
Computing and Informatics, Vol. 25, 2006, 333–350

LINEAR-TIME IN-PLACE SELECTION
WITH ε ·N ELEMENT MOVES∗

Viliam Geffert

Department of Computer Science

P. J. Šafárik University

Jesenná 5, 040 01 Košice, Slovakia

e-mail: geffert@upjs.sk

Ján Kollár

Department of Computers and Informatics

Technical University of Košice

Letná 9, 042 00 Košice, Slovakia

e-mail: Jan.Kollar@tuke.sk

Manuscript received 11 April 2004; revised 27 March 2006

Communicated by Marián Vajteršic

Abstract. We present a new in-place selection algorithm that finds the kth smallest
element in an array of n elements in linear time, using only ε · n element moves.
Here ε > 0 denotes an arbitrarily small, but fixed, real constant. As a consequence,
partitioning the array in-place into segments of elements with ranks smaller than,
equal to, and larger than k can be performed with (1 + ε) · n element moves.
Minimizing the sum of comparisons and moves, we get a selection algorithm using
C(n) < 10.236n comparisons and M(n) < 0.644n moves. The algorithm can be
further optimized, by tuning up for the given cost ratio between a single move
and a single comparison. As an example, we present an algorithm with C(n) +

10 ·M(n) ≤ 13.634n.

Keywords: Algorithms, in-place selection, sorting

∗ This work was supported by the Slovak Grant Agency for Science (VEGA) under the
contract “Combinatorial Structures and Complexity of Algorithms”.



334 V. Geffert, J. Kollár

1 INTRODUCTION

The problem of finding the kth smallest element in a multiset of n elements, drawn
from a totally-ordered universe, has been the subject of intense investigation. For a
long time, it was believed to be as difficult as sorting. Surprisingly, it was shown to
be solvable in linear time by Blum et al. in 1973 [2]. This result was improved in 1976
by Schönhage, Paterson, and Pippenger [13], giving an upper bound of 3n + o(n)
comparisons in the worst case. Despite many attempts, this had not been improved
until 1994, when Dor and Zwick [4, 5] gave a 2.95n+o(n) algorithm. They also raised
slightly the lower bound, from 2n− o(n) comparisons in [1], to (2+ 2−40) ·n− o(n).

All these algorithms use some additional space, the amount of which grows in n.
This is needed for storing array indices, counters, etc. For example, a straightforward
implementation of the algorithm by Schönhage et al. [13] requires additional linear
space.

This triggered the search for an efficient in-place selection algorithm, i.e., an
algorithm using only a constant amount of auxiliary variables, apart from the array
storing the n elements. The in-place feature remains important even in the face of
dramatically reduced memory costs, since in-place algorithms maximize the size of
the file that can be processed without an access to a secondary storage; moreover,
such algorithms do not use a dynamic memory allocation. Logical elegance is also
an important feature of such algorithms. From a theoretical point of view, it is
interesting to know whether we can replace some traditional storage requirements
by storing information implicitly into ordering of elements in such a way that we
can avoid recomputing.

The first in-place selection algorithm running in linear time was developed by Lai
and Wood in 1988 [9]. This algorithm uses fewer than 6.83n+o(n) comparisons and
18.69n+ o(n) moves. The most sophisticated versions known so far were presented
by Carlsson and Sundström in 1995 [3]. The first one is only ε ·n comparisons away
from the best known upper bound without space restriction, it uses (2.95 + ε) · n
comparisons, but this is paid by a fairly large number of moves, O((1/ε)2 · n). The
second one uses 3.75n+ o(n) comparisons, but the number of moves is reduced to
9n+ o(n).

In the algorithms above, the authors attempted to minimize the number of ele-
ment comparisons. The number of element moves (assignments) was only a second-
order criterion. However, in a typical realistic application, the cost of moving an
element is much larger than the cost of a comparison. The relative order of an
element is usually induced by a relative order of some key, forming a small portion
of data within a large record. Thus, transportation-efficient in-place algorithms are
(at least) as important as comparison-efficient versions.

