17, 27], but it is mainly focused on providing information about structure
and generic properties of functions, and not so much about behaviour description.
On the other hand, existing work aimed at improving test readability usually focuses
on getting tests out of use cases or either merging both worlds like it is the case of
Cucumber [25].

In this section we illustrate the symbolic functionality of readSpec applied to
automatically explaining QuickCheck stateful models using semi-natural language.
The symbolic functionality of readSpec is aimed to help understand the QuickCheck
statem models to people with a basic understanding of: the concept of state ma-
chine, the idea of testing, and programming artifacts like variables, collections and
database tables; but that may not have any specific knowledge about the Erlang
syntax nor the QuickCheck API.

As mentioned, Erlang QuickCheck is a PBT tool that supports the automatic
generation (and execution) of test cases. The module statem is a QuickCheck
library that makes it easier to design test models by describing them as abstract
state machines. These stateful test models replace universally-quantified properties
when the answers of the SUT depend on previous interactions with it.

A statem model must describe the abstract state machine by implementing
a series of callbacks that provide information about:

e the data structure that holds the state,

e the commands or transitions that can be executed,

the preconditions and postconditions that state must satisfy for each command
to be appropriate,

e the effect that each command produces on the state,

e the arguments that each command takes as input.

QuickCheck statem models are analysed by readSpec with a dual approach. On
the one hand, callbacks defined in QuickCheck models may be arbitrary Erlang
functions, only restricted by the Erlang semantics. For this reason we use symbolic
execution to analyse their possible behaviours, as shown in Section 3.1. On the
other hand, the QuickCheck statem library enforces a well defined structure for
the general model. This structure can be used to extract basic information about
the model. Information like the structure of the record containing the state, the
number of different commands defined, and the number of arguments required by
each command, can be extracted easily by checking the basic structure of the callback

900 L. M. Castro, P. Lamela, S. Thompson

that are defined for each command (i.e., functions whose names end with: _pre,
_post, _args...). In Section 3.2, we show how structural information is used to
improve the results obtained with symbolic execution.

In addition, some programming patterns have special meaning to developers.
Automatically generated explanation for these patterns may be perceived as un-
clear or hard to understand. With the aim of mitigating this problem, a mechanism
is provided that allows the user to collect these patterns and provide clearer expla-
nations for them. An example of usage of this mechanism is shown in Section 3.3.

Throughout the next sections we make use of a well-known example in the Erlang
community, that has been repeatedly used to illustrate several aspects of testing:
the process registry [7, 6, 30, 3, 45]. The Erlang’s virtual machine has a process
registry, meaning that after spawning a process, we can give it a readable name,
and from then on refer to the process by its name instead of its process ID. The
process registry provides the following API:

register(Name, Pid) —> ok
unregister(Name) — ok
whereis(Name) —> Pid | undefined

were register/2 associates a name with a process ID, unregister/1 forgets that
name, and whereis/1 looks up a name to get a process ID. The QuickCheck model
to test the process registry is about 150 SLOC of Erlang code; in the next sections,
we show how different parts of that model get translated into text readable by
non-technical people and discuss the complexities behind them.

3.1 Symbolic Execution

For each callback of each command, readSpec extracts a list of possibilities. A pos-
sibility represents a possible execution of the callback. Information provided about
each possibility includes a semi-natural language explanation of the outcomes of the
symbolic execution of the callback in terms of:

1. The arguments used to execute the command.
2. The fields of the record containing the state of the model.
3. The value returned by the command (the result).

If more information is required by the explanation, some of the following sections
may also be included:

1. The definitions section, which provides new definitions of variables written in
terms of other variables already defined, or function calls. These are usually
due to function calls that the system could not analyse, i.e., those that contain
calls to functions that are in different modules, or functionalities that are not
implemented (like operations with binaries or list comprehensions).

Making PBT Eastier to Read 901

2. The requirements section, which provides requirements that must be satisfied
for the given result to be produced. These requirements may also be written in
terms of other variables already defined.

