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Abstract. Niching techniques for evolutionary algorithms are used in order to
locate basins of attraction of the local minima of multi-modal fitness functions.
Co-evolutionary techniques are aimed at overcoming limited adaptive capabilities
of evolutionary algorithms resulting from the loss of useful population diversity. In
this paper the idea of niching co-evolutionary multi-agent system (NCoEMAS) is
introduced. In such a system the species formation phenomena occurs within one
of the preexisting species as a result of co-evolutionary interactions. The results
of experiments with Rastrigin and Schwefel multi-modal test functions aimed at
the comparison of NCoEMAS to other niching techniques are presented. Also, the
influence of resource sharing mechanism’s parameters on the quality of speciation
processes in NCoEMAS are investigated.
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1 INTRODUCTION

Evolutionary Algorithms (EAs) are global search and optimization techniques based
on analogies to natural evolution [2]. In practice evolutionary algorithms have
demonstrated efficiency and robustness as global optimization techniques. How-
ever, they often suffer from premature loss of population diversity what results in
premature convergence and may lead to locating local optima instead of a global one.
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Both the experiments and analysis show that for multi-modal problem landscapes
a simple EA will inevitably locate a single solution [20]. If we are interested in find-
ing multiple solutions of comparable fitness, some multi-modal function optimization
techniques should be used. Niching methods for EAs [20] are aimed at forming and
stably maintaining subpopulations (species) throughout the search process, thereby
allowing to locate all or most basins of attraction of local minima.

The loss of diversity also limits the adaptive capabilities of EAs in dynamic envi-
ronments. Co-evolutionary techniques are aimed at improving adaptive capabilities
and introducing open-ended evolution into EAs [23].

In this paper the idea of co-evolutionary multi-agent system (CoEMAS) is in-
troduced. CoEMAS systems allow modeling biological speciation mechanisms based
on predator-prey and host-parasite co-evolution, sexual preferences, competition for
limited resources, and geographical isolation. Also, results from runs of CoEMAS
with speciation mechanism (NCoEMAS) against Rastrigin and Schwefel multi-modal
test functions are presented. The goals of these experiments were to compare speci-
ation processes taking place in NCoEMAS and classical niching techniques and the
investigation of the resource sharing mechanism influence on the quality of speciation
processes in NCoEMAS.

2 NICHING TECHNIQUES

In the case of multi-modal optimization problems the basin of attraction of every
local minima (we assume minimization problems in the rest of this paper) can be
treated as a niche. The number of individuals that live within a niche should be in
direct proportion to its carrying capacity. Carrying capacity in this case means local
minimum’s fitness relative to other local minima present in multi-modal domain.
This is called niche proportionate population.

During the years of research various niching techniques have been proposed. All
these techniques allow niche formation via the modification of mechanism of select-
ing individuals for new generation (crowding [18]), the modification of the parent
selection mechanism (fitness sharing [13] or sexual selection [26]), or restricted ap-
plication of selection and/or recombination mechanisms (by grouping individuals
into subpopulations [17] or by introducing the environment with some topography
in which the individuals are located [1, 6]).

Every niching technique can also be classified as parallel or sequential [19]. Pa-
rallel niching techniques form and maintain species simultaneously within a single
population (regardless of the number of processors used). Sequential niching me-
thods locate multiple basins of attraction temporally, one after another.

2.1 Crowding Based Techniques

One of the first attempts to introduce niching into a genetic algorithm was Cavic-
chio’s preselection scheme [7]. In preselection scheme offspring replaces the less fit
of two parents only when it has higher fitness than the parent.
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In the crowding technique [10] in each generation, a part of the population gg

(generation gap) is selected (via fitness proportionate selection) for reproduction.
For each offspring, a certain number – cf (crowding factor) – of individuals are
selected at random. The most similar individual, according to a similarity metric,
is then replaced by the offspring. As a similarity metric De Jong used Hamming
distance in genotypic space. Crowding does not promote the formation of stable
species, but rather aims at maintaining the diversity of initial population.

Harik introduced restricted tournament selection technique [15], in which for
each child a group of ws individuals is selected at random from the population of
parents and the most similar individual competes with the children for the place in
new base population.

Mahfoud developed niching mechanism called deterministic crowding [18]. He
showed that similarity metrics based upon phenotypes should be preferred to geno-
type based ones. It was also demonstrated that there was very high probability that
the offspring most similar individual should be searched for among its parents. The
new offspring is directly compared to its parents. In deterministic crowding parent is
replaced only if the child has higher fitness. To determine which of the two possible
parent-child pairings should be used in the process of comparing parents to their
offspring the total similarities were determined for each possible combination. The
pairing that had the highest total similarity (according to some similarity metric)
was used.

Probabilistic crowding developed by Mengshoel and Goldberg [21] is based upon
Mahfoud’s deterministic crowding. The main difference from deterministic crowding
is the use of a probabilistic rather than a deterministic acceptance function. This
means that stronger individuals win with probability proportional to their fitness.
The probability of wining the tournament by individual ai is given by

p(ai) =
ϕ(ai)

ϕ(ai) + ϕ(aj)
(1)

where ϕ(ai) is a fitness function value for individual ai.