For the number of element moves, we do not have any lower bound corresponding
to (2+2−40) ·n−o(n) for the number of comparisons. One can easily design a simple
O(n2) in-place algorithm that finds the kth smallest element with no element moves
at all. That is, in-place selection can be performed even if the elements reside in
a read-only memory. The best known algorithm of this kind was developed by Munro



Linear-Time In-Place Selection with ε · n Element Moves 335

and Raman [11], using a constant number of index variables, no element moves, and
O(n1+ε) comparisons, for any constant ε > 0. However, the constant associated
with the O(n1+ε) term grows exponentially in 1/ε.

The in-place selection algorithm we shall present here uses only ε · n element
moves, while keeping the number of comparisons and other auxiliary operations
bounded by O(n). Here ε > 0 denotes an arbitrarily small, but fixed, real constant.
Moreover, the constant in the O(n) term grows only logarithmically in 1/ε. Parti-
tioning the array in-place into segments of elements with ranks smaller than, equal
to, and larger than k can be performed with (1+ ε) ·n moves. The number of index
variables is bounded by O((1/ε)2 · log(1/ε)).

Minimizing the sum of comparisons and moves, we get a selection algorithm
using C(n) < 10.236n comparisons and M(n) < 0.644n moves. The algorithm can
be further optimized, by tuning up for the given cost ratio between a single move
and a single comparison. This improves the total computational cost in applications
where the key of an element forms a small portion in a large record of data. As an
example, we present an algorithm with C(n) + 10 ·M(n) ≤ 13.634n.

Our algorithm is based on ideas presented in [2] and [9]. Actually, we can use any
O(n) in-place selection algorithm as a starting point, even with some large constant
factors. To speed up, we select a properly chosen sample of ε · n elements that
represents the distribution of elements in the original sequence. The sample is very
similar to that used by Munro and Raman in [10], where they minimize the number
of moves in sorting algorithms. By finding two elements y, x of carefully chosen
ranks in this sample, we get two elements such that the kth smallest element a, in
the original sequence, satisfies y ≤ a ≤ x, with the number of elements between y
and x so small that a can be located by selection from ε · n candidates.

2 PRELIMINARIES

We first need to introduce some notation. Let A = {a1, . . . , an} denote the multiset
of n elements. An element a ∈ {a1, . . . , an} is of rank k, for some k ∈ {1, . . . , n}, if
the number of elements smaller than or equal to a in {a1, . . . , an} is at least La ≥ k,
and the number of elements greater than or equal to a is at least Ra ≥ n − k + 1.
The upper rank of a, denoted by a≻, is the largest k ∈ {1, . . . , n} such that a is of
rank k. Similarly, the lower rank a≺ is the smallest k ∈ {1, . . . , n} such that a is of
rank k.

If all elements in the multiset A = {a1, . . . , an} are different from a (excluding
the element a itself), the rank of a is unique, with La + Ra = n + 1 and a≺ = a≻.
However, since several elements in Amay be equal to a, we only have La+Ra ≥ n+1
and a≺ ≤ a≻. Clearly, a is of rank k for each k ∈ {a≺, . . . , a

≻}.

The selection problem is to find an element of rank k, given the value of k
and n elements a1, . . . , an, stored in some array A. The array is not sorted. We can
assume that

1 ≤ k ≤ ⌈n/2⌉, (1)



336 V. Geffert, J. Kollár

for, if k > n/2, the problem can be solved symmetrically by seeing the last entry
of A as the beginning of the input and by searching for the (n− k + 1)st largest
element.

The elements are atomic, that is, they can only be moved or compared with the
operations≤ and =. To allow the elements move, some constant number of elements
can be put aside, to extra locations. (We shall actually use only a single extra
location in our selection algorithm, or for two-way partitioning. For efficient three-
way partitioning, we need two extra locations.) We can also use a constant amount
of index variables, of 1+⌊log2 n⌋ bits each. The standard arithmetic operations and
comparisons are used in manipulation of these.

