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Abstract. There is no transliteration standard across all Chinese language regions,
including China, Hong Kong, and Taiwan, and variations in Chinese transliteration
have thus arisen in the process of transliterating foreign languages (English, for
instance) into the Chinese language. In this paper, we propose an integrated con-
firmation framework to confirm a pair, that is, a transliteration and another term,
whether it is synonymous. This framework includes two major steps. First, we
study methods from several pronunciation-based approaches to measure similar-
ity between Chinese characters; these approaches are specified for the comparison
of Chinese synonymous transliterations. Second, we construct a new confirma-
tion framework to confirm whether a pair of a Chinese transliteration and another
Chinese term is synonymous. The presented framework is applied to extract syn-
onymous transliteration pairs from a real-world Web corpus; this is valuable to
build a new database of synonymous transliterations or support search engines so
that they can return much more complete documents as Web search results to
increase the usages in practice. Experiments show that our integrated confirma-
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tion framework is effective and robust in confirming and extracting pairs of Chinese
transliteration following the collection of synonymous transliterations from the Web
corpus.

Keywords: Chinese transliteration variation, pronunciation-based approach, pho-
netic similarity, dynamic alignment, ensemble scheme

1 INTRODUCTION

There is no transliteration standard across all Chinese language regions; thus, many
different Chinese transliterations can arise. For example, former Soviet President
Gorbachev is translated into several different Chinese transliterations including
(Gorbachev; ge ba qi fu), 哥巴卓夫 (ge ba zhuo fu) and 戈爾巴喬夫 (ge er ba
qiao fu). The Australian city “Sydney” also produces different transliterations of悉
尼 (xi ni), 雪梨 (xue li) and 雪黎 (xue li). Someone who uses the Chinese language
may never know all these different Chinese synonymous transliterations; hence, this
level of Chinese transliteration variation leads readers to mistaken transliterated
results, or to retrieve incomplete results when searching the Web for documents or
pages if a trivial transliteration is submitted as the search keyword in a search engine
such as Google or Yahoo. Moreover, while variations in Chinese transliteration have
already emerged in all Chinese language regions, including China, Hong Kong and
Taiwan, we still lack effective methods to address these variations. Most research
focuses on machine transliteration across two different languages; in contrast, fewer
efforts in the literature have focused on confirming a pair comprised of a Chinese
transliteration and a Chinese term (i.e., proper name such as personal name and
geographical name) as to whether it is synonymous.

In this paper, we propose an integrated confirmation framework for validating
and extracting pairs from the Web, where each pair consists of a transliteration and
another Chinese term. The framework considers a majority voting with multiple
learning algorithms and a boosting scheme simultaneously. The returned result is
either “synonymous” or “not synonymous” for the given pair. The contribution of
this research is that the results of the confirmation framework can be applied to
construct a new database of synonymous transliterations, which can then be used
to increase the size of the transliterated vocabulary, making it useful to expand
an input query in search engines such as Google and Yahoo. This can alleviate the
problem of incomplete search results due to the existence of different transliterations
of a single foreign word.

Two major steps are included in the framework for the sake of confirming
whether a pair is synonymous. First, we study two Romanization transcription
systems, including the National Phonetic System of Taiwan (BPMF system) and
the Pinyin system, to transcribe Chinese characters into sound alphabets. Then,
we adopt several pronunciation-based approaches to measure phonetic similarity be-
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tween alphabets. The reasoning behind our approach is that the similarity resulted
from evaluating the similarity based on pronunciation will be independent of a train-
ing corpus. In particular, we study a rule-based concept with different weights for
the alphabets. In addition, we use a dynamic programming-based approach to ob-
tain the similarity score for a given Chinese pair; that is, a Chinese transliteration
versus another Chinese term.

Second, we cast the confirmation problem as an ensemble classification method
specified on pronunciation-based models. The method is used to confirm whether
a Chinese pair is synonymous or not, as it is a binary classification problem. We
construct a classification learning algorithm with considering the use of a majority
voting scheme and a boosting scheme [1] together to collect robustly pairs of Chinese
synonymous transliteration from a real-world Web corpus. In addition, we also ap-
ply several weighted voting strategies [2] for classifiers. The presented method differs
from a single classification-learning algorithm needed in boosting and bagging [3],
or a majority voting scheme applied to combine multiple classification learning al-
gorithms.

It is worth mentioning that, in practice, extracting synonymous transliterations
from the Web corpus is a real-world problem and it is more valuable than doing the
same from a prepared training corpus, because most transliterations are outside of
usual Chinese vocabulary [4, 5]. We perform experiments on the Web search result
snippets from the Google search engine by collecting documents from the Chinese-
dominant Web and aiding in the extraction of transliteration synonyms. This paper
is organized as follows. Following the introduction (Section 1), Section 2 illustrates
related work. Section 3 shows an overall view of the integrated confirmation frame-
work. Section 4 describes how to ascertain the phonetic similarity between a Chinese
transliteration and another Chinese term using a pronunciation-based model. Sec-
tion 5 defines a new ensemble framework for confirming a pair consisting of a Chinese
transliteration and a segmented Chinese n-gram. Section 6 discusses experiments
run on the real Web corpus. A conclusion and suggestions for possible future work
are given in Section 7.

2 RELATED WORK

The framework for confirming whether a pair comprised of a Chinese transliteration
and another Chinese term is synonymous includes two major steps. The first involves
measuring the phonetic similarity for the pair. Second, we consider the confirmation
problem as an ensemble classification task specified on pronunciation-based models.

2.1 Measuring Phonetic Similarity

Evaluating phonetic similarity between sound alphabets constitutes an open issue in
the field of computational linguistics. A comparison of the sound alphabet in human
languages in the process of machine transliteration is based on the phoneme and the
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grapheme. A phoneme is the smallest pronunciation unit, whereas a grapheme is the
written unit. Oh et al. identified three machine transliteration models, namely, the
grapheme-based transliteration model, the phoneme-based transliteration model and
the hybrid transliteration model [6]. Transliterating a name from one language into
another language includes forward transliteration and backward transliteration [7].
The similarity evaluation between sound alphabets is critical. This can be evaluated
using either a statistical-based model or a pronunciation-based model.