2.2 Sharing Based Techniques

Fitness sharing was first introduced by Holland [16] and further developed by Gold-
berg and Richardson [13]. This technique models the ecological phenomenon of
competition for limited resources between individuals that occupy the same niche.
Fitness sharing technique reduces the fitness of individuals that have highly simi-
lar members within the population. Such a mechanism rewards unique individuals
and punishes redundant individuals within the population. The reduced fitness of
individual ai is given by

ϕFS(ai) =
ϕ(ai)

mi

(2)
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where ϕ(ai) is a fitness function value for individual ai and mi is the niche count for
individual ai. The niche count is given by

mi =

µ
∑

j=1

sh(dist(ai, aj)) (3)

where µ is the size of population, dist(ai, aj) is the distance between individual ai
and individual aj, determined by a similarity metric. The similarity metric used can
be based on either phenotype or genotype similarity. A genotype similarity metric is
often domain independent (for example Hamming distance between the genotype bit
strings). A phenotype similarity metric utilizes some knowledge about the domain,
so it is sometimes more meaningful (or appropriate). The similarity metric should
always return a distance dist(ai, aj), which increases as similarity decreases (and
vice versa). If the distance between two individuals ai and aj is less than some
fixed radius σsh the sharing function will return a value from [0; 1], which increases
with greater similarity between two individuals. In fitness sharing technique each
individual is considered to be the center of a niche with radius σsh. Fitness of each
individual is reduced for every other individual that lives in its niche in a proportion
to their similarity. The sharing function is given by

sh(dist(ai, aj)) =

{

1 −
(

dist(ai,aj)

σsh

)α

if dist(ai, aj) < σsh,

0 otherwise
(4)

where α is a constant that regulates the shape of the sharing function. It is commonly
set to 1. Goldberg and Deb [11] developed formulas for determining the appropriate
value for σsh given the expected number of local minima and assuming that these
minima are regularly located in the search space.

Miller and Shaw [22] developed the niching technique called dynamic niche shar-
ing. Their approach utilizes two assumptions. The first assumption is that the
number of local minima (q = |Dmin|, where Dmin is the set of local minima) can be
estimated. The second assumption is that the local minima are all at a minimum
distance of 2σsh from each other. Dynamic niche sharing technique attempts to iden-
tify the q centers of forming niches and uses these dynamically identified centers to
classify all individuals as either belonging to one of these dynamic niches or belong-
ing to the “non-niche” category. The shared fitness value for an individual ai that
belongs to jth dynamic niche is its raw fitness value divided by the dynamic niche
population size (mDNS,i = |Aj|). If the individual does not belong to a dynamic
niche it belongs to the “non-niche” category and its niche count is calculated using
the standard niche count equation (4). The shared fitness value for dynamic niche
sharing is given by

ϕDNS(ai) =
ϕ(ai)

mDNS,i

. (5)
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The dynamic niche count is given by

mDNS,i =

{

|Aj| if ind. is within jth dyn. niche,

mi otherwise (non-niche individual).
(6)

An individual ai is considered to be within a jth dynamic niche if its distance from
the individual ao,j that represents the center of jth dynamic niche (dist(ai, a

o,j))
is less than σsh. A greedy approach is used to identify the dynamic niches for
each generation. The population is sorted in decreasing raw fitness order. First
the population member with the highest fitness is inserted into dynamic niche
set. Then for every individual in population array (in decreasing fitness value or-
der) its distance from every niche center in dynamic niche set is calculated. If all
these distances are greater than σsh the individual is inserted into dynamic niche
set. The whole process is continued until there are q niche centers in dynamic
niche set.

Co-evolutionary sharing technique (CSN) was developed by Goldberg and
Wang [14]. Their technique is loosely inspired by the economic model of monopolis-
tic competition. In CSN technique two populations (species) exist: customers (s1)
and businessmen (s2). The customer population is the usual population of candi-
date solutions. The businessmen will locate themselves in solution space in order to
obtain the largest payoff. The binary strings were used as genotypes in both popula-
tions. The distance between a customer as1 and a businessman as2 is the Hamming
distance of their genotypes (distG(gen(as1), gen(as2)), where gen : I → G is the
function whose value is the genotype of individual a, I is the space of individuals
and G is the space of genotypes). Customer as1i belongs to businessman as2j if this
is the nearest businessman, that is:

distG(gen(as1i ), gen(as2j )) = min
{

distG(gen(as1i ), gen(as2k )) :

for k = 1, . . . , |As2|
}

(7)

where |As2| is the businessmen population size.

The modified customer fitness is given by

ϕs1(as1i ) =
ϕ(as1i )

|Aaj ,s2 |
, as1i ∈ Aaj ,s2 (8)

where Aaj ,s2 is the set of customers that belong to businessman as2j . The modified
businessman fitness is given by

ϕs2(as2j ) =

|Aaj ,s2 |
∑

i=1

ϕ(as1i ) (9)

where |Aaj ,s2 | is the size of clients subpopulation that belongs to businessman as2j .



310 R. Dreżewski

Simple CSN uses genetic algorithm with selection and recombination for the
customer population and genetic algorithm with selection and mutation for the
businessmen population. Each customer is assigned to the closest businessman.
Proportionate selection and genetic operators are used to compute a new customer
generation. Each businessman is chosen in turn and a single mutation site is selected
randomly (from l bits of binary string). The resulting individual replaces its parent
if it is at least distmin from other businessmen and it is an improvement over its
parent; otherwise another mutation site is selected (max. nlimit ≤ l times). In
the case of a massively multi-modal function it was necessary to apply imprint
mechanism. In CSN with imprint a candidate businessman is chosen from among
the best individuals of the customer population.