If several possibilities are detected, they will be presented separated by “OTHERWISE”
labels. These labels remind us that additional possibilities, as an implied extra
requirement, must not satisfy the requirements of any of the previously described
possibilities, even if they do not have any explicit requirements of their own.

Let us consider for example the function register_pre/1, that in the Quick-
Check model for the process registry describes the preconditions needed to be able
to register a process with a name. If we provide a single variable called Argl as
argument, we obtain the following output:

POSSIBILITIES

xx%x DEFINITIONS xxx
[*] We define the variable "Argl” as in the arguments provided
[*] We define the variable "rec_elem_pids_of__:Argl” as the
result provided by the function called "get_value” from the
module "?RECORD” , when it is executed with the following 3
arguments:
— the literal 'state
— the literal 'pids’
— the variable "Argl”

xxx REQUIREMENTS xxx
The variable "Argl” must contain a record of type "state”.
x] The variable "rec_elem_pids_of__:Argl” must be equal to:
— the empty list

skx RESULT %%
the literal 'false

OTHERWISE ...

xxx RESULT xxx
the literal ’'true

Symbolic execution will try to get the most concrete result out of the code of
the callback register_pre/1. We can see that it has been detected that Argl must
contain a record of type #state{}. But because we have not bound the fields in
this record to individual variables when setting the arguments, a new variable called
’rec_elem_pids_of__:Argl’ has to be generated. Because records are transformed

902 L. M. Castro, P. Lamela, S. Thompson

into tuples at compilation time, we cannot rely on existing built-in-functions to
unfold the record; consequently, we write the call in terms of a hypothetical function
inside the fake module ?RECORD. The value of this field cannot be determined either
by looking at the code or by looking at the arguments provided, so the inequality
cannot be deterministically resolved and two possibilities are considered: either it
is not satisfied (the elements are equal and inequality returns the atom false), or
else it is. If the result is assumed false, it can be implied that the field pids must
contain an empty list. If this implication is not complied with, then we know the
output of the function must be the atom true unless an exception is thrown, but
our approach discards abnormal behaviours for simplicity.

Variable names like rec_elem_pids_of__:Argl’ are not very intuitive, and so
several mechanisms for renaming them are provided:

1. Variables can be manually renamed by calling rename vars_in model/2 on the
result of the symbolic execution. This replaces all the appearances of the vari-
ables provided in the extracted information.

2. If the expression is assigned to a variable in the code, the algorithm will try to
use the name of that variable for the expression rather than the generated one,
if that does not produce any conflict.

3. A more advanced mechanism called idiom definition is explained in Section 3.3;
not only can it be used to mitigate the problem of variable names, but it may
also be used to reduce the complexity of the whole explanation.

In addition, some variables may not be generated at all if we use the right structural
information, as explained in Section 3.2.

3.2 Structural Information

Before symbolically executing a callback, we have the possibility to gather some
extra information. In our example we can safely assume a priori that the state
provided to the function register_pre/1 will consist of a record of type #state{}
if, for instance, the statem function initial state/1 returns a record of this type.
Technically, the QuickCheck framework allows the type of the state to change, but
this practice is uncommon, discouraged, and it would not provide any extra flexibility
to a test model.

Thus, assuming the state will always consist of a record of the type provided by
the function called initial state/1, we can give this information to the symbolic
analyser by providing it with the argument already structured as a record:

#state{pids=StatePids, regs=StateRegs, dead=StateDead}

Doing this gives us a slightly clearer output:

POSSIBILITIES

Making PBT Eastier to Read 903

sxx DEFINITIONS x*xx
[*] We define the variable "StatePids” as in the arguments
provided

xxx REQUIREMENTS xxx
[*] The variable "StatePids” must be equal to:
— the empty list

sxx RESULT #x%x
the literal ’'false

OTHERWISE ...

skx RESULT #%x
the literal ’'true

This technique can be used with all the arguments of the callback, and all
QuickCheck stateful model callbacks. For example, in the case of next and _post
callbacks (that, respectively, implement the test model change of state and post-
conditions), we can provide a list with the right number of elements since this
information is given by the _args callback. And at the end of the process, when
constructing the global semi-natural language explanation, we can replace the ap-
pearances of the arguments we provided with manual descriptions of their origin
(i.e., we can replace occurrences of the variable StatePids with the phrase “the
field called pids”).