Statistical estimations for learning the similarities between sound alphabets
have been applied to various applications in machine transliteration. The task
in a statistical-based model requires an approximate probability distribution to
be referred to a training corpus. Knight et al. proposed a backward phoneme-
based transliteration system from Japanese to English consisting of five stages [7].
In their work, they proposed a tree-based structure consisting of weighted finite-
state transducers (WFSTs) organized from a set of English-Japanese sound alpha-
bet sequence based on probabilities and on Bayes’ theorem for estimating simi-
larity among phonemes. AbdulJaleel et al. proposed a statistical grapheme-based
transliteration model for machine-learning of the Arabic alphabet and the English
alphabet [8]. Virga et al. presented an application for a cross-lingual information
retrieval between an English term and a Chinese transliteration based on statistical
machine transliteration [9]. Li et al. studied a dynamic alignment process using
a maximum likelihood estimation to handle the task of English-Chinese translitera-
tion [10]. Wan and Verspoor [11] also introduced an algorithm for mapping English
names to Chinese names. Oh et al. studied a machine transliteration model us-
ing three learning algorithms, including a maximum entropy model, a decision-tree
model and a memory-based learning model [6]. Oh et al. conducted experiments on
English-to-Korean transliteration and English-to-Japanese transliteration and de-
scribed a ranking scheme for transliteration extraction from Web data [12]. Gao
et al. employed a training process of dynamically-discovered alignments to handle
English-to-Chinese machine transliteration [13]. Tao et al. built a cost matrix to
learn the distance between sound alphabets via the dynamic alignment learning of
substitution, deletion and insertion operations [14]. They conducted experiments on
English-to-Arabic, English-to-Chinese and English-to-Hindi correspondences using
the learned cost matrix. Simon et al. used the Levenshtein algorithm to measure
the similarity between two Chinese terms so as to recognize the transliterated en-
tity [15].

The pronunciation-based model takes advantage of phonetic features produced
by tones and pronunciation locations, such as lip, palate, tongue or bilabial pronun-
ciation. It learns human pronunciation sounds using phonetic features to calculate
the similarity of phonetic segmental speech units. Connolly proposed a scheme for
evaluating the similarity score between phonemes [16]. He identified two perceptual
features in order to separate consonant phonemes into six groups. The similar-
ity score of two consonants within the same group would be higher than that for
those in different groups. Chen et al. argued that different sound alphabets may
contain the same sounds and proposed a scheme to compare similarities between
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Chinese and English personal names [17]. Lin et al. designed a scoring scheme for
assigning similarity between phonemes [18]. They argued that the similarity score
of a matched consonant sound alphabet is different from that of a matched vowel
one. They also designed a set of corresponding pairs, such as the pairs (b, p) and
(d, t) are designated as high similarity in comparison to phonemes containing them.
Kondrak presented a scoring scheme for computing phonetic similarity between al-
phabets [19]. He argued that assigning equal weight to all features cannot address
the problem of unequal relevance of features; thus, the scheme considered articula-
tory features and assigned different weights to different features. Hsu et al. proposed
an approach to evaluate similarity between Chinese characters [20]. This approach
was based on human pronunciation sounds corresponding to a Mandarin phonetic
symbol tree; similarly, an alphabet that must be pronounced should be concerned
with various pronunciation locations, such as the lip, palate, or tongue. The sound
feature was thus extracted to form a vector with 26 dimensions via the process of
extracting mel-frequency cepstrum coefficients (MFCC).

Accordingly, the pronunciation-based model focuses on learning phonetic fea-
tures, whereas the statistical-based model focuses on estimating the probability
distribution on a prepared training dataset. The fact that the pronunciation-based
model is independent of the training corpus motivates us to learn several pronuncia-
tion-based approaches to aid in the comparison between Chinese transliterations.

2.2 Ensemble Classifier

Previous studies have shown that an aggregating ensemble scheme can improve
performance in terms of classification accuracy, since there is no individual approach
that will always yield the best result. The ensemble scheme has been studied in many
research areas, including pattern recognition, information retrieval, data mining, and
machine learning. In a classification task, the ensemble scheme determines a final
class label from a set of individual results that are usually generated from a set of
individual classifiers.

The majority-voting scheme works as an integrated task, allowing multiple clas-
sification learning algorithms to contribute corresponding votes. It then produces
a winner vote from the results of the participating classifiers. The critical issue
is how to determine which classification-learning algorithms are appropriate to use
together to produce results. Moreover, two ensemble schemes, namely, bagging and
boosting, have been used to numerous extensions and applications. The bagging
scheme combines multiple independent classifiers to yield a prediction class label by
integrating their corresponding votes [3]. It uses a bootstrapping strategy to gener-
ate subsets of training data. The generated subsets of training data are all learned
according to a classification-learning algorithm so as to form a set of classifiers, each
of which contributes a vote. Then, the votes generated from the set of classifiers are
combined to produce the winning vote. The booting scheme is similar to bagging,
except that their roles in generating subsets of training data differ. In boosting, each
subset of training data is drawn with respect to the data distribution according to
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training quality; thus, the data distribution of a new generation is different from the
old one.

Accordingly, the advantage of the majority-voting scheme in multiple classifi-
cation-learning algorithms is in classification stability [21, 22], whereas the advan-
tage of the bagging and the boosting schemes lies in the improved performance in
classification accuracy [23, 24]. In this paper, we propose a new ensemble frame-
work to employ the majority-voting scheme and boosting together. To design such
framework is because that the framework can collect pairs of Chinese synonymous
transliteration from a real-world Web corpus with considering the performance in
terms of stability and accuracy at the same time.

2.3 Contributions

The framework proposed in this paper differs from earlier works in several principal
aspects. First, we study several pronunciation-based approaches to compare a pair
consisting of a Chinese transliteration and another Chinese term. We do not need
to prepare a predetermined dataset for similarity estimation between sound alpha-
bets, as it is required in the work of the statistical-based approaches. Second, our
framework is specified over an ensemble of several approaches to the confirmation of
Chinese transliteration pairs. It integrates several pronunciation-based approaches
for confirming pairs of synonymous transliteration. Third, the framework considers
the use of the majority-voting scheme and the boosting scheme together to improve
performance in terms of classification stability and accuracy. Finally, our frame-
work confirms and extracts pairs of synonymous transliteration from a real-world
Web corpus, which can then be used to retrieve more Web pages relevant to the
query; thus, our research might bring great contributions in practice. For example,
one may submit a transliteration to search engines such as Google and Yahoo, the
results of the framework can be used to recommend its synonyms to the user for
exploring other related Web snippets.

3 OVERALL FRAMEWORK

We propose an integrated confirmation framework to confirm and extract synony-
mous transliteration pairs comprised of a transliteration and its synonym. The
framework is shown in Figure 1. Given a transliteration (TL), the study starts with
a collection of Web snippets, since much research has begun to utilize abundant
Web resources for various issues of cross-lingual information retrieval [25]. Usually,
a transliteration co-occurs in proximity to its original English word within the same
document [25]; hence, we collect Web snippets based on this assumption. Many
studies are continuously used to extract information by using search keyword for
a search engine instead of by visiting a sufficiently large Web page set from the
Web. Of course, we can use a Web spider to crawl the set, this is, in general, done
for many applications in the information retrieval field. In a contrast, to extract
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information from the snippets responded from a search engine, crawling this set
usually brings much time-consuming and computational load in handling the set.
Therefore, we assign a given term which is submitted to a search engine so as to
collect Web snippets.

Then, we produce a pair (a given term, a target term), where the given term
is the TL we assign in advance and the target term means an n-gram which is
segmented from the collected Web snippets. Text processing is required for extract-
ing n-gram, because the n-gram, which is the synonym of the given TL, is usually
outside of usual Chinese vocabulary [4]. The details of the text processing will be
illustrated in Section 6.3.