One of the examples of sequential niching methods is sequential niche tech-
nique (SN) developed by Beasley, Bull and Martin [4]. Their technique works by
running multiple times a simple GA. The best solution of each run is maintained
off-line. To avoid converging to the same niche, whenever a local minimum is located
SN depresses the fitness landscape within some radius of that solution. The niche
radius used in SN plays a role similar to that of σsh in sharing. In fact the authors
suggest that SN is a sequentialization of fitness sharing.

The authors claim that there are three potential advantages of sequential niching:
simplicity, ability to work with smaller populations, and speed (partially a byproduct
of smaller populations). Mahfoud [19] showed that two latter potential advantages
never materialize and additionally there are many disadvantages:

• Loss, through deration, of optimal solutions and their building blocks;

• Repeated search of depressed regions of the search space;

• Repeated convergence to the same solutions;

• Loss of cooperative population properties, including cooperative problem solv-
ing, and niche maintenance;

• Slower runtime, even on serial machines.

2.3 Techniques with Sexual Selection Mechanism

Sánchez-Velazco and Bullinaria [27] proposed gendered selection strategies for ge-
netic algorithms. They introduced sexual selection mechanism, where males are
selected on the basis of their fitness value and females on the basis of the so called
indirect fitness. Female’s indirect fitness is the weighted average of her fitness value,
age, and the potential to produce fit offspring (when compared to her partner). For
each gender different mutation rates were used. The authors applied their algorithm
to Traveling Salesman Problem and function optimization.

Sexual selection as a mechanism for multi-modal function optimization was stu-
died by Ratford, Tuson and Thompson [26]. In their technique sexual selection is
based on the so called seduction function. This function gives a low measure when
two individuals are very similar or dissimilar and high measure for individuals fairly
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similar. The Hamming distance in genotype space was used as a distance metric
for two individuals. The authors applied their mechanism alone and in combination
with crowding and spatial population model. Although in most cases their technique
was successful in locating multiple local optima of multi-modal function, the strong
tendency to lose all optima except one after several hundreds simulation steps was
observed.

2.4 Techniques with Restricted Application of Selection
and/or Recombination Mechanisms

Parallel EAs (PEAs) represent quite different approach to species formation, which
is based on allopatric speciation [6].

In the island model PEA [6] the population is divided into several subpopula-
tions. Each subpopulation is assigned to a different processor (island). Individuals
in each subpopulation are relatively isolated from individuals in another subpopu-
lations. To exchange genetic material between islands, individuals with high fitness
migrate occasionally from one subpopulation to another. All these techniques help
maintaining genetic diversity and allow each subpopulation to search different part
of multi-modal domain.

Also fine-grained PEA [6] can be treated as a technique that makes possible the
process of species formation. In this technique usually one individual is assigned to
each processor. The individuals are allowed to mate only within a neighborhood,
called a deme. Since neighborhoods overlap, the best individuals will propagate
through the whole population.

There are two basic problems with the application of PEA to multi-modal op-
timization. First, the number of niches (local minima of a multi-modal function)
is not known a priori, so there exists uncertainty about how many subpopulations
should exist. Second, there is no guarantee that different subpopulations will explore
different areas of a search space.

3 PREVIOUS RESEARCH IN CO-EVOLUTIONARY ALGORITHMS

In classical EAs each individual in the population is considered to be a potential
solution of the problem being solved. The fitness of each individual depends only on
how well it solves the problem. Selection pressure causes that better fit individuals
have the greater chance to survive and/or reproduce and the less fit ones have the
smaller chance.

In co-evolutionary algorithms the fitness of each individual depends not only on
the quality of solution to the given problem but also (or solely) on other individuals’
fitness. This makes such techniques applicable in the cases where the fitness func-
tion formulation is difficult (or even impossible). As the result of ongoing research
quite many co-evolutionary techniques have been proposed. Generally, each of these
techniques belongs to one of two classes: competitive ([24]) or cooperative ([25]).



312 R. Dreżewski

In competitive co-evolution based systems two (or more) individuals compete
in a game and their “Competitive Fitness Functions” are calculated based on their
relative performance in that game [9]. Each time step given individual competes
with different opponents, so its fitness value varies. Because in such systems an
individual’s fitness depends on other individuals’ fitness, they are co-evolutionary in
nature.

The second group consists of systems that use cooperative co-evolution mecha-
nism. In such systems a problem is decomposed into sub-problems and each of them
is then solved by different EA [25]. Each individual is evaluated within a group of
randomly chosen individuals coming from different sub-populations. Its fitness value
depends on how well the group solved the problem and on how well the individual
assisted in the solution.

All the niching techniques presented in the previous sections have some limita-
tions:

• all of them work correctly only when applied to some particular class of problems,

• some of them require knowledge about the problem to set values of parameters
(especially fitness sharing based ones),

• fitness sharing based techniques are very sensitive to values of fitness function –
in fact they can be applied only when the fitness values of “bad” individu-
als (individuals which should die off) are near 0, which is rather hard to as-
sure in the case of problems for which values of fitness function in the areas
that are outside of the local minima basins of attraction differ much from each
other [29],

• some of them do not stably maintain formed species (subpopulations) located
within local minima basins of attraction,

• none of the presented techniques provide mechanisms for auto-adaptation of the
number of individuals in population to the difficultness of problem being solved
(number of local minima).

All these facts imply that there is still need for research in the area of niching and
speciation mechanisms.