The in-place selection problem can be solved in linear time, using cc · n + o(n)
comparisons and cm · n+ o(n) moves, where cc and cm are some constants. Here we
can use either a conceptually simpler algorithm with cc ≤ 6.83 and cm ≤ 18.69 [9],
or a more efficient, but much more complicated, version with cc = 3.75 and cm =
9.00 [3].

3 SELECTION ALGORITHM

Now we are ready to present our algorithm for the selection problem. The algorithm
depends on two built-in integer constant parameters q, ℓ ≥ 1. (They can be fixed
quite arbitrarily; however, the number of element comparisons varies, and index
variables depend on the choice.) We shall use also a third built-in constant, defined
by

d = q · (ℓ+ 1) + ℓ = q · ℓ + q + ℓ.

Phase 1. Divide the input array into sequences of length d. The last one will
be of length d′, satisfying 1 ≤ d′ ≤ d. Sort each segment and select, in each of
them, q evenly distributed sample elements so that there are ℓ nonsample elements
between each two adjacent sample elements, and also before the first and after the
last sample element, within the segment. That is, pick up the (ℓ+ 1) · ith element
of each segment, for i = 1, . . . , q. (See Figure 1.)

If n, the length of the input array, is not an integer multiple of d, the last
segment is of length d′ < d. If, moreover, d′ ≤ 2ℓ, no sample elements are picked
up in the last segment. Otherwise, for d′ > 2ℓ, pick up the (ℓ + 1) · ith element, for
i = 1, . . . , ⌊(d′ − ℓ)/(ℓ+ 1)⌋, so that even here each sample element is enclosed in
between ℓ nonsample elements. The last sample element is followed by ℓ′ nonsample
elements, with ℓ′ ∈ {ℓ, . . . , 2ℓ}. (See Figure 1.)

Move all sample elements into one contiguous place, in the leftmost locations of
the array A, by swapping them with any nonsample elements.

Before passing further, let us consider the computational cost for the first phase.
To sort a segment of length d, we use the Ford-Johnson’s algorithm [6]. It is known [7]
that this algorithm sorts d elements by using f(d) =

∑d
i=1 hi comparisons, where

hi = ⌈ log2(3i/4)⌉. This sum is bounded by f(d) ≤ d·log2 d−(2−log2 3+2α−α)·d+
O(log d), where α = ⌈ log2(3d/4)⌉−log2(3d/4), which is a real value ranging between



Linear-Time In-Place Selection with ε · n Element Moves 337

v

v

v

v

.

.

.

v

v

v

v

.

.

.

v

v

v

v

.

.

.

v

v

v

v

.

.

.

· · · · · ·

v

v

.

.

.

1

q−2

q−1

q

ℓ

ℓ

ℓ

ℓ′ ∈ {ℓ, . . . 2ℓ}

.

.

.

1 2 ⌊n/d⌋· · · · · ·

ℓ

Fig. 1. Division of A into sorted segments. The segments are represented by vertical bars,
sample elements by bullets.

zero and one. (For argument, see Answers to Exercises 14 and 15 of Section 5.3.1
in [8].) This allows us to derive an upper bound

f(d) ≤ d · log2 d− 1.328d+ O(log d). (2)

Since we sort ⌈n/d⌉ segments of length at most d, the number of comparisons
in the first phase is bounded by

C1 ≤ ⌈n/d ⌉ · f(d) ≤ n · f(d)/d+ f(d).

Let us now consider the number of moves. The sorting itself does not require any
moves. All segments are of constant lengths, and hence, instead of moving elements,
we only rearrange pointers in a constant number of index variables. However, all
sample elements are gathered into one contiguous place, in the leftmost locations
of A. These moves are organized as follows.

During the first phase, the configuration of the array A is of the form SeNU ,
where S represents the block of sample elements collected so far, e is the hole where
the next sample element should go, N the block of discarded nonsample elements,
and U the sequence of segments not yet processed. Initially, S and N are empty.
The hole is created when the first segment is being processed. Consider first the
general case, when the first segment is done.