The framework for confirming whether the pair is synonymous includes two
major steps. First, we measure the phonetic similarity for the pair. This will be il-
lustrated in Section 4. Second, we cast the confirmation problem as an ensemble task
to make decision, using a majority-voting scheme and a boosting scheme together
due to the fact that a pair must be learned more frequently when it is not easily
confirmed. The decision-making process returns a result of either “synonymous”
or “not synonymous” for the pair; then, the results are recorded in a knowledge
database. It will be illustrated in Section 5.

    
 

Producing a pair 

Web snippets 

Collecting Web snippets Text processing 

given term … … … 
target term 

Returning a vote 

Knowledge 
Database 

Decision-making 

Figure 1. A framework for collecting pairs of synonymous transliterations from the Web

4 PHONETIC SIMILARITY BETWEEN CHINESE
TRANSLITERATIONS

Judging similarity between Chinese transliterations is the main criterion for con-
firming a synonymous Chinese transliteration pair because the members in the pair
are transliterated from a cognate foreign term, and so their phonetic similarity may
be high. This criterion relies on three major processes (see Figure 2) to present how
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to obtain the similarity score for a Chinese pair (a given term, a target term). The
summary of the three processes is briefly discussed as follows.

• Assuming that we have a pair (i.e., a TL A and an n-gram B), a Romanization
transcription system is used to transcribe the TL and the n-gram into two sets
of sound alphabet sequences, where each Chinese character is transcribed into
a sound alphabet sequence. For instance, a TL 梅爾吉普森 is transcribed into
either a set of sound alphabet sequences (mei er ji pu sen) via the Pinyin system
or a set of sound alphabet sequences (ㄇㄟㄦㄐㄧㄆㄨㄙㄣ) via the BPMF
system. The details will be described in Section 4.1.

• To acquire the similarity score for the pair, a dynamic programming algo-
rithm [26] is employed for calculating the maximum phonetic similarity score
between two sets of sequences. The calculated similarity score is then nor-
malized according to the length of the pair. The details will be described in
Section 4.2.

• While running the dynamic programming algorithm, several pronunciation-ba-
sed approaches are respectively used as the basis to assign similarity among
sequences. The details will be described in Section 4.3.

 
 

Transcribing Chinese 
characters to sound alphabets 

Two sets of sound 
alphabet sequences 

Similarity score 
of the pair 

Evaluating 
similarity sequences 

given term A target term B 

a1, …, aN 

 
b1, …, bM 

 

Executing dynamic alignment 
and normalizing the score 

score(A,B) 

sim(an,bm) 
 

Figure 2. A procedure for calculating the similarity score for a Chinese pair

4.1 Phonetic Symbolic Representation for Chinese Characters

In the Mandarin Chinese linguistics, each Chinese character typically represents
a syllable. A character could have more than one phonological value, and some
characters could have the same phonological values. Two Romanization transcrip-
tion systems, including the National Phonetic System of Taiwan (BPMF system
used in Taiwan) and the Pinyin system (which is commonly used in China), are
used to transcribe Chinese characters into sound alphabets.
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In the BPMF system, there are 37 phonemes. There are 21 initial phonemes
and 38 finals, including 16 base finals and 22 combinations of two phonemes. Each
Chinese character is consisted of at most three phonemes which are initial, middle
and final and has a tone. Ignoring tones, 412 symbolic compounds can represent all
Chinese characters in pronunciation. In computational phonology, the pronunciation
of Chinese characters provides a way to assign the similarity score between Chinese
characters. Techniques such as CSC (character sound comparison method) [20] and
LC (the study in Lin and Chen) [18] can be learned through the comparison of
sequences using the BPMF system.

In the Pinyin system, a Chinese character is transcribed into grapheme-based se-
quence using Pinyin. ALINE (the system developed by Kondrak) [19], FSP (friction-
strength pitch method) [16] and PLCS (pronunciation with longest common subse-
quence) [17] can be used for obtaining feature values for comparison between two
sound alphabets.

4.2 Similarity Comparison for Chinese Transliterations

Measuring similarity for two sets of sound alphabet sequences produces a similarity
score between two transliterations. This similarity is evaluated using the process
of sequence alignment [27]. Assume that we have two Chinese transliterations A =
(a1, . . . , an, . . . , aN) and B = (b1, . . . , bm, . . . , bM), where an is the nth character of
A and bm is the mth character of B. N may not be equal to M . The characters
an and bm are formed into sound alphabet sequences an = (an,1, . . . , an,i, . . . , an,I)
and bm = (bm,1, . . . , bm,j, . . . , bn,J), respectively. The alphabets an,i and bm,j are
generated by either the BPMF system or the Pinyin system.

To acquire the maximum similarity score between two sets of sound alphabet
sequence (formed from A and B, respectively), which is represented as score(A,B),
a dynamic programming-based approach can be used to acquire the largest distortion
between A and B by adjusting the warp on the axis of T (n,m) of sim(an, bm), which
represents the similarity between an and bm. The recursive formula (1) is defined as
follows.

T (n,m) = max


T (n− 1,m− 1) + sim(an, bm),
T (n− 1,m),
T (n,m− 1).

(1)

The base conditions are defined as {T (n, 0)}Nn=1 = 0 and {T (0,m)}Mm=1 = 0.
Figure 3 a) shows the running process of the comparison between a Chinese trans-
literation 梅爾吉普森 (ㄇㄟㄦㄐㄧㄆㄨㄙㄣ; mei er ji pu sen) and 梅爾吉勃遜(ㄇ
ㄟㄦㄐㄧㄅㄛㄒㄩㄣ; mei er ji bo syun), whereas Figure 3 b) shows the running
process for comparing the Chinese transliteration “艾布拉姆斯”(ㄞㄅㄨㄌㄚㄇㄨ
ㄙ; ai bu la mu si) and “愛博斯”(ㄞㄅㄛㄙ; ai bo si). The anchor represents the
dynamic path running the recursive formula. The bold connection path represents
the alignment path and indicates that the maximum score between A and B is ac-
quired by rendering the pair indicated by the bold arrow; thus, the anchor T (N,M)
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is the finite termination of the recursive formula and results in a maximum similarity
score.