On the other hand, co-evolutionary techniques are not very often applied in the
field of multi-modal optimization, although they are aimed at overcoming limited
adaptive capabilities of evolutionary algorithms resulting from the loss of useful di-
versity of population. In fact, to our best knowledge, only one niching technique
based on co-evolution was developed (co-evolutionary sharing [14]). Co-evolutionary
multi-agent systems, which are presented in the next section, allow modeling dif-
ferent co-evolutionary interactions between species and sexes and, on their basis,
modeling speciation processes.
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4 A CO-EVOLUTIONARY MULTI-AGENT SYSTEM
WITH SPECIATION MECHANISM

The main idea of evolutionary multi-agent system (EMAS) is the modeling of evo-
lution process in multi-agent system (MAS) [8]. The basic EMAS model allows the
evolution of only one species and does not have any co-evolutionary and niching
mechanisms, what limits the application of such systems to hard multi-modal and
multi-objective problems. Classical co-evolutionary and niching techniques can not
be realized in EMAS model because of its decentralized nature.

The main goals of the research on co-evolutionary multi-agent systems (Co-
EMAS) [12] are:

• to introduce co-evolutionary mechanisms into EMAS model and to use them as
a basis for niching techniques adequate for systems based on such decentralized
model of evolution,

• to research speciation processes based on co-evolutionary interactions between
species and sexes.

Niching techniques realized in CoEMAS model have many interesting features, which
include:

• explicit resource sharing mechanism;

• possibilities of modeling sympatric speciation on the basis of co-evolutionary
interactions;

• possibilities of modeling allopatric speciation on the basis of system’s spacial
structure;

• mechanism of auto-adaptation of the number of individuals to the difficultness
of problem being solved.

Moreover, niching techniques based on co-evolutionary interactions are decentralized
and can be easily introduced in decentralized systems based on EMAS model.

In Figure 1 co-evolutionary multi-agent system for multi-modal function op-
timization (NCoEMAS ) is presented. The topography of environment, in which
agents live, is graph with every node (place) connected with its four neighbors.
Within the environment two co-evolving species (niches and solutions) live. Agents-
solutions live within agents-niches (the model of co-operative co-evolution). There
exists a resource within the environment. There is closed circulation of the resource
within the system. The resource can be possessed by environment or agents. En-
vironment gives the resource to agents and every agent’s action (such as migration
or reproduction) costs some resource, so the resource is returned to the environ-
ment.

The competition for limited resources mechanism (resource sharing) works as
follows. First the resource is given by environment to all agents-niches, proportio-
nally to their fitness values (the value of niche’s fitness depends on the fitness values
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Fig. 1. NCoEMAS system

of agents-solutions that currently belongs to it). In spite of the proportional amount
of resource, all niches are also given some minimal amount of resource (req) in order
to keep alive less fitted species of solutions. Then each agent-niche distributes its
resources among its agents-solutions (proportionally to their fitness values).

Agents-niches can migrate within the environment and all agents-solutions live
within agents-niches and migrate with them within the environment. Each time
step every agent-solution searches for agent-niche that is located within the basin of
attraction of the same local minimum. Modified version of hill-valley function ([28])
is used in order to check if two agents are located within the basin of attraction
of the same local minimum. If there are no agents-niches located within the same
basin of attraction, agent-solution creates new agent-niche, whose genotype is the
copy of its own genotype (agent-niche is splitted – see Figure 1).

Then each agent-solution searches its niche for the reproduction partner. Re-
production takes place only when agents have sufficient amount of resource. The
genotypes of all agents are real-valued vectors. Intermediate recombination [5] and
mutation with self-adaptation [3] are used for agents-solutions and special muta-
tion for agents-niches. Each time step the agent-niche’s genotype is mutated in
such a way that the resulting genotype is the center of gravity of agents-solutions
that belong to that agent-niche (fitness value of each agent-solution serves here as
a weight value). Agents-niches can merge if they are located at the same place of
environment and if they are located within the basin of attraction of the same local
minimum.
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4.1 NCoEMAS

The NCoEMAS is described as 4-tuple:

NCoEMAS = 〈E, S,Γ,Ω = {ω1, ω2, ω3, ω4}〉 (10)

where E is the environment of the NCoEMAS, S is the set of species (s ∈ S) that
co-evolve in NCoEMAS, Γ is the set of resource types that exist in the system, the
amount of type γ resource will be denoted by rγ, Ω is the set of information types
that exist in the system, the information of type ω will be denoted by iω.

There are four information types (Ω = {ω1, ω2, ω3, ω4}) and one resource type
(Γ = {γ}) in NCoEMAS. Information of type ω1 contain nodes to which agent-
niche can migrate, when it is located in particular node of the graph. Information
of type ω2 contain agents-niches which are located in the particular node in time t.
Information of type ω3 describe which agents belong to the given species of solutions
in the time t. Information of type ω4 contain the time of creation of the given agent.

There is one resource type (Γ = {γ}) in NCoEMAS, and there is closed circula-
tion of resource within the system.

4.2 Environment

The environment of NCoEMAS may be described as 3-tuple:

E =
〈

TE ,ΓE = Γ,ΩE = {ω1, ω2}
〉

(11)

where TE is the topography of environment E, ΓE is the set of resource types
that exist in the environment, ΩE is the set of information types that exist in the
environment. The topography of the environment is given by

TE = 〈H, l〉 (12)

where H is directed graph with the cost function c defined: H = 〈V, B, c〉, V is the
set of vertices, B is the set of arches. The distance between two nodes is defined as
the length of the shortest path between them in graph H.