First, the permutation of d elements, forming the leftmost segment of U , is
determined by the Ford-Johnson’s algorithm. Then, one after another, the q sample
elements of this segment are collected to the left. Namely, each sample element is
moved into the hole, and the next element on the right of this hole is moved to
the place released by the sample element just moved. Thus, the current segment
vanishes, contributing the sample and nonsample elements to S and N , respectively.
This is repeated until all segments are done.

Processing of the first segment inA is slightly different, it requires one additional
move. This is used to put the first nonsample element aside, to create the hole e.
This element returns back to A when the last segment has been processed, to fill up
the hole after the last sample element.



338 V. Geffert, J. Kollár

The number of moves is thus equal to 1 + 2n′, where n′ denotes the size of
the sample. Since there are ⌈n/d⌉ segments, each contributing at most q sample
elements, the size of the sample is

n′ ≤ ⌈n/d⌉ · q ≤ n · q/d+ q. (3)

Thus, the number of moves is at most

M1 = 1 + 2n′ ≤ n · 2 · q/d+ O(q).

Phase 2. There are two cases to consider. If

k ≥ n · ℓ/d+ (2ℓ+ 3), (4)

then, using any other linear-time in-place selection algorithm, search the sample for
two elements x, y, of ranks

kx = ⌈k/(ℓ+ 1)⌉,
ky = n′ − ⌈(n− k + 1)/(ℓ+ 1)⌉+ 1,

(5)

respectively, where k is the original rank of wanted element and n the original prob-
lem size. As will be shown later, the ranks given in (5) guarantee that the kth smallest
element a, in the original array A, satisfies y ≤ a ≤ x, with the number of elements
in the sorted sequence between y and x so small that a can be located by selection
from ε · n candidates.

If (4) does not hold, i.e., for k < n · ℓ/d + (2ℓ + 3), we find only the element x
in the sample, of the same rank kx = ⌈k/(ℓ+ 1)⌉. In this case, k is so small that
the wanted element a can be found among elements satisfying a ≤ x, again from
ε · n candidates.

Depending on whether k satisfies the condition (4), we select one or two elements
from the sample of size n′. In either case, this can be done with C2 ≤ 2cc ·n

′+ o(n′)
comparisons andM2 ≤ 2cm·n

′+o(n′) moves, for some constants cc and cm. Using (3),
we get

C2 ≤ n · 2 · cc · q/d+ o(n),

M2 ≤ n · 2 · cm · q/d+ o(n).

Before passing to the third phase, we shall analyze how x and y rank among the
elements in the sample, as well as among the elements in the original sequence. This
requires to calculate a lower bound for n′. Recall that there are ⌊n/d ⌋ segments
of the full length d, each contributing exactly q sample elements. If n is not an
integer multiple of d, there is also a shorter segment of length d′ = n − ⌊n/d⌋ · d
at the end. This segment contributes either q′ = 0 or q′ = ⌊(d′ − ℓ)/(ℓ+ 1)⌋ =
⌊(n− ⌊n/d⌋ · d− ℓ)/(ℓ+ 1)⌋ sample elements, depending on whether d′ ≤ 2ℓ or
d′ > 2ℓ, respectively. But then, using q · (ℓ+1)− d = −ℓ, the size of the sample can



Linear-Time In-Place Selection with ε · n Element Moves 339

be bounded from below by

n′ = ⌊n/d⌋ · q +max{0, ⌊(n− ⌊n/d⌋ · d− ℓ)/(ℓ+ 1)⌋}

≥ ⌊n/d⌋ · q · (ℓ+ 1)/(ℓ+ 1) + [(n− ⌊n/d⌋ · d− ℓ)/(ℓ+ 1)− 1]

= n/(ℓ+ 1) + ⌊n/d⌋ · [q · (ℓ+ 1)− d ]/(ℓ+ 1)− ℓ/(ℓ+ 1)− 1

≥ n/(ℓ+ 1)− n/d · ℓ/(ℓ+ 1)− (2ℓ+ 1)/(ℓ+ 1).