T (n,m) 梅 爾 吉 勃 遜

梅 ↖ 1 ← 1 ← 1 ← 1 ← 1

爾 ↑ 1 ↖ 2 ← 2 ← 2 ← 2

吉 ↑ 1 ↑ 2 ↖ 3 ← 3 ← 3

普 ↑ 1 ↑ 2 ↑ 3 ↖ 3.77 ← 3.77

森 ↑ 1 ↑ 2 ↑ 3 ↑ 3.77 ↖ 4.36

a) (梅爾吉普森, 梅爾吉勃遜)

T (n,m) 愛 伯 斯

艾 ↖ 1 ← 1 ← 1

布 ↑ 1 ↖ 1.85 ← 1.85

拉 ↑ 1 ↑ 1.85 ↖ 2.28

姆 ↑ 1 ↑ 1.85 ↖ 2.28

斯 ↑ 1 ↑ 1.85 ↖ 2.85

b) (艾布拉姆斯, 愛伯斯)

Figure 3. Results of dynamic alignment for two chinese transliterations using a dynamic
recursive formula. In this case, the sound alphabet uses BPMF system, and the
evaluator of sim(., .) is CSC

To avoid longer transliterations that appear to be more similar and thus acquire
higher T (N,M), the similarity score must be normalized, taking into account the
average length of the transliterations, as defined below.

score(A,B) =
T (N,M)

(N +M)/2
, (2)

where the formula respects the similarity range [0, 1]; accordingly, the two normali-
zed scores in the above examples are 0.87 and 0.71, respectively.

4.3 Similarity Evaluation Among Sequences Based
on Pronunciation Approaches

The BPMF system is used to transcribe a Chinese character into a phonetic sequence
for the use of CSC and LC; the Pinyin system is used for ALINE, FSP and PLCS.
Assume that we want to assign the similarity between two Chinese characters, 森
(sen) and生 (sheng). Since the basis of the recursive formula (1) is sim(an, bm), CSC
and LC assign sim(ㄙㄣ, ㄕㄥ), whereas the other techniques, including ALINE,
FSP and PLCS, assign sim(sen, sheng). The assigned entries for sim(., .) are as
follows.
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4.3.1 CSC Approach

In previous studies on the signal processing, the similarity evaluator referred to as the
Chinese character sound comparison (CSC) [20] was learned for the sound alphabet
based on human pronunciation. The signal processing for pronunciation sound fea-
ture extraction can be divided into several major tasks, such as frame segmentation,
endpoint detection and sound vector feature extraction with 26 dimensions, includ-
ing 12 cepstral, 12 delta-cepstral coefficients, energy and delta-energy in the MFCC1

domain. After this step, each sound was represented by a set of vectors of sound
features. Therefore, after transcribeing the pronunciation sound into sound vectors,
the sound similarity was used to construct two similarity matrices for Chinese char-
acter pronunciation, which includes a 37× 37 phoneme sound matrix indicating the
similarity scores among phonemes and a 412× 412 syllable sound matrix indicating
the similarities among syllables. These two matrices can represent the similarity in
pronunciation between any two Chinese characters.

Consider the situation in which we want to acquire the similarity score
simCSC(., .) using the CSC approach. According to our experience and that of Hsu
et al. [20], the initial consonant of a Chinese character heavily influences the similar-
ity of the pronunciation sound in comparison with others. Faced with this problem,
we adopt an initial-weighted comparison approach involving a balancing adjustment;
the similarity is weighted for the initial consonant of a phonetic sequence to balance
the bias of a syllable. The equation simCSC(an, bm) is the weighted similarity score
between two Chinese characters an and bm with respect to the similarity matrices
of the phonemes and the syllables.

simCSC(an, bm) = w × ss37(an.IC, bm.IC) + (1− w)× ss412(an, bm), (3)

where ss37(., .) represents a function returning a phoneme similarity score, whereas
ss412(., .) represents a function returning a syllable similarity score. an.IC and bm.IC
represent the initial consonant (IC) for an and bm, respectively. The parameter w
facilitates the trade-off between an initial consonant and a syllable.

4.3.2 The LC Approach

An approach based on the scoring scheme in Lin and Chen [18] was designed for
comparing a transliteration to its original English term. In this paper, we carefully
adopt the scheme for a similarity comparison of Chinese characters. The similar-
ity between phonemes is defined as follows. A matched consonant pair is assigned
10 points; otherwise, it is assigned −10 points. A matched vowel pair is assigned
5 points; otherwise, it is assigned 0. Matching with a null phoneme (or insert-
ing a null phoneme) is assigned −5 points. As in Lin and Chen [18], to consider
articulatory similarity, we assign some consonant pairs 8 points and vowel pairs

1 MFCC – mel-frequency cepstrum coefficients
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4 points. The pairs are determined by their articulatory features, which are iden-
tified based on their corresponding alphabets in the IPA. The consonant pairs in-
clude (ㄅ(b), ㄆ(p)), (ㄉ(d), ㄊ(t)), (ㄍ(g), ㄎ(t)), (ㄐ(j), ㄑ(q)), (ㄓ(zhi), ㄔ(chi)),
(ㄗ(zi), ㄘ(ci)), (ㄕ(shi), ㄙ(si)), (ㄔ(chi), ㄘ(ci)), (ㄕ(shi), ㄖ(ri)) and (ㄓ(zhi),
ㄗ(zi)). The vowel pairs include (ㄧ(yi), ㄩ(ü)), (ㄛ(o), ㄡ(ou)), (ㄢ(an), ㄤ(ang))
and (ㄣ(en), ㄥ(eng)). The maximum and the minimum similarity score of com-
paring two strings is obtained by 10 × |c| + 5 × |v| and −10 × (|c| + |v|), where
|c| and |v| are the number of consonants and of vowels, respectively, in the longer
string. The similarity range is normalized to the total matched score. For instance,
sim(ㄍㄨㄛ(guo), ㄎㄡ(kou)) = 8− 5 + 4 = 7, and the normalized score is 0.74 (i.e.,
(7− (−30))/(20− (−30))).

4.3.3 The ALINE Approach

This approach is based on the similarity scoring scheme of ALINE [19]. This scheme
considers a set of operations, including insertions/deletions, substitutions and ex-
pansions/compressions. The phonetic features are used to score similarity between
sound alphabets. In their default setting for the similarity assignment between
two sound alphabets (represented as s(an,i, bm,j)), two identical consonants receive
35 points, while identical vowels receive 15. ALINE considers articulatory features
and assigns different weights to the features according to their relative importance.
Readers can refer to [19] for details. Normalization can be performed by dividing
the final score by 35×|c|+ 15×|v|, where |c| and |v| are the numbers of consonants
and vowels, respectively, in the longer string.

4.3.4 The FSP Approach

We use the feature scheme suggested in [16]. The scheme identifies two perceptual
features or axes; namely friction strength (FS) and pitch (PI), and divides the
consonant phonemes into six groups, differentiated by their score on each of these
axes. For instance, bilabial plosive consonants (e.g., p, b) have a friction-strength
score of 0 and a pitch score of 0, while alveolar fricative consonants (e.g., s, z) have
scores 1.0 and 1.0, respectively. When comparing two vowels, we set the similarity
score to 1 if they are identical; otherwise, it is set to 0. The similarity between two
sound alphabets, as represented by s(an,i, bm,j), uses the following equation.

s(an,i, bm,j) =


1, if an,i = bm,j,
0.95, if an,i 6= bm,j, but

in the same group,
1.5−(|FS(an,i)−FS(bm,j)|+0.5∗|PI(an,i)−PI(bm,j)|))

1.5
, otherwise.