The l function makes it possible to locate particular agent in the environment
space:

l : A → V (13)

where A is the set of agents that exist in NCoEMAS.
Vertice v is given by

v =
〈

Av,Γv = ΓE,Ωv = ΩE, ϕ
〉

(14)

where Av is the set of agents that are located in the vertice v. Agents can collect
two types of informations from the vertice. The first one includes all vertices that



316 R. Dreżewski

are connected with the vertice v and the second one includes all agents of species
nch that are located in the vertice v:

iω1,v = {u : u ∈ V ∧ 〈v, u〉 ∈ B} (15)

iω2,v =
{

anch : anch ∈ Av
}

. (16)

4.3 Species

The set of species in the time t is given by

S(t) = {nch(t), sol1(t), . . . , solnn(t)} (17)

where nn(t) = |Anch(t)|, and Anch(t) is the set of species nch agents in the time t.
The changes in the number of species result from the mutual location of agents in
the fitness landscape.

4.3.1 Niches Species

The niches species (nch) is defined as follows:

nch =
〈

Anch, SXnch = {sx} , Znch, Cnch
〉

(18)

where SXnch is the set of sexes which exist within the nch species, Znch is the set
of actions that agents of species nch can perform, and Cnch is the set of relations of
species nch with other species that exist in the NCoEMAS.

There is only one sex sx (sx ≡ sxnch) within the nch species, which is defined
as follows:

sx =
〈

Asx = Anch, Zsx = Znch, Csx = ∅
〉

. (19)

The set of actions Znch is defined as follows:

Znch = {die, give, get, adapt, seek,merge,migr} (20)

where die is the action of death (agent anch dies when there is no agents-solutions
living within it), give action distributes the resources of agent anchi among the agents
from species soli that live within the agent anchi , get action gains resources from
the environment, adapt action is the special mutation operator which moves the
center of the agent-niche anchi (coded in its genotype) to the center of gravity of
the population of agents-solutions that live within the agent anchi , seek action seeks
for agents-niches that are located within the basin of attraction of the same local
minimum, merge action merges two agents-niches when they are located within the
basin of attraction of the same local minimum, and migr is the action of migration
between nodes within the environment.
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The set of relations of nch species with other species that exist within the system
are defined as follows:

Cnch =
{

nch,get−
−−−−−→,

nch,merge−
−−−−−−−→,

nch,give+
−−−−−→

}

. (21)

The individual relations are defined as follows:

nch,get−
−−−−−→= {〈nch, nch〉} . (22)

nch,merge−
−−−−−−−→= {〈nch, nch〉} (23)

nch,give+
−−−−−→=

{

〈nch, indi〉 : nch, indi ∈ S for i = 1, . . . , |Anch|
}

. (24)

First two of them model intra species competition for limited resources. The last
one models symbiotic relation between nch and indi species. The give action allows
anchi agent to give some resource to agent of species indi (which live within the agent
anchi ).

4.3.2 Solutions Species

Each of the species soli(t), for i = 1, . . . , |Anch(t)| in the time t live within one of
the agents of species nch(t). Species sol (sol ≡ soli(t)) is defined as follows:

sol =
〈

Asol, SXsol = {sx} , Zsol, Csol
〉

. (25)

Within the species sol there exists sex sx (sx ≡ sxsol), which is defined as
follows:

sx =
〈

Asx = Asol, Zsx = Zsol, Csx = ∅
〉

. (26)

The set of actions Zsol is defined as follows:

Zsol = {die, get, accept, seekind, clone, rec,mut, seeknch, create,migr} (27)

where die is the action of death (agent-solution dies when it is out of resources),
get action gets some resource from anch agent (within each the given agent-solution
lives in the time t), accept action accepts partner for reproduction, seekind seeks for
partner for reproduction, clone is the action of cloning individual (new agent with
the same genotype as parent’s one is created), rec is the recombination operator
(intermediate recombination is used [5]), mut is the mutation operator (mutation
with self-adaptation is used [3]), seknch action seeks for agent-niche located within
the basin of attraction of the same local minimum as agent asol is located, create
action creates new agent from nch species, which is located within the basin of at-
traction of the same local minimum, migr action allows agent to migrate between
agents from nch species.
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The set of relations Csol is defined as follows:

Csol =
{

sol,get−
−−−−→,

sol,migr+
−−−−−→

}

. (28)

The first relation models inner species competition for limited resources:

sol,get−
−−−−→= {〈sol, sol〉} . (29)

The second one is defined as follows:

sol,migr+
−−−−−→= {〈sol, nch〉} . (30)

It models the symbiotic relationship between species sol and nch.

4.4 Agent of nch Species

Agent a of species nch (a ≡ anch) is defined as follows:

a = 〈gna, Za,Γa = Γ,Ωa = {ω1, ω2, ω3} , PRa〉 . (31)

Genotype of agent a is composed of one real-coded vector of floating point values:

gna = 〈~x = (x1, . . . , xng)〉 (32)

where xi ∈ R.
Za = Znch (see (20)) is the set of actions that agent a is able to perform.

Information of type ω3 is the set of agents of species sol, which live within the
agent a:

iω3 = Asol. (33)

The set of profiles includes resource profile (pr1), adaptation profile (pr2), interaction
profile (pr3), and migration profile (pr4):

PRa = {pr1, pr2, pr3, pr4} (34a)

pr1 E pr2 E pr3 E pr4. (34b)

Each time step agent tries to realize goals of the profiles (taking into account the
priorities of the profiles – here pr1 has the highest priority). In order to realize goals
of the given profile agent uses strategies which can be realized within this profile.