3.3 Natural Expression of Idioms

Whenever a call to a function that cannot be symbolically executed is detected, this
call is automatically added to the list of definitions and given a generated variable
name. These definitions make the explanation harder to read, and force the user
to switch back and forward to and from the definitions section. Fortunately, lots
of these calls follow programming patterns or “idioms” that can be collected and
explained manually. For this reason readSpec provides a mechanism to define rules
that will rewrite these patterns and transform them into natural explanations.

For example, let us consider the common practice of adding (appending) an el-
ement to the end of a list (L ++ [E]). The original output for code involving this
practice will look like:

sxx DEFINITIONS *xx
[*] We define the variable "call_to—lists:append/2—1__" as the
result provided by the function called "append” from the module

"lists"”, when it is executed with the following 2 arguments:

904 L. M. Castro, P. Lamela, S. Thompson

— the field called "pids”
— a list with the following element:
— the result of calling spawn/0
xx% RESULT *xx
a record of type ’'state’ with the fields:
regs = the field called "regs”
dead = the field called "dead”
pids = the variable "call_to—lists:append/2—1__"

We can identify the definition of the variable ’call_to-lists:append/2-1__°
and see that the operator ++ has been translated into a call to 1ists:append/2, with
two parameters that are written in abstract syntax. This can be transformed into
a template by replacing the generic parts within readSpec’s internal code structure
with ‘template’ tags conforming an idiom:

create_idiom (tvar(Ref, "atom_identifier '),
"the result of adding %ELEMENT% to the collection in %LI/ST%",
[{"%ELEMENT%" , var_name, tvar(Ref, 'element_varname’)},
{"%LIST%' , var_name, tvar(Ref, 'collection_varname’')}])

where Ref is used by the template system to distinguish the template terms from
the normal ones, and tvar creates a tag that will match any Erlang term and give
it the provided name. Internally, readSpec generates a dictionary of these template
tags that is used during text generation.
When idiom templates such as the previous one are defined, textual representa-

tions like the following are produced by the pretty-printer:
skx RESULT #x%x
a record of type ’'state’' with the fields:

regs = the field called "regs”

dead = the field called "dead”

pids = the result of adding the result of calling spawn/0

to the collection in the field called "pids”

If we need to match several definitions, we may do so by using several place
holders with common tags throughout them. When using several template tags
with the same name, the system guarantees that all occurrences of those tags that
have the same name are matched to the same Erlang structure each time, pretty
much like normal Erlang pattern matching does but on a larger scale.

4 TOOL EVALUATION

To evaluate the tool beyond the examples used to conduct our research, we have
used readSpec on properties and models produced and used within the PROWESS
project [2] by industrial project partners.

With this pilot study, we aimed to answer two research questions:

RQ1 Can readSpec produce efficient text representations of QuickCheck properties
and models?

Making PBT Eastier to Read 905

RQ2 Are readSpec text representations an effective way to communicate what is
being tested among stakeholders?

To answer the first question, we decided to measure the amount of time required
for readSpec to generate the textual representations, and the number of lines of
readSpec textual representations w.r.t. the number of lines of corresponding test
properties/models. To answer the second question, we showed the stakeholders both
the test properties and models that were being used, and the textual representa-
tions generated by the tool, and asked them to rate (0-10) whether they would use
readSpec’s outputs instead of their current way of communication, and whether
readSpec’s outputs were easy to understand, to follow, appropriate in verbosity,
ete. (also on a scale of 0-10).