Now, using (2ℓ+ 1)/(ℓ+ 1) < 2, we get

n′ > n · (1− ℓ/d)/(ℓ+ 1)− 2. (6)

Now we can show that 1 ≤ kx ≤ n′, i.e., that the rank kx, defined by (5), is
meaningful for the sample and hence the element x does exist, for each sufficiently
large n. Using (5), (1), ℓ ≥ 1, n ≥ (7ℓ+7)/(1− 2ℓ/d), and (6), in that order, we get

kx = ⌈k/(ℓ+ 1)⌉ ≤ ⌈⌈n/2⌉/(ℓ+ 1)⌉

≤ [n/(2ℓ+ 2) + 1/(ℓ+ 1)] + 1 ≤ n/(2ℓ+ 2) + 7/2− 2

= n/(2ℓ+ 2) + (7ℓ+ 7)/(1− 2ℓ/d) · (1− 2ℓ/d)/(2ℓ+ 2)− 2

≤ n/(2ℓ+ 2) + n · (1− 2ℓ/d)/(2ℓ+ 2)− 2 = n · (1− ℓ/d)/(ℓ+ 1)− 2 < n′.

On the other hand, it is trivial to see that

kx = ⌈k/(ℓ+ 1)⌉ ≥ 1,

since k ≥ 1 and ℓ ≥ 1. Summing up, 1 ≤ kx ≤ n′.
Recall that the element y of rank ky has been selected only if k satisfies (4), that

is, only if k ≥ n · ℓ/d+ 2 · (ℓ+ 1) + 1. Using this, together with (5) and (6), we get

ky = n′ − ⌈(n− k + 1)/(ℓ+ 1)⌉+ 1 ≥ n′ − (n− k + 1)/(ℓ+ 1)

= k/(ℓ+ 1) + n′ − n/(ℓ+ 1)− 1/(ℓ+ 1)

> [n · ℓ/d+ 2 · (ℓ+ 1) + 1]/(ℓ+ 1) + [n · (1− ℓ/d)/(ℓ+ 1)− 2]

− n/(ℓ+ 1)− 1/(ℓ+ 1)

= 0.

That is, ky is an integer greater than zero, and hence ky ≥ 1. For completeness,
using (5) and (1) for sufficiently large n satisfying n ≥ 2 · (ℓ + 1), we have

ky = n′ − ⌈(n− k + 1)/(ℓ+ 1)⌉+ 1 ≤ n′ − (n− ⌈n/2⌉+ 1)/(ℓ+ 1) + 1

= n′ − (⌊n/2⌋+ 1)/(ℓ+ 1) + 1 ≤ n′ − (⌊ℓ+ 1⌋+ 1)/(ℓ+ 1) + 1 ≤ n′.

Summing up, 1 ≤ ky ≤ n′, for each k satisfying (4).
Now we can derive tight bounds for the ranks of x and y in the original sequence.

The number of elements smaller than or equal to x, in the sample, is at least kx
(including x itself). With each element a ≤ x in the sample, we can cluster a separate



340 V. Geffert, J. Kollár

group of ℓ nonsample elements smaller than or equal to a, within the same segment
which the element a came from. (See Fig. 1.) Therefore, there are at least kx ·(ℓ+1)
elements smaller than or equal to x in A. Thus, the upper rank of x in A is at least

x≻ ≥ kx · (ℓ+ 1) = ⌈k/(ℓ+ 1)⌉ · (ℓ+ 1) ≥ k,

by (5). Similarly, the sample contains at least n′ − kx + 1 elements greater than
or equal to x. (Again, including x itself.) But then the original sequence A must
contain at least (n′−kx+1) · (ℓ+1) elements greater than or equal to x, since, with
each sample element a ≥ x, we can cluster a separate group of ℓ nonsample elements
greater than or equal to a. Thus, the lower rank of x in A is, by (6) and (5), at
most

x≺ ≤ n− (n′ − kx + 1) · (ℓ+ 1) + 1

< n− [n · (1− ℓ/d)/(ℓ+ 1)− 2] · (ℓ+ 1) + [k/(ℓ+ 1) + 1] · (ℓ+ 1)

− (ℓ+ 1) + 1

= k + n · ℓ/d+ (2ℓ+ 3).