(4)
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4.3.5 The PLCS Approach

Assigning similarity score between two sequences can be induced to measure similar
subsequences [28]. Gao et al. [13] used a dynamically discovered alignment to map
an English phoneme sequence to a Romanized Chinese sound alphabet sequence.
Tao et al. [14] utilized substitution, deletion and insertion operations in a dynamic
programming application to determine the distance between two phonetic sequences.
In this paper, we use the longest common subsequence (LCS) algorithm to find
the longest common subsequence between two sequences. Two sequences are more
similar if they have larger lengths of common subsequences. The different sound
alphabets can be regarded as consistent in comparison, such as “p-b,” “t-d”, “k-g”,
and “n-ng”, each pair of which has similar pronunciation places or pronunciation
manners. Lin et al. [18] reported a set of corresponding pairs. Moreover, Chen
et al. [17] mentioned that the first sound alphabet is more important than the
others in a sequence; for example, “s” in “sen” is more important than “e” and
“n” in “sen”. We carefully study these aspects in the comparison of two phonetic
sequences. Formula (5) is defined as

sim(an, bm) = w × δ(fan , fbm) + (1− w)× δ(oan,bm)

max (|oan|, |obm|)
(5)

where w is a weighted trade-off parameter between two parts of the equation; δ(., .)
is a function that returns a total number of matched instances; f is the first letter
of the sequence; and o is the subsequence, ignoring the first letter in a sequence.

5 DECISION-MAKING

We define a new ensemble scheme specified on the confirmation of Chinese transli-
teration pairs. Assume that we have a dataset X containing a set of pairs and that
we want to confirm for each pair, which consists of a transliteration and an n-gram,
whether the pairs are synonymous or not. We assume that we have a set of indepen-
dent learning approaches M , each of which contributes a vote (or makes a decision)
for each pair in X. |M | votes are aggregated as the winning vote using a majority-
voting scheme. In particular, the set of votes is obtained using CSC, ALINE, FSP,
LC and PLCS.

The subsets of training dataX1, X2, . . . , XT , which are generated by re-sampling
a given training dataset, are learned as a set of classifiers C1, . . . , Ct, . . . , CT .
An ensemble operation is then applied to obtain a winning vote from the results of
the trained classifiers. The framework is briefly shown in Figure 4 and its detail is
described as following.

5.1 Definition and Decision-Making Using a Similarity Entity

Let X be a dataset containing a set of n data pairs, and let xj ∈ X be a pair con-
sisting of a transliteration and another Chinese term, which corresponds to class



808 Ch.-H. Chen, Ch.-Ch. Hsu

 
 

Marjory voting 

Decision-making 

Evaluating similarity  

vj 

scorej 

t  <  T 

xj , Dj(t), yj 
 

t  =  T 

Predicted class label 

Integrated final vote 

ht(xj) 

Decision 

Hfin(xj) 

ALINE FSP LCS LC CSC
CSC 

CSC ALINE FSP LC LCS 

Figure 4. A framework for collecting pairs of synonymous transliterations

label yj ∈ Y, representing a synonymous pair or not a synonymous pair. Let
M = [m1, . . . ,mI ]

T be a set of pronunciation-based approaches, where mi is the
ith approach in M. For a pair xj ∈ X, let scorej = [scorej,1, . . . , scorej,I ]

T be a set
of similarity scores, where scorej,i is measured by mi (to use formula (2)) for xj,
and then let vj = [vj, 1, . . . , vj,I ]

T be a set of decisions, where vj,i is a decision (i.e.,
a vote) taken from scorej,i. In particular, a pair xj has three entities, namely, yj, vj
and scorej.

The similarity entity scorej drives the decision entity vj. Most studies in the
literature often take a vote, represented as vj,i that is accepted when scorej,i ≥ θi,
whereas vote vj,i is rejected when scorej,i < θi. The parameter θi is a threshold.
Determining a higher value for θi often brings higher precision but lower recall,
whereas determining a lower value θi often brings lower precision but higher recall.
Nevertheless, the determination of the appropriate parameters {θi}Ii=1 is usually
empirical in many applications of information retrieval.

Instead of requiring the parameters {θi}Ii=1, we use the K-nearest neighbor al-
gorithm to obtain vi with the help of scorej, because it provides a rule that xj can
be classified according to its K nearest neighbor pairs; by the same token, the vote
vj,i is assigned by a majority vote on {vj→k,i}Kk=1 with respect to {scorej→k,i}Kk=1,
where “j → k” represents the kth nearest neighbor training pair of xj. Initially, we
denote {vr,i}Ii=1 = yr in advance if xr is a training pair.
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Since a majority-voting scheme is a well-known integrated voting approach to
generate a final decision, it is applied to obtain a class label. The class label yj is
determined using a majority-voting scheme on vj. In particular, the voting function
h(xj) determines a predicted class label via a majority vote of {vj,i}Ii=1 and is written
as

h(xj) = arg max
y∈Y

I∑
i=1

δ(vj,i) = y, (6)

where the function δ returns a Boolean value.

5.2 Hypotheses Combination on the Confirmation
of Chinese Transliteration Pairs

The ensemble framework proposed in this paper considers the use of multiple learn-
ing approaches M and subsets of training data X1, X2, . . . , XT . Let {mi}Ii=1 denote
a set of learning approaches based on the pronunciation model and {Xt}Tt=1 denote
a set of training datasets generated by the use of a boosting scheme [23].

Following the generation of a subset, Xt is evolved from Xt−1 using a bootstrap-
ping strategy in the training process. It is worth mentioning that a pair must be
learned more frequently when it is not easy to confirm. In other words, a pair xj will
appear much more possible in Xt while acquiring the wrong predication class label
in Xt−1. In contrast, xj, while contributing the correct class label in Xt−1, may not
appear in Xt. The algorithm for confirmation is shown in Figure 5.

Figure 5 shows that the output of Hfin(xj), which is to integrate multiple
votes of number T as a final vote, is performed while allowing T rounds. Thus,
a T -dimensional voting vector is made for each xj and given via {ht(xj)}Tt=1. Addi-
tionally, a learning round acquiring an accuracy rate lower than the random guess
accuracy (be 1−1/|y|) will not contribute to the final vote. The final voting function
Hfin for xj is written as

Hfin(xj) = arg max (y ∈ Y )
T∑

t|εt≤0.5
wt × δ(ht(xj) = y), (7)

where ht represents an integrated vote for {mi}Ii=1 at the tth round, and the function
δ returns a Boolean value. We extend h(.), which was mentioned in formula (6), as
a weighted majority-voting function ht(.) related to the various contributions of the
set of approaches {mi}Ii=1 at the tth round. In addition, the extended formula must
take the parameter t into account. The extended equation is written as

ht(xj) = arg max
y∈Y

I∑
i=1

uti × δ(vtj,i) = y. (8)