The results we gathered from this pilot can be summarised in the following
points:

e The amount of time needed to produce the textual representations (in the order
of milliseconds) does not seem to be a threat to applicability.

e The nature of the output (verbosity, number of lines) seems to be appropriate
in terms of the number of cases which are needed to illustrate a property, which
are in direct relationship with the data distribution of the corresponding data
generators. Same happens with the number of lines to describe a stateful model,
which is in direct relationship to the number and complexity of its preconditions
and postconditions (c.f. Figure 5).

e The feedback from the interviews with the stakeholders showed that for simpler
cases there was a high degree of influence of the persons skills and background
as to whether a test property source code was considered more helpful and/or
easier to understand that its corresponding textual representation, as produced
by the readSpec tool. However, for more complex cases, two situations were
consistent:

1. there were some people that still would not make sense of either of the two
alternatives,

2. the rest of the interviewees consistently agreed that the text version was
more helpful.

This usefulness was in some cases even strong enough to provide people the
insights needed to suggest more tests.

4.1 Improvements Derived from Evaluation

The industrial evaluation of our tool led us to identify several improvements to the
tool, which constitute our main lines of future work.

Regarding the behaviour-driven development scenarios, QuickCheck test mod-
ules usually contain not one, but a number of test properties. This can lead to

906 L. M. Castro, P. Lamela, S. Thompson

H PBT artifact I readSpec output
700

600
500
400
300
200

100

PBT properties PBT stateful models

Figure 5. Lines of code of the examples shown to stakeholders during evaluation

very verbose feature files if all scenarios for those properties are condensed into
one single feature file. On the other hand, it can lead to a big number of files if
scenarios are written into separated files (i.e., one per property). It is yet unclear
to us that one of the two possibilities will be unanimously preferred by developers
and users, so the option to configure this behaviour at the tool level is a desired
feature.

Besides, at the moment readSpec uses the coverage tool provided by the Erlang
OTP libraries, cover. However, the PROWESS coverage tool Smother [47] provides
an improved coverage measure that we would rather use. This will involve solving
some integration issues that currently exist between Smother and the QuickCheck
eqc_suite library.

For documentation purposes, and in order to guarantee the acceptance and
use of readSpec within the Erlang community, we aim to develop some additional
examples. For instance, to ensure seamless integration with Cucumber-like tools,
we will implement the necessary steps in order for them to be executable using one
of the Erlang implementations of Cucumber.

Regarding the descriptions of stateful models, a list of future improvements
follows.

4.1.1 Contextualisation of Output

Depending on the kind of callback that is being explained, information could be
presented differently. For example, the output

Making PBT Eastier to Read 907

PRECONDITION

xxx RESULT xxx
the literal ’'true

tells us that there is no precondition for the current command. Or, effectively, that
the precondition returns always the atom true. This could be expressed in a more
intuitive way with a message like:

The command can always be executed independently
of the current state of the model.

In a similar way, we could further improve output such as

sxx RESULT sxx
a record of type 'state' with the fields:
regs = the field called "regs”
dead = the field called "dead”
pids = the result of adding the result of calling spawn/0
to the collection in the field called "pids”

since even after using idioms, this piece of output may be seen as a bit confusing,
when it is merely meant to explain that the only field modified is the field pids. In
future work, only the modified fields should be specified. In addition, it would also
be interesting to describe the field modifications in a reflexive way, i.e., “the result
of calling spawn/0 is added to the collection in the field pids”.

4.1.2 Removal of Graphical ASCII Markers

Lines and boxes drawn through the use of the characters “=” and “*” should not be
necessary after the output has been contextualised and simplified. In cases of need,
hierarchy could be expressed in a cleaner way by using indentation, numeration or
bullets.

4.1.3 Parametrisation of Verbosity

While in most cases we want the output to be simple and non-verbose, in some
scenarios condensed output may be harder to understand. In those cases, and for
debugging purposes, it may be useful to be able to get less refined output on demand.
Consequently, we would add this option as a configuration option that can be enabled
or disabled at will.

4.1.4 Information about Argument Generation

It can be observed that, when using the symbolic functionality of the current version
of readSpec, no information is extracted about the possible type of the arguments

908 L. M. Castro, P. Lamela, S. Thompson

used with the commands. This information could be extracted from QuickCheck’s
generators. This information could be useful to the user and should be provided in
the semi-natural description of the model.