Within pr1 profile all strategies connected with type γ resource are realized
(〈die〉, 〈get〉). This profile uses information of type ω3. Within pr2 profile strategy of
adaptation (〈adapt〉) is realized (information of type ω3 are used). Within pr3 profile
the interactions with other agents are realized (strategies 〈give〉 and 〈seek,merge〉,
and information of type ω2 are used). Within pr4 profile the migration strategy
(
〈

migr
〉

), which uses information iω1, is realized.
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4.5 Agent of sol species

Agent a of species sol (a ≡ asol) is defined as follows:

a = 〈gna, Za,Γa = Γ,Ωa = {ω2, ω4} , PRa〉 . (35)

Genotype of agent a consists of two vectors (chromosomes): ~x of real-coded
decision parameters’ values and ~σ of standard deviations’ values, which are used
during mutation:

gna = 〈~x = (x1, . . . , xng), ~σ = (σ1, . . . , σng)〉 (36)

where xi, σi ∈ R.

Za = Zsol (see (27)) is the set of actions which agent a can perform.

Information of type ω2 is defined by (16). Information of type ω4 contains the
time of agent a creation:

iω4 = {tcreate} . (37)

The set of profiles includes resource profile (pr1), reproduction profile (pr2) and
interaction profile (pr3):

PRa = {pr1, pr2, pr3} (38a)

pr1 E pr2 E pr3. (38b)

Within pr1 profile all strategies connected with type γ resource are realized
(〈die〉, 〈get〉). This profile uses information of type ω4. Within pr2 profile all strate-
gies connected with the reproduction (〈accept〉, 〈seekind, clone, rec,mut〉) are re-
alized, and information of type ω3 are used. Within pr3 profile the interactions
with other agents from species nch are realized (strategy 〈seeknch, create,migr〉
and information of type ω2 are used).

5 SIMULATION EXPERIMENTS

Simulation experiments were aimed at testing if NCoEMAS described in previous
section is able to form and stably maintain species located within the basins of at-
traction of local minima throughout the evolution process. Also, the experiments
comparing NCoEMAS to other niching techniques (deterministic crowding and fit-
ness sharing), and EMAS were carried out and the influence of resource sharing
mechanism was investigated. All simulations were run for 5000 time steps (the
event driven simulation mechanism was used in all systems) because the main goal
of the experiments was to investigate whether the compared systems are able to
stably maintain subpopulations (they do not disappear during the simulation).
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a)

Rastrigin

-2

-1

 0

 1

 2
-2

-1

 0

 1

 2
 0

 10
 20
 30
 40
 50
 60

b)

-2 -1  0  1  2

-2

-1

 0

 1

 2

      50
      40
      30
      20
      10
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Fig. 3. a) Schwefel’s function and b) its contour plot

5.1 Test Functions

In all experiments Rastrigin and Schwefel functions were used (see Figures 2 and 3).
These are multi-modal functions commonly used in studies of niching methods.

Rastrigin function used in the experiments is given by

f1(~x) = 10 ∗ n +

n
∑

i=1

(x2
i − 10 ∗ cos(2 ∗ π ∗ xi))

xi ∈ [−2.5; 2.5] for i = 1, . . . , n

(39)

where n is the number of dimensions (n = 2 in all experiments). The function has
25 local minima for x1, x2 ∈ [−2.5; 2.5].

Schwefel function is given by

f2(~x) =

n
∑

i=1

(

−xi ∗ sin
(

√

|xi|
))

xi ∈ [−500.0; 500.0] for i = 1, . . . , n.

(40)

This is deceptive function with unevenly distrubuted 62 local minima.
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5.2 Representation, Operators and Parameters

In all compared systems real-coded vectors, intermediate recombination [5] and mu-
tation with self-adaptation [3] are used.

The parameters’ values (see Table 1) were set on the basis of results from the
number of initial experiments in order to get correct results and to assure the stable
work of each system (because in all systems, except DC algorithm, the variable
population size mechanism was used). The initial population size (|A(0)|) was also
set on the basis of initial experiments in order to minimize this value and assure the
stable work of each system. All the parameters are described in Table 2.

Parameter NCoEMAS EMAS DC FS

r
γ,nch
min 0.0 – – –

r
γ,nch
max 25 000.0 – – –

r
γ,sol
min 0.0 0.0 0.0 0.0

r
γ,sol
max 100.0 100.0 100.0 100.0

r
γ
rep 0.6rγ,solmax 0.6rγ,solmax – 0.6rγ,solmax

r
γ
clone 0.25rγ,sol 0.25rγ,sol – 0.25rγ,sol

r
γ
rec 0.25rγ,sol 0.25rγ,sol – 0.25rγ,sol

r
γ
create 0.3rγ,sol – – –

tmaxage 100 100 – 100

r
γ,v
eq 5rγ,solmax – – –

c(〈u, v〉) 0.01rγ,nchmax 0.05rγ,solmax – –

prec 0.8 0.8 0.8 0.8

pmut 0.1 0.1 0.1 0.1

α – – – 0.5

σsh for func.

f1 – – – 0.5

f2 – – – 100

|A(0)| for func.
f1 10 10 1 500 25

f2 20 50 2 000 30

|V | for func.