Providing different voting confidences for a repeatable learning procedure is in-
deed necessary. In other words, it is quite understandable that {ht(xj)}Tt=1 have



810 Ch.-H. Chen, Ch.-Ch. Hsu

 

Input: 
{!!}!!!! ∈ X with its class label {!!}!!!! ∈ Y is given 
the number of rounds T is assigned 
the pronunciation-based approach mi ∈ M  is determined 
scorej for i=1, …, n, which are calculated using (2) 
let {!! ! }!!!! = 1/! for t = 1 
 

Do: 
for t = 1, 2, …, T { 

Bootstrapping a subset Xt with respect to {!!(!)}!!!!  
  for {!!}!!!!  { 
   for {!!}!!!! ∈ M { 

get !!,!!  
   } 
  } 

calculate {!!!}!!!!  in (10) 
execute ht(xj) using (8) 
calculate wt in (9) 
update Dj(t+1) in (11) 

} 
Output: 

execute Hfin(xj) using (7) 

Figure 5. The confirmation algorithm for Chinese transliteration pairs

different weights with respect to their capabilities in their corresponding learning
spaces {Xt}Tt=1; in addition, the capabilities of comparison approaches {mi}Ii=1. Two
weighted entities wt and uti are learned from the learning property for round t. We
write

wt =
1− εt
εt

, (9)

where εt is the probability of training error at the tth round. In addition, we also
write

uti =
1− τ ti
τ ti

, (10)

where τ ti is the probability of training error in the comparison approach mi at the
tth round.

The entities {Dj(t)}nj=1 are good candidates for driving the data distribution for
Xt. The xj obtaining the correct vote at round t will receive a lower probability
value Dj(t + 1) and will be less likely to be drawn at round t + 1. Dj(t + 1) is
expressed as

Dj(t+ 1) =

{
Dj(t), if ht(xj) 6= yj,
Dj(t)× εt

1−εt , else.
(11)
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6 EXPERIMENTS

The experimental datasets include a training dataset and a testing dataset based
on a real application context. Confirming synonymous transliterations from a real-
world Web corpus is valuable to support general search engines for retrieving com-
plete search results because most transliterations are outside of regular Chinese
dictionaries [4, 5]. Given a pair (a testing instance) while its class label is unknown,
the training dataset is used in training to form a classifier in order to predict the
class label for the pair. The source of the training dataset is from [20], and the
testing dataset is generated from the Chinese-dominant Web pages collected by the
Google search engine. In the following sections, we introduce the preparation of
the experimental dataset and the process of the experiment. Then we analyze the
experimental results.

6.1 Preparation of the Training Dataset

The data source is selected from the study in [20] in which the dataset contains
188 transliterations collected from Web news sources. These transliterations are
proper names, including geographic, entertainment, sport, political and some per-
sonal names. They are built as a set of pairs, some of which are synonymous and
others of which are not synonymous pairs. In other words, the class label of each
pair is known in advance. The pairs are constructed as a training dataset and are
used for decision-making.

In particular, a total number of 17 578 unique pairs (C188
2 ) is obtained. However,

we only allow the length disparity of the pair to be one because the size of difference
between a Chinese transliteration and its synonym is usually no more than one [20].
For instance, the length difference of a synonymous pair (梅爾吉布生 (mei er ji bu
sheng), 米路吉遜 (mi lu ji xun)) is one. From this point of view, many pairs can be
ignored without allowing the length difference to exceed one; thus, we retain 12 006
pairs, which include 436 true-synonymous pairs and 11 570 pseudo-synonymous pairs
(i.e., pairs that are not synonymous).

In order to reduce the likelihood of participative training data driving confir-
mation performance as well as to ignore the influences of an imbalanced training
dataset, we perform a validation task involving ten different datasets selected from
the training data by sampling without replacement and thus ensure the number of
positive pairs is the same as the number of negative ones. Therefore, ten training
datasets, each of which includes 436 positive pairs and 436 negative ones, are used
for the experiments.

6.2 Description of the Input Transliterations

Two datasets, D50 and D97, are used for the experiments and contain translitera-
tions. The D50 dataset includes 50 Chinese transliterations collected from the Web
as shown in Table 1. Their lengths are 2, 3 or 4, which are the most commonly-seen
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lengths in Chinese transliterations. The number of transliterations in each respective
length group is 10, 30 and 10.

TL Ori TL Ori

布希 (bu xi) Bush 馬怪爾 (ma guai er) McGuire
費雪 (fei xue) Fisher 納亞夫 (na ya fu) Najaf
蓋亞 (gai ya) Gaea 歐尼爾 (ou ni er) O Neal
蓋茲 (gai zi) Gates 皮爾遜 (pi er xun) Pearson
胡笙 (hu sheng) Hussein 裴洛西 (pei luo xi) Pelosi
詹森 (zhan sen) Jansen 佩雷斯 (pei lei si) Peres
喬登 (qiao deng) Jordan 比卡丘 (bi ka qiu) Pikachu
奈米 (nai mi) Nano 篷比杜 (peng bi du) Pompidou
鮑爾 (bao er) Powell 歐萊禮 (ou lai li) Reilly
雪梨 (xue li) Sydney 羅伯茲 (luo bo zi) Roberts
亞馬遜 (ya ma xun) Amazon 所羅門 (suo luo men) Solomon
雅典娜 (ya dian nuo) Athena 柴契爾 (chai qi er) Thatcher
巴薩拉 (ba sa la) Basra 托拉斯 (tuo la si) Trust
貝克漢 (bei ke han) Beckham 華勒沙 (hua le sha) Walesa
布萊爾 (bu lai er) Blair 溫絲蕾 (wen si lei) Winslet
布雷默 (bu lei mo) Bremer 阿米塔吉 (a mi ta ji) Armitage
巴非特 (ba fei te) Buffett 賽普拉斯 (sai pu la si) Cypress
柯林頓 (ke lin dun) Clinton 戈巴契夫 (ge ba qi fu) Gorbachev
迪士尼 (di shi ni) Disney 喀爾巴拉 (ke er ba la) Karbala
加奈特 (jia nai te) Garnett 奈西利亞 (nai xi li ya) Nasiriyah
赫爾利 (he er li) Hurley 倫斯斐德 (lun si fei de) Rumsfeld
傑克遜 (jie ke xun) Jackson 史瓦辛格 (shi wa xin ge) Schwarzenegger
哈米尼 (ha mi ni) Khamenei 史柯西斯 (shi ke xi si) Scorsese
路希奧 (lu xi ao) Lucchino 魏克菲爾 (wei ke fei er) Wakefield
曼德拉 (man de la) Mandela 伍夫維茲 (wu fu wei zi) Wolfowitz

Table 1. Fifty original terms and their canonical transliterations

The D97 dataset is from the 2008 TIME 100 list of the world’s most influential
people [29]. There are 104 names in the list, since four entries include two names.
Ninety-seven names are retained for the experiment. Seven names are ignored,
namely, Ying-Jeou Ma, Jintao Hu, Jeff Han, Jiwei Lou, Dalai Lama, Takahashi Mu-
rakami, and Radiohead. The first five have Chinese last names that have standard
Chinese translations. The sixth term is a Japanese name for which translation is
usually not done using transliteration. The last name is that of a music band; its
translation to Chinese is not according to its pronunciation, but its meaning.