One last general concern about the readSpec tool is scalability. Symbolic execu-
tion is known to scale poorly. Every reachable bifurcation will in principle duplicate
the number of possibilities that reach it. Because of this, even simple programs
may produce an output too big for symbolic execution to be feasible. However, all
the test models written by our industrial partners that we have analysed so far are
processed by readSpec within seconds. Since most of these models correspond to
the unit level of testing, this may indicate that at least the unit-level behaviour is,
in general, simple enough to be handled by our tool without issues.

5 RELATED WORK

The research on how to improve the involvement of stakeholders in the software de-
velopment process has been extensive in recent years, following the broad adoption
of agile methodologies and practices [49, 12, 44, 29]. However, most efforts focus on
how to make this involvement more effective where it is taken for granted: during
requirements extraction [24, 26, 20]. Even if we know that sustained stakeholder
involvement is key to the success of a software product [4, 22], when it comes to
extending said involvement to other stages of the software development process,
initiatives tend to focus on improvement of usability testing and user interface de-
sign [18, 48, 21], or final validation activities [37, 41].

Indeed, some of these activities explore the source of tools like Cucumber [36],
but frequently to help developers connect human-readable test specifications with
specific test strategies (i.e. model-based testing [10]) or to specific systems in which
expressing such requirements is in itself challenging [28]. Naturally, the state of
the art inspired the work presented here, as explained in Section 2.1, but to the
best of our knowledge, this paper constitutes the first effort to close the circle and
make the test artifacts of advanced testing strategies and techniques (i.e. proper-
ties, PBT stateful models), and also additional by-products (i.e. counterexamples),
available back to the stakeholders, thus representing a key contribution for sustained
involvement throughout software development.

In its novelty, our work opens additional lines of research that would deserve
further investigation, such as the definition of alternative ways of describing stateful
scenarios in a sensible way. We do not claim the proposal we have made in this
regard to be optimal, and most certainly there is room for improvement around it.

6 CONCLUSION

The goal of readSpec, the tool we have presented in this paper, is to help non-
technical stake-holders to understand the artifacts used in property-based testing.
To this end, we have explored the transformation of test properties and test models

Making PBT Eastier to Read 909

into semi-natural language representations. This transformation of PBT sources into
their human-readable written descriptions is intended to allow developers (and/or
testers) to communicate the requirements they are implementing and testing in
the software to other stake-holders who may not have the technical knowledge to
understand PBT artifacts.

This transformation presents a research challenge in that PBT artifacts are
higher-level representations of requirements which are later on translated by tools
such as QuickCheck into specific test cases, but are still expressed using a pro-
gramming language. Also, test models are divided into a number of components
(preconditions, postconditions, state transformations) which need to be integrated
and presented in a coherent manner.

Our work closes the circle of communication with stakeholders, that could al-
ready use tools like Cucumber to express requirements that would later on generate
test cases; with readSpec now, additional test properties and models that devel-
opers write, alongside counterexamples that test cases reveal, can be expressed in
a human-friendly manner. Alongside this methodological contribution, two main
technical contributions have been discussed:

1. Automatic transformation of test properties into Cucumber-like scenarios, which
are semi-natural English text versions of sample test cases.

2. Automatic transformation of stateful test models into semi-natural English de-
scriptions of the behaviour they represent.

Both of them have been implemented in a single tool, readSpec, available for
download as a GitHub repository [1], together with the full examples that have
been used through the paper, and a user manual. Last but not least, a number of
improvements, based on the evaluation of the tool by an industrial partner, have
also been presented, and are currently being incorporated into upcoming versions of
the tool.

One of the aspects that came up as most interesting to practitioners during the
evaluation of our tool was the stakeholder-readable presentation of counterexamples.
Our current work is dealing with this aspect, working on the automatic generation
of other kinds of representations for counterexamples, such as sequence diagrams,
applicable to both stateless and stateful systems or components.

Acknowledgements

This research has been partially funded by the European Framework Program, FP7-
ICT-2011-8 Ref. 317820.

REFERENCES

[1] readSpec: Making PBT Easier to Read for Humans. https://github.com/
prowessproject/readspec, May, 2015.