By the same argument, using (5) and (6), we get the bounds for the ranks of y:

y≺ ≤ n− (n′ − ky + 1) · (ℓ+ 1) + 1

= n− n′ · (ℓ+ 1) + [n′ − ⌈(n− k + 1)/(ℓ+ 1)⌉ + 1] · (ℓ+ 1)− (ℓ+ 1) + 1

= n− ⌈(n− k + 1)/(ℓ+ 1)⌉ · (ℓ + 1) + 1

≤ k,

and

y≻ ≥ ky · (ℓ+ 1) > [(n · (1− ℓ/d)/(ℓ+ 1)− 2)

− ⌈(n− k + 1)/(ℓ+ 1)⌉ + 1] · (ℓ+ 1)

> n · (1− ℓ/d)− 2 · (ℓ+ 1)− (n− k + 1)

= k − n · ℓ/d− (2ℓ+ 3).

Note that y≻ > 0, for k satisfying (4).
This implies that A can be rearranged into a sorted sequence so that x is placed

somewhere between positions k and k + n · ℓ/d + (2ℓ + 3). (Recall that we have
a potential freedom in sorting A, since some elements may be equal.) At the same
time, provided that k satisfies (4) and hence the element y has also been selected,
y can be placed somewhere between positions k − n · ℓ/d− (2ℓ+ 3) and k.

In addition, the above bounds imply that y ≤ x. If x < y, we would have
x≻ < y≺, which contradicts y≺ ≤ k ≤ x≻.

It should also be clear that, if x≺ ≤ k, then the desired element of rank k in A
is x, since then we have k ∈ {x≺, . . . , x

≻}. Similarly, if k ≤ y≻, y is of rank k,
since then k ∈ {y≺, . . . , y

≻}. Otherwise, we have y≻ < k < x≺. Then the wanted



Linear-Time In-Place Selection with ε · n Element Moves 341

element of rank k can be located by selection from elements satisfying y < a < x.
The number of such elements in A is bounded by

n′′ = x≺ − y≻ − 1 ≤ n · 2 · ℓ/d+ O(ℓ). (7)

Roughly speaking, from each segment of length d, only 2ℓ elements need be included
in n′′.

If (4) does not hold, i.e., for k < n·ℓ/d+(2ℓ+3), there is no element y. There are
two subcases to consider – either x≺ ≤ k, and hence the wanted element of rank k
is x, as in the standard case, or k < x≺; but then the wanted element satisfies a < x.
Using the fact that (4) does not hold, the number of such elements can be bounded
by

n′′ = x≺ − 1 ≤ k + n · ℓ/d+ (2ℓ+ 3)− 1 ≤ n · 2 · ℓ/d+O(ℓ).

Thus, the upper bound on the number of remaining candidates, given by (7), does
not depend on the truth of (4).

Phase 3. There are again two cases to consider, depending on the truth of the
condition (4). However, these two cases are quite similar, so we give a complete
description only for the “standard” case of k satisfying (4). For k < n ·ℓ/d+(2ℓ+3),
with no element y, we shall just point out the differences.

By comparing all elements in A with x and y, determine the exact values of
x≺, y

≻, and n′′. These values depend on the number of elements greater than or
equal to x, smaller than or equal to y, and on the number of remaining elements,
respectively.

At the same time, partition the array A into two blocks, the first one with
elements satisfying y < a < x, the second one with a ≤ y or a ≥ x. (The former
difference between sample and nonsample elements is no longer recognized.)

Then, if x≺ ≤ k, return x as the desired element of rank k. If k ≤ y≻, return y.
Otherwise, i.e., if y≻ < k < x≺, find an element of rank k′′ = k − y≻ in the block of
n′′ elements satisfying y < a < x, using any linear-time in-place selection algorithm.
Return this element as the required element of rank k in the array A.

If k < n · ℓ/d + (2ℓ + 3), there is no element y. Here we compute only the
values of x≺ and n′′, by comparing all elements with x. As in the standard case, the
array A is partitioned into two blocks, consisting this time of elements satisfying
a < x and a ≥ x, respectively. Similarly, if x≺ ≤ k, we return x as the wanted
element. Otherwise, we find an element of rank k′′ = k, among the n′′ elements
satisfying a < x.