6.3 Constructing Pairs from the Web

In this experiment, we input the transliterations in D50 and D97 to collect their
synonyms from a real-world Web corpus using the integrated confirmation frame-
work proposed in this paper. For each transliteration, we collected Web snippets
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by submitting a search keyword to the Google search engine. The search keyword
is used to retrieve Web snippets; however, it does not contribute information to the
confirmation framework, which determines whether a pair is synonymous.

To construct a pair, we use the original term of the given transliteration as
a search keyword, because the original term is able to retrieve appropriate Web
documents in which the transliteration’s synonyms appear. Let a transliteration
(abbreviated as TL) be an entry. The TL’s original term (abbreviated as ORI ),
which is treated as the search keyword for the search engine, is represented as QOri

and is submitted to retrieve search result Web snippets, represented as DOri. The
set DOri is limited to Chinese-dominant Web snippets. The procedure of returning
a pair by collecting Web snippets from the Google search engine is as follows.

A. For each TL in D50 and D97, we use QORI to download Web snippets DORI .
In particular, we set |DORI | to 20 for each TL because the snippets appearing
at the head of the returned snippets are often more relevant to the research
keyword. The size of the downloaded DORI for D50 is 1 000, whereas the size of
the downloaded DORI for D97 is 1 940.

B. We delete known vocabulary terms with the help of a Chinese dictionary for
DORI and apply an N -gram algorithm to segment Chinese n-grams for the
remaining fractional sentences in DORI . Furthermore, most synonymous trans-
literations (TLs with their STs) have the same length, but some of them have
different lengths of at most one [20]. Therefore, we retain the Chinese terms from
DORI while controlling for length. Each Chinese term of length N is retained,
with N = |TL| − 1 to N = |TL| + 1 and N ≥ 2. The number of remaining
pairs for D50 is 9 439, whereas that for D97 is 19 263, where the pair consists of
a given TL and a remaining Chinese n-gram.

C. However, some pairs have similarities that are not high enough and thus are
never considered synonymous pairs. We set a similarity threshold to ignore
those pairs. According to the findings in [20], a lower similarity threshold θ can
be set to 0.5 by using the CSC approach to cover effectively all examples of
synonymous transliterations. After discarding the pairs with similarities lower
than 0.5, 2 132 and 5 324 pairs are retained for D50 and D97, respectively. These
pairs are confirmed by the use of the framework proposed in this paper and will
be discussed in next section.

6.4 Confirmation of Synonymous Transliterations
and Performance Analysis

The experiments demonstrate whether the proposed framework is effective in ex-
tracting synonymous transliterations from the Web. The following nine approaches
are employed for comparison in the experiments.

• The integrated confirmation framework (ICF): This is the ensemble framework
proposed in this paper.
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• The majority-voting approach (MV): This is a simple ensemble approach. Each
classifier contributes an equal vote. In particular, we use Equation (6) to perform
this approach.

• The individual approach: There are five approaches, CSC, LC, ALINE, FSP
and PLCS, each of which is performed individually in the experiment.

A feature vector with five dimensions generated using these five approaches
can be performed for the experiments; hence, a classification-learning algorithm
can be applied to predict the class label for each 5-tuple pair. The following two
approaches are popular for analyzing experiments in the literature and are employed
for comparison in this paper.

• Bagging: This combines multiple classifiers to predict the class label for a pair by
integrating their corresponding votes. The base algorithm for the classification
we used is KNN with k = 5 due to its simplicity.

• Boosting: This requires a weak learning algorithm. We use KNN with k = 5 in
this study.

ICF, bagging and boosting are the same in that they determine a parameter T ,
the number of iterations. One study [23] set the parameter T to 10 to use the
boosting scheme. We follow the same setting for our experiments. Therefore, ten
results are obtained for the testing data in the experiment, since we have ten training
datasets involved in the validation process. The evaluator used for the experiment
is the accuracy measure, which is common in a classification task. Moreover, we use
a box-plot analysis to graphically employ nine approaches, including ICF, boosting,
bagging, MV, and five individual approaches (CSC, LC, ALINE, FSP and PLCS).
The results are shown in Figure 6.

In Figure 6, the experimental results show that the average accuracy in the con-
firmation of Chinese transliteration pairs for three ensemble approaches (namely,
ICF, boosting, and bagging) is higher than that of the other individual approaches.
In addition, ICF achieves an average accuracy of 0.93 in D50 and 0.89 in D97 and is
the best among the nine approaches. CSC achieves an average accuracy of 0.88 in
D50 and 0.85 in D97 and is the best among the five individual approaches. More-
over, a shorter distance between the top and the bottom in a box-plot analysis
demonstrates that ICF produces a much more stable performance than the others
do; in contrast, bagging produces the most unstable performance among all ensem-
ble approaches. All five individual approaches produce a less stable performance
than the ensemble approaches, because they are seriously affected by the training
datasets.

We give solid analyses for boosting and bagging as compared to our ICF due
to their performance improvement. The ICF, boosting and bagging methods are
the same in that they create multiple classifiers. As such, each classifier contributes
a vote whose weight can be designed using comprehensive strategies. In particu-
lar, we use four strategies for ICF, boosting and bagging. For the details of these
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 a)

 
 b)

Figure 6. Box-plot analysis for nine approaches in the testing datasets a) D50 and b) D97

strategies, please refer to [2]. The first strategy is simple voting and the other three
strategies are weighted voting, which requires tuning the weights on training data.
These strategies are shown as follows.

• Equal-Voting: Each classifier contributes an equal vote.

• Precision-Weight: The weight is measured by precision measure.

• classPrecision: The weight is measured by class precision; thus, a classifier can
prefer various weights for predicting different class labels.

• Precision-Recall: The weight is measured by two measures which are precision
and recall.
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We use these four strategies for ICF, boosting and bagging on the D50 and D97
datasets. We perform each experiment ten times and the performance is evaluated
by an accuracy evaluator. Table 2 and Table 3 show the average accuracy on D50
and D97 datasets, respectively.

From the overall data in Table 2 and Table 3, ICF has better identification
performance than boosting and bagging when using the four strategies, and bagging
usually results in bad performance. Furthermore, we then observe the performance
of using four strategies for ICF, boosting and bagging. In Table 2, we can see that
the classPrecision strategy is very helpful to ICF and boosting, and the Precision-
Recall strategy is helpful to bagging. In Table 3, we see that the Precision-Recall
strategy is adaptively used for ICF, boosting and bagging. However, the Equal-
Voting strategy results in worse performance.