910
2]

8]

[4]

[5]

(6]

(7]

8]
[9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]
[18]

[19]

L. M. Castro, P. Lamela, S. Thompson

PROWESS Project (Property-Based Testing for Web Services). http://www.
prowessproject.eu, October, 2012.

BENAC-EARLE, C.—FREDLUND, L.: Verification of Timed Erlang Programs Using
McErlang. International Conference on Formal Techniques for Distributed Systems,
2012, pp. 251-267.

BERKI, E.—GEORGIADOU, E.—HOLCOMBE, M.: Requirements Engineering and
Process Modelling in Software Quality Management — Towards a Generic Process
Metamodel. Software Quality Journal, Vol. 12, 2004, No. 3, pp. 265-283.

BoenMm, B. W.: A Spiral Model of Software Development and Enhancement. Com-
puter, Vol. 21, 1988, No. 5, pp. 61-72.

CHRISTAKIS, M.—SAcoNAS, K.: Static Detection of Race Conditions in Erlang.
12tP International Symposium on Practical Aspects of Declarative Languages, 2010,
pp- 119-133.

CLAESSEN, K.—PALKA, M.—SMALLBONE, N.—HUGHES, J.—SVENSSON, H.—
ARTs, T.—WIGER, U.: Finding Race Conditions in Erlang with QuickCheck and
PULSE. 14" ACM SIGPLAN International Conference on Functional Programming,
2009, pp. 149-160.

CLAESSEN, K.—HUGHES, J.: QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs. SIGPLAN Notices, Vol. 46, 2011, No. 4, pp. 53-64.
COCKBURN, A.—HIGHSMITH, J.: Agile Software Development, the People Factor.
Computer, Vol. 34, 2001, No. 11, pp. 131-133.

CoLoMBO, C.—MICALLEF, M.—SCERRI, M.: Verifying Web Applications: From
Business Level Specifications to Automated Model-Based Testing. Model Based Test-
ing, Vol. 141, 2014, pp. 14-28.

CSALLNER, C.—TILLMANN, N.—SMARAGDAKIS, Y.: DySy: Dynamic Symbolic
Execution for Invariant Inference. 30" International Conference on Software Engi-
neering, 2008, pp. 281-290.

DEy, P. K.—KiINCH, J.—OGUNLANA, S. O.: Managing Risk in Software Develop-
ment Projects: A Case Study. Industrial Management and Data Systems, Vol. 107,
2007, No. 2, pp. 284-303.

DoBING, B.—PARSONS, J.: Dimensions of UML Diagram Use: A Survey of Practi-
tioners. Journal of Database Management, Vol. 19, 2008, No. 1, pp. 1-18.
Erlang/OTP Library: Cover: A Coverage Analysis Tool for Erlang. http://www.
erlang.org/doc/man/cover.html.

Erlang/OTP Library: EDoc: The Erlang Program Documentation Generation. http:
//www.erlang.org/doc/man/edoc.html.

Froyp, C.—REISIN, F.—ScHMIDT, G.: Steps to Software Development with Users.
Lecture Notes in Computer Science, Vol. 387, 1989, pp. 48-64.

Frank, C.: A Step Towards Automatic Documentation. MIT Artificial Intelligence
Laboratory, 1980.

FRUHLING, A.—DE VREEDE, G.-J.: Collaborative Usability Testing to Facilitate
Stakeholder Involvement. Value-Based Software Engineering, 2006, pp. 201-223.
GARTNER, M.: ATDD by Example: A Practical Guide to Acceptance Test-Driven
Development. Addison-Wesley Signature Series (Beck), Pearson Education, 2012.

Making PBT Easier to Read 911

[20]

[21]

22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

GOTTESDIENER, E.: Requirements by Collaboration: Getting It Right the First
Time. IEEE Software, Vol. 20, 2003, No. 2, pp. 52-55.

GRIGERA, J.—RIVERO, J. M.—ROBLES LuNA, E.—Giacosa, F.—Rossi, G.:
From Requirements to Web Applications in an Agile Model-Driven Approach. Lecture
Notes in Computer Science, Vol. 7387, 2012, pp. 200-214.