To establish the computational cost of this phase, some implementation details
must be given.

Here the configuration of the array A is of the form KeED, where K represents
the block of elements satisfying y < a < x, kept for further inspection, e is the
hole, E the block of elements not yet examined, and D the block of elements that
have been discarded, with a ≤ y or a ≥ x. Initially, K is empty, D contains one



342 V. Geffert, J. Kollár

element, namely y, and x is put aside, to create the hole e. Such initiation requires
four moves, with no comparisons. The initial values of counters are set to x≺ = n,
y≻ = 1, and n′′ = n− 2.

Let a denote the rightmost element of E. This element is first compared with x
and, if a < x, also with y. Then all necessary indices and counters are updated: If
a ≥ x or a ≤ y, the boundary between E and D is shifted one position to the left.
If y < a < x, the element a is moved to the hole e and, after that, the leftmost
element of E is moved to the place just released. This is repeated until E becomes
empty. Then the element x is returned to the hole e in A.

If k < n · ℓ/d + (2ℓ + 3) and there is no element y, the block K contains the
elements satisfying a < x, while D contains the elements with a ≥ x. Because
of the missing element y, the block D is initially empty. Also the initial values of
counters are slightly different, namely, x≺ = n and n′′ = n− 1. The element moves
are organized in the same way as in the standard case, however, the elements need
not be compared with y.

Summing up, there are n− 2 comparisons of a’s with x (or n− 1, because of the
missing y), but only x≺ − 1 < k + n · ℓ/d+ O(ℓ) comparisons with y (if any). The
number of moves is bounded by 2n′′ + 5.

Finally, if the wanted element does not coincide with x or y, an element of
rank k′′ is selected among the n′′ elements in K, which requires cc · n

′′ + o(n′′)
comparisons and cm · n′′ + o(n′′) moves.

Thus, using (7), the number of comparisons in the third phase is

C3 ≤ n+ x≺ + cc · n
′′ + o(n′′) < n+ k + n · (2cc + 1) · ℓ/d+ o(n).

By (7), the number of moves is bounded by

M3 ≤ 2n′′ + 5 + cm · n′′ + o(n′′) < n · 2 · (cm + 2) · ℓ/d+ o(n).

By summing all computational costs, we get the following bounds for the total
number of comparisons and moves, respectively:

C(n) ≤ n · [f(d)/d+ 1] + k + n · [2cc · q/d+ (2cc + 1) · ℓ/d ] + o(n),

M(n) ≤ n · 2 · [(cm + 1) · q/d+ (cm + 2) · ℓ/d ] + o(n),

where f(d)/d ≤ log2 d− 1.328 + o(1), by (2), and k ≤ ⌈n/2⌉, by (1).
The number of index variables is dominated by the Ford-Johnson’s sorting al-

gorithm [6] (see also [8]), used to obtain a permutation of d elements in a segment.
This algorithm needs a recursion stack of O(log d) nested levels, and a constant
number of array pointers per each element and each level. (We leave details to the
reader.) This gives O(d · log d) ≤ O(q · ℓ · log(q · ℓ)) index variables.

Taking sufficiently large q = ℓ, we obtain

Theorem 1. For each fixed real ε > 0, there is an in-place algorithm that, given
the value of k and array of n elements, finds an element of rank k, using at most



Linear-Time In-Place Selection with ε · n Element Moves 343

ε ·n element moves and O(log(1/ε) ·n) comparisons. The number of index variables
is bounded by O((1/ε)2 · log(1/ε)).