ICF boosting bagging

Equal-Voting 87.9 % 87.3 % 86.8 %

Precision-Weight 92.3 % 89.4 % 89.0 %

classPrecision 93.1 % 90.5 % 88.6 %

Precision-Recall 92.7 % 88.6 % 89.8 %

Table 2. Average accuracy on three ensemble schemes with four strategies on D50 dataset

ICF boosting bagging

Equal-Voting 85.4 % 85.9 % 84.2 %

Precision-Weight 89.3 % 86.3 % 86.8 %

classPrecision 89.9 % 86.7 % 85.5 %

Precision-Recall 90.7 % 88.2 % 87.3 %

Table 3. Average accuracy on three ensemble schemes with four strategies on D97 dataset

According to the results of the individual approaches, we find that not all ap-
proaches should be used in the three ensemble approaches (that is, ICF, boosting,
and bagging). This seems to address the issue of whether fewer approaches are
enough to achieve ensemble voting. Therefore, the top r ranked approaches, or-
dered as CSC, LC, ALINE, PLCS and FSP, are considered the candidate partici-
pant procedures; the top ranked approach brings better performance. This order
has resulted from the tuning of every individual approach on the training dataset,
where we use average accuracy as a measure to evaluate the tuning performance.
Therefore, we build three extended approaches, namely, ICF r, boosting r and bag-
ging r, derived respectively from ICF, bagging and boosting. The parameter r is set
to 2 and 3, respectively. For example, ICF 2 indicates that we use two top-ranked
approaches (CSC, LC), whereas ICF 3 indicates that we used three top-ranked ap-
proaches (CSC, LC, ALINE). Figure 7 and Figure 8 show the experimental results
for D50 and D97 datasets, respectively.

From the results in Figure 7 and Figure 8, the performance in terms of classifica-
tion accuracy rate and stability for ICF r is better than that for either boosting r or
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Figure 7. Box-plot analysis for three ensemble approaches using r top-ranked approaches
on D50 dataset

 
 

Figure 8. Box-plot analysis for three ensemble approaches using r top-ranked approaches
on D97 dataset

bagging r. It can be inferred that the participating approaches in ICF r contribute
different weights with respect to the use of Equation (10). The use of fewer ap-
proaches in the ensemble approach is potentially desirable, but this achieves worse
performances.

The notions of type I and type II errors are well accepted to analyze these
performances and can be understood as the false positive pairs and the false negative
pairs, respectively, in a confusion matrix. We illustrate the results of the confusion
matrices generated from the ICF approach in the two datasets D50 and D97 and
observe the differences at t rounds as 1 and 10, respectively. The results of the
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confusion matrices are respectively shown in Figure 9 and Figure 10, where the
values are averaged from 10 tests.

Actual condition
Actual-ST Pseudo-ST

Test Actual-ST 28.8 241.5
result Pseudo-ST 9.2 1852.5

a) t = 1

Actual condition
Actual-ST Pseudo-ST

Test Actual-ST 33.3 139.7
result Pseudo-ST 4.7 1 954.3

b) t = 10

Figure 9. Confusion matrices for the ICF approach for D50 dataset

Actual condition
Actual-ST Pseudo-ST

Test Actual-ST 20.4 956.3
result Pseudo-ST 21.6 4 325.7

a) t = 1

Actual condition
Actual-ST Pseudo-ST

Test Actual-ST 34.2 547.8
result Pseudo-ST 7.7 4 734.2

b) t = 10

Figure 10. Confusion matrices for the ICF approach for D97 dataset

The performance in terms of classification accuracy rate has increased. We
can see that the average number of misclassified examples is 250.7, of which the
average number of false positive examples (i.e., type I errors) is 241.5 and that of
false negative examples (i.e., type II errors) is 9.2 when we set t to 1 as shown
in Figure 9 a). In comparison, when we set t to 10 as shown in Figure 9 b), the
average number of misclassified examples is 144.4, of which the average number of
false positive is 139.7 and that of false negative is 4.7. Figure 10 a) and Figure 10 b)
show similar trends.

We briefly summarize the retrieved synonymous transliterations from the dataset
D50 in order to test the ICF approach. The pairs that are often true positive are
shown in Table 4, and those that are often false positive are shown in Table 5.
This also indicates that more than one synonymous transliteration is potentially
extracted for several given transliterations.
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TL Ori Extracted ST TL Ori Extracted ST

喬登 Jordan 喬丹 迪士尼 Disney 迪斯尼
詹森 Jansen 楊森 柴契爾 Thatcher 撒切爾
蓋亞 Gaea 嘎雅 傑克遜 Jackson 杰克遜
蓋茲 Gates 蓋斯, 蓋茨 歐尼爾 O Neal 奧尼爾
鮑爾 Powell 鮑威, 鮑威爾, 歐萊禮 Reilly 奧萊理

保威
巴非特 Buffett 巴菲特, 比菲特 篷比杜 Pompidou 龐比度,

蓬皮杜
巴薩拉 Basra 巴斯拉, 彼特拉 羅伯茲 Roberts 羅伯茨
比卡丘 Pikachu 皮卡丘, 皮卡秋 戈巴契夫 Gorbachev 哥巴契夫

比卡秋
加奈特 Garnett 加內特 史瓦辛格 Schwarzenegger 施瓦辛格
皮爾遜 Pearson 皮爾森 史柯西斯 Scorsese 斯科塞斯,

史高西斯
貝克漢 Beckham 貝克漢姆 奈西利亞 Nasiriyah 納西里耶
所羅門 Solomon 索羅門

Table 4. True positive pairs in testing ICF for D50

TL Ori miss-classified ST

布希 Bush 布什
喬登 Jordan 佐丹
雪梨 Sydney 悉尼
胡笙 Hussein 侯賽因
華勒沙 Walesa 瓦文薩

Table 5. False negative pairs in testing ICF for D50

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a new ensemble framework for confirming Chinese trans-
literation pairs. Our framework confirms and extracts pairs of synonymous transli-
teration from a real-world Web corpus, which is helpful to support search engines
such as Google and Yahoo for retrieving complete search results. The framework
for confirming Chinese transliteration pairs includes two steps. First, we study the
Romanization transcription systems, including the BPMF system and the Pinyin
system, to describe Chinese characters into sound alphabets, and then we adopt
five pronunciation-based approaches to measure the similarity between a Chinese
transliteration and another Chinese term. Second, our framework considers the
use of the majority-voting scheme and the boosting scheme at the same time. The
experimental results were evaluated according to the proposed framework in this pa-
per, comparing boosting [1], bagging [3] and five individual approaches. In addition,
we use simple voting and several weighted voting for ICF, boosting and bagging.
The experimental results demonstrate that the proposed framework is robust for
improving performance in terms of classification accuracy and stability.
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Transliteration comparison is a core step in many practical applications, includ-
ing topic detection, tracking of news and information retrieval via search engines.
Collecting the pairs of synonymous Chinese transliteration correctly is crucial for
the real-world applications. We plan to pursue some of these issues in the future
based on these research results.
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