HANSEN, S.—BERENTE, N.—LvYYTINEN, K.: Requirements in the 215° Century:
Current Practice and Emerging Trends. Lecture Notes in Business Information Pro-
cessing, Vol. 14, 2009, pp. 44-87.

HaNnssoN, D.: Ruby on Rails: Web Development That Doesn’t Hurt. http:
//rubyonrails.org, 2015.

HARRIS, M. A.—WEISTROFFER, H. R.: A New Look at the Relationship Between
User Involvement in Systems Development and System Success. Communications of
the Association for Information Systems, Vol. 24, 2009, No. 1, pp. 739-756.

HELLES@Y, A.: Cucumber. http://cukes.info/, 2015.

HENFRIDSSON, O.—LINDGREN, R.: User Involvement in Developing Mobile and
Temporarily Interconnected Systems. Information Systems Journal, Vol. 20, 2010,
No. 2, pp. 119-135.

HERMENEGILDO, M.: A Documentation Generator for (C) LP Systems. Computa-
tional Logic (CL 2000), 2000, pp. 1345-1361.

HEeseEN1US, M.—GRIEBE, T.—GRUHN, V.: Towards a Behavior-Oriented Specifica-
tion and Testing Language for Multimodal Applications. ACM SIGCHI Symposium
on Engineering Interactive Computing Systems, 2014, pp. 117-122.

HESTER, P. T.—BRADLEY, J. M.—ADAMS, K. M.: Stakeholders in Systems Prob-
lems. International Journal of System of Systems Engineering, Vol. 3, 2012, No. 3-4,
pp- 225-232.

HuagHEs, J.: QuickCheck Testing for Fun and Profit. International Symposium on
Practical Aspects of Declarative Languages, 2007, pp. 1-32.

KHURSHID, S.—PASAREANU, C.S.—VISSER, W.: Generalized Symbolic Execution
for Model Checking and Testing. Tools and Algorithms for the Construction and
Analysis of Systems, 2003, pp. 553-568.

King, J.C.: Symbolic Execution and Program Testing. Communications of the
ACM, Vol. 19, 1976, No. 7, pp. 385-394.

Kuisara, S.: User Involvement: A Review of the Benefits and Challenges. Helsinki
University of Technology, Software Business and Engineering Institute. Teknillinen
Korkeakoulu, 2002.

McMAaNus, J.: Managing Stakeholders in Software Development Projects. Computer
Weekly Professional Series, Elsevier, 2005.
Membase: Cucumberl: Pure Erlang Implementation of Cucumber Parser and Driver.

https://github.com/membase/cucumberl, 2015.

MicALLEF, M.—CoLOMBO, C.: Lessons Learnt from Using DSLs for Automated
Software Testing. IEEE International Conference on Software Testing, Verification
and Validation, 2015.

912

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

[51]

[52]

L. M. Castro, P. Lamela, S. Thompson

MANTYLA, M. V.—ITKONEN, J.—IIVONEN, J.: Who Tested my Software? Testing
as an Organizationally Cross-Cutting Activity. Software Quality Journal, Vol. 20,
2012, No. 1, pp. 145-172.

NELSON-SMITH, S.: Test-Driven Infrastructure with Chef: Bring Behavior-Driven
Development to Infrastructure as Code. O’Reilly Media, 2013.

NiLssoN, A.—CasTrO, L. M.—Rivas, S.—ARrTs, T.: Assessing the Effects of
Introducing a New Software Development Process: A Methodological Description.
International Journal on Software Tools for Technology Transfer, 2013, pp. 1-16.
OpenShine: Kucumberl: Pure Erlang, Open-Source Implementation of Cucumber.
https://github.com/openshine/kucumberl, 2015.

PostoN, R.—SAjjA, K.—CALVERT, A.: Managing User Acceptance Testing
of Business Applications. Lecture Notes in Computer Science, Vol. 8527, 2002,
pp- 92-102.