f1 4 4 1 1

f2 4 4 1 1

Table 1. Parameters’ values for systems used in the experiments

5.3 Experimental Results

5.3.1 The Comparison of NCoEMAS and Classical Niching Techniques

The results presented in Figures 4–7 show the location of individuals within the
search space during the typical experiments with compared systems.
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Parameter Description

r
γ,nch
min Minimal value of γ resource for agents of species nch

r
γ,nch
max Maximal value of γ resource for agents of species nch

r
γ,sol
min Minimal value of γ resource for agents of species sol

r
γ,sol
max Maximal value of γ resource for agents of species sol

r
γ
rep Minimal amount of γ resource needed for reproduction

r
γ
clone The amount of resource given to child by parent

r
γ
rec The amount of resource given to child by second

parent during recombination

r
γ
create The amount of resource given to created

agent-niche by agent-solution

tmaxage Maximal age that agent-solution can live within the system

r
γ,v
eq The equal amount of resource γ given to every agent-niche by node v

c(〈u, v〉) The cost of migration from node u to node v

prec The probability of recombination

pmut The probability of mutation

α The parameter of sharing function in FS algorithm

σsh The parameter of FS algorithm

|A(0)| The initial number of agents in the system

|V | The number of nodes of graph H

Table 2. Parameters’ descriptions

In the case of EMAS system subpopulations (species) located within the basins
of attraction of “worse” local minima disappear quite quickly and almost the whole
population is located within the basin of attraction of global minimum (see Fi-
gure 4). However, the existence of system’s environment causes that individuals are
distributed over the whole basin of attraction (and to some extent even outside it)
and population diversity is maintained.

In the case of DC system species are quickly formed within the basins of at-
traction of local minima; however, the species located within the basins of “worse”
local minima disappear during the remaining part of experiment, and finally there
exists only one species located within the basin of attraction of global minimum (see
Figure 5).

Fitness sharing technique forms and maintains species; however, the popula-
tion diversity within the species is very high. The individuals are not located
within the closest neighborhoods of local minima but they are distributed over
the whole basins of attraction of local minima and even outside them (see Fi-
gure 6).

Figure 7 shows the location of NCoEMAS individuals within the search space
during the typical experiment. At the beginning there are only 5 agents-niches
(represented with squares) and 5 agents-solutions (represented with diamonds) with
identical genotypes as in the case of agents-niches to which they belong. It can be
seen that as the experiment goes on the agents reproduce and locate themselves
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Fig. 4. The location of individuals in EMAS during a) the 0th, b) 50th, c) 500th

and d) 5000th simulation step

within the closest neighborhoods of the local minima of Rastrigin’s function. More-
over, the species are stable, and do not disappear during the experiment.

Figures 8 and 9 show the average number of local minima neighborhoods located
and the value of proportional species’ sizes indicator for compared systems during
experiments with Rastrigin’s and Schwefel’s functions. The experiments were carried
out for four techniques: NCoEMAS, EMAS, deterministic crowding (DC [18]) and
fitness sharing (FS [13]).

Figures 8 a) and 9 a) show the average number of local minima neighborhoods
located. The local minima neighborhood was classified as “located” when there was
at least nimin = 3 individuals closer than 0.05 (in the case of Rastrigin’s function)
and 10.0 (in the case of Schwefel’s function) to that local minima.

NCoEMAS stood relatively well when compared to other techniques. On the
average, it stably maintained about 22 local minima neighborhoods of Rastrigin’s
function and 40 local minima neighborhoods of Schwefel’s function. DC quickly lo-
cated about 13–14 local minima neighborhoods of Rastrigin’s function and 35 local
minima neighborhoods of Schwefel’s function but there was quite strong tendency
to lose almost all of them during the remaining part of experiments. FS technique
detected and stably maintained about 12–13 local minima neighborhoods of Rast-
rigin’s function and about 20 local minima neighborhoods of Schwefel’s function on
the average. EMAS without any niching mechanism was not able to stably popu-
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Fig. 5. The location of individuals in DC system during the a) 0th, b) 50th, c) 500th

and d) 5000th simulation step

late more than one local minima neighborhood. It turned out that in the case of
multi-modal optimization problems it works just like simple EA.

Figures 8 b) and 9 b) show the average values of proportional species’ sizes indi-
cator npd(t). The npd(t) indicator is defined as follows:

npd(t) =

|Dmin|
∑

i=1

g(|Ai(t)|) (41a)

g(|Aj(t)|) =







1 −
||Aj(t)|−ni

j
opt|

ni
j
opt

if |Aj(t)| ≤ ni
j
opt

1 −
||Aj(t)|−ni

j
opt|

|A(t)|
if |Aj(t)| > ni

j
opt

(41b)

ni
j
opt =

f ′(~x+
j )

∑|Dmin|
k=1 f ′(~x+

k )
|A(t)| (41c)

where:

Dmin ⊆ D is the set of local minima of the goal function f ,

A(t) is the set of agents that exist in the system in time t,

~x+
j is jth local minima,
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Fig. 6. The location of individuals in FS system during the a) 0th, b) 50th, c) 500th

and d) 5000th simulation step

Aj(t) is the set of agents that are closer than distmax to j-th local minima in the
time t,

f ′ = δ ◦ f is the modified goal function,

δ : R→ R is scaling function which assures that the values of f ′ function are greater
than 0 and that local maxima of this function are located in the same places as
local minima of function f .

In the case when all subpopulations (species) located within the neighborhoods
of local minima are of optimal sizes then npd(t) indicator has the maximal value
(equal to the number of local minima). In the case when some subpopulations’ sizes
are not optimal then the value of this indicator falls down.