DREW PROCACCINO, J.—VERNER, J. M.—OVERMYER, S.P.—DARTER, M. E.:
Case Study: Factors for Early Prediction of Software Development Success. Informa-
tion and Software Technology, Vol. 44, 2002, No. 1, pp. 53-62.

PASAREANU, C.S.—VISSER, W.: Verification of Java Programs Using Symbolic
Execution and Invariant Generation. In Model Checking Software, 2004, pp. 164-181.
RoBERTS, T.L. JR.—LEIGH, W.—PURvIS, R. L.: Perceptions on Stakeholder In-
volvement in the Implementation of System Development Methodologies. Journal of
Computer Information Systems, Vol. 40, 2000, No. 3, pp. 78-83.

SAGONAS, K.: Using Static Analysis to Detect Type Errors and Concurrency Defects
in Erlang Programs. International Symposium on Functional and Logic Programming,
2010, pp. 13-18.

SOEKEN, M.—WILLE, R.—DRECHSLER, R.: Assisted Behavior Driven Develop-
ment Using Natural Language Proceessing. Objects, Models, Components, Patterns,
Lecture Notes in Computer Science, Vol. 7304, 2012, pp. 269-287.

TAYLOR, R.: Smother: MD/DC Analysis for Erlang. http://ramsay-t.github.io/
Smother, 2015.

VINES, J.—CLARKE, R.—WRIGHT, P.—McCARTHY, J.—OLIVIER, P.: Config-
uring Participation: On How We Involve People in Design. International SIGCHI
Conference on Human Factors in Computing Systems, 2013, pp. 429-438.

Voinov, A.—BousQuET, F.: Modelling with Stakeholders. Environmental Mod-
elling and Software, Vol. 25, 2010, No. 11, pp. 1268-1281.

WYNNE, M.—HELLESOY, A.: The Cucumber Book: Behaviour-Driven Development
for Testers and Developers. Pragmatic Programmers. Pragmatic Bookshelf, 2012.
Xig, T.—MARINOV, D.—ScHULTE, W.—NOTKIN, D.: Symstra: A Framework
for Generating Object-Oriented Unit Tests Using Symbolic Execution. Tools and
Algorithms for the Construction and Analysis of Systems, 2005, pp. 365-381.
ZHANG, X.: Analysis-Based Techniques for Program Comprehension.
https://www.researchgate.net/publication/242283806_Analysis-based_
techniques_for_Program_Comprehension, 2005.

Making PBT Eastier to Read 913

Laura M. CASTRO is a post-doctoral researcher and assistant
teacher at the University of A Corufa (Spain). Her research
focuses on distributed systems, functional programming, design
patterns, and more recently, software testing. She received her
Ph.D. degree Cum laude in 2010, with a dissertation entitled
“On the development life cycle of distributed functional applica-
tions: a case study”. She has spent several months in institutions
as the University of Houston (USA), the University of Gothen-
burg (Sweden) and Chalmers University (Sweden). She has been
teaching at the university since 2005, where she currently lec-
tures on software architecture and software validation and verification. As a postdoc, she
has been involved in several European research projects (FPT).

Pablo LAMELA is a researcher at the School of Computing of the
University of Kent where he is a member of the Programming
Languages and Systems Group. In 2011 he completed his master
thesis in computer science at the Chalmers Tekniska Hogskola
(Gothemburg), and he received the degree of Engineer in com-
puter science at the Universidade da Corufia. He has partic-
ipated in the EU ICT FP7 project PROWESS. He is author
and co-author of several scientific papers. His research inter-
ests include web services, functional languages, source code ma-
nipulation and comprehension, grammar inference, and software
models.

Simon THOMPSON is Professor of Logic and Computation in
the School of Computing at the University of Kent, UK. His re-
search interests include computational logic, functional program-
ming, testing and diagrammatic reasoning. His recent research
has concentrated on all aspects of refactoring for functional pro-
gramming, including the tools HaRe and Wrangler for Haskell
and Erlang. He is also the author of standard texts on Haskell,
FErlang, Miranda and constructive type theory. He is a Fellow of
the British Computer Society and has degrees in mathematics
from Cambridge (MA) and Oxford (DPhil).