In the case of npd(t) indicator, the best results were obtained with the use of
NCoEMAS system (see Figures 8 b) and 9 b)). Relatively poor performance of FS
technique results from the tendency to distribute individuals over the whole basins
of attraction of local minima (what was also observed earlier in this section). The
results of DC and EMAS indicate that in these systems all species except one
disappear during the simulation.

To sum up, simple EMAS cannot be applied to multi-modal function optimiza-
tion without introducing special mechanisms such as co-evolution. FS and DC have
some limitations as niching techniques. DC has the strong tendency to lose located
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Fig. 7. The location of individuals in NCoEMAS during the a) 0th, b) 50th, c) 500th

and d) 5000th simulation step
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Fig. 8. a) The number of Rastrigin’s function local minima neighborhoods located (the
average values from 20 experiments, nimin = 3) and b) the value of proportional
species’ sizes indicator (the average values from 20 experiments). The comparison of
different systems’ results
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Fig. 9. a) The number of Schwefel’s function local minima neighborhoods located (the
average values from 20 experiments, nimin = 3) and b) the value of proportional
species’ sizes indicator (the average values from 20 experiments). The comparison of
different systems’ results

basins of attraction of local minima during the evolution process. The fact of rela-
tively poor performance of DC was also observed in other works [30]. FS technique
maintains high diversity within the species and does not locate individuals within
the closest neighborhoods of local minima (it does not promote useful population di-
versity). NCoEMAS is valid and promising niching technique but still more research
is needed.

5.4 The Influence of Resource Sharing Mechanism

In this section the results of the experiments with different values of req parameter
(the equal amount of resource which is given to all agents-niches by environment)
are presented. In all these experiments Rastrigin’s function was used. The value of
req parameter is crucial to the correct working of the resource sharing mechanism
in NCoEMAS system. Table 3 shows the values of req parameter used in different
types of experiments.

Parameter E1 E2 E3 E4 E5 E6

req 5rsolmax 0 2.5rsolmax 3.75rsolmax 15rsolmax 27.5rsolmax

Table 3. The values of req parameter for different experiments, rsolmax is the maximal amount
of resource that can be in the possession of agent-solution

Figure 10 a) shows the number of local minima neighborhoods of Rastrigin’s
function located in experiments with different values of req parameter. The results
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are worst in the case of E2 (req = 0) and E3 (req = 2.5rsolmax) experiments. In the case
of other experiments the results are quite comparable. This means that if there is
no minimal amount of resource given to the agents-niches (experiments of type E2)
or this amount is too small (experiments of type E3), the species located within the
basins of attraction of “worse” (that means with greater value of fitness function)
local minima have no chances to survive and to win the competition for limited
resources with the species located within the basins of attraction of “better” local
minima.
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Fig. 10. a) The number of Rastrigin’s function local minima neighborhoods located and
b) the population sizes in experiments with different values of req parameter of
NCoEMAS system (the average values from 20 experiments, nimin = 3)

In the case of E2 and E3 experiments the population sizes are generally larger
than in the case of other experiments (see Figure 10 b)). The number of agents
rapidly grows at the beginning of experiment, approaches some level and then stays
approximately the same during the remaining part of the experiment. There is no
adaptation of the population size to the difficultness of the problem (to the number
of local minima of the fitness function in the case of presented experiments). In the
case of E2 and E3 experiments, species located within the basins of attraction of
“worse” local minima quickly loose the competition with other species and die off.
In such case the operator of merging niches does not work, simply because there
are no niches to merge. The number of agents stays generally at the higher level
than in the case of other experiments, because the same amount of resource is given
by environment to the smaller number of agents-niches and the subpopulations of
agents-solutions that belong to them are generally bigger. In the case of other types
of experiments, when there is enough resource given to each agent-niche, the number
of agents in the system adapts to the number of local minima of fitness function (see
Figure 10 b)). In such case species of agents-solutions (which live within the agents-
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niches) do not die off. All species have the chance to survive. The mechanism of
merging niches located within the basins of attraction of the same local minima
causes that after the rapid growth of the number of agents the population size
decreases slightly and approaches the optimal level.

6 CONCLUDING REMARKS

The idea of co-evolutionary multi-agent system (CoEMAS) allows us to model many
ecological co-evolutionary interactions between species and sexes such as resource
competition, predator-prey and host-parasite co-evolution, sexual preferences, etc.

In this paper sample CoEMAS with two co-evolving species: niches and solutions
was presented. This system was applied to multi-modal function optimization. The
presented results show that NCoEMAS was able to detect and stably maintain more
neighborhoods of Rastrigin and Schwefel functions’ local minima than two classical
niching techniques (deterministic crowding and fitness sharing) and EMAS system.
NCoEMAS also formed species of sizes proportional to the “quality” of local minima.

The presented results also indicate that it is necessary to loosen the competi-
tion for limited resources between species located within the basins of attraction
of different “quality” local minima. In the case of strong competition, the species
located within the basins of attraction of “worse” local minima could eventually die
off completely. Moreover, in such case there is no adaptation of the population size
to the difficulty level of the problem being solved (to the number of local minima
in the case of multi-modal function minimization problems).

Future research will include more detailed comparison to other niching tech-
niques, and the implementation of CoEMAS based on the mechanisms of predator-
prey or host-parasite co-evolution. Also the parallel implementation of CoEMAS
using MPI is included in future research plans.
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