It should be pointed out that, by using the notation o(n) and O(1), we have
implicitly introduced the assumption that n is “sufficiently large”, above some thres-
hold constant n0. Moreover, in order to prove the correctness of the algorithm, we
have used the assumptions that n ≥ (7ℓ+7)/(1− 2ℓ/d) = 7d · (ℓ+1)/(q · ℓ− ℓ+ q),
and that n ≥ 2 · (ℓ + 1). If q ≥ 2, these can be replaced by a simpler assumption
that n ≥ 7d. For q ≥ 8, we can use n ≥ d. Shorter inputs can then be handled in
a different way, using any other linear-time selection algorithm, which costs cc · n+
o(n) ≤ O(d) comparisons. No element moves are required here, since we can use
n ≤ O(d) ≤ O((1/ε)2) auxiliary indices pointing to the elements. Thus, Theorem 1
holds for each n ≥ 1.

4 SOME VARIANTS

In several applications, we select an element z of a given rank k in order to partition

the array A around the element z, into blocks A<, A=, and A>, with elements
smaller than, equal to, and greater than z, respectively. Once we have found z, using
the selection algorithm above, this task can clearly be performed in linear time. Since
our primary objective is to minimize the number of moves, some technical details
deserve an explanation.

Phase 4. Using n − 1 comparisons, with no moves, we first determine the exact
value of z≺, which gives the space required by A<.

The array A is then arranged into five blocks A<E1A=E2A>, where A<, A=,
and A> are the blocks defined above, E1 and E2 represent two blocks of elements
not yet processed. The elements in E1 and E2 are compared with z and added to
A<, A=, or A>, depending on their relative order. Initially, A<, A=, and A> are
empty. The blocks A< and A= grow to the right, while A> grows to the left. Thus,
the “heads” of A< and A=, that is, the positions where the next element should
go, are one position to the right of A< and A=, respectively, while the head of A>

is one position to the left of A>. Initially, their head positions are 1, z≺, and n,
respectively.

To minimize element movement, we put two elements aside, one of them being z.
Initially, the holes are created at the positions 1 and z≺. We maintain the invariant
that exactly two of the blocks A<, A=, or A> have holes in their head positions.
The element a in the head position of the block without a hole is called the current
element. This element is compared with z, which costs two comparisons, and moved
(if necessary) to the proper head position of A<, A=, or A>. This requires only one
move (if any). Now the destination block of the element a is without a hole. Thus,
we can use the element residing in the new head position of this block as the new
current element. This is repeated until one of the following conditions comes true:



344 V. Geffert, J. Kollár

i. The block E2 has collapsed into a single hole. If this happens, the algorithm
moves the element z to the hole in E2, and the second element is put aside to
the hole in E1. Then the algorithm terminates; all elements greater than or
equal to z, including z itself, are in their final destinations, occupying locations
z≺, . . . , n in A. As a consequence, all remaining elements in E1, including the
second element that was put aside, must be strictly smaller than z, and hence
they may become a part of A< without being compared with z.

ii. The block E1 has become empty. Thus, all elements smaller than z have been
put in their final locations 1, . . . , z≺−1, and hence all remaining elements, in E2

or put aside, must be greater than or equal to z. Moreover, the two holes are
now in the head positions of A= and A>.

The algorithm first puts the element z to the hole in the head position of A=.
From this moment forward, the algorithm performs a two-way partitioning, using
a single hole in the head position of A= or A>, with the current element always
at the opposite end of E2. That is, we keep on moving elements to the proper
positions, this time to the head positions of A= or A>, until E2 collapses into
a single hole. Then the second element put aside is moved to the hole in E2,
without being compared with z, and the algorithm terminates.

Clearly, the respective number of comparisons and moves can be bounded by

C4 ≤ 3n− 5,

M4 ≤ n+ 3.

Adding the above resource requirements to those of Theorem 1, we get:

Theorem 2. For each fixed real ε > 0, there is an in-place algorithm that, given
the value of k and array A of n elements, divides A into three blocks with elements
smaller than, equal to, and greater than the kth smallest element, using at most
(1 + ε) · n element moves and O(log(1/ε) · n) comparisons.

One can easily see that the number of comparisons in the fourth phase can be
reduced to

C ′
4 ≤ n− 1,

if a two-way partitioning is required, e.g., partition A into blocks A< and A≥, with
elements smaller than z, and greater than or equal to z, respectively. This follows
from the fact that A= and A> are unified into a single block A≥, growing from the
right end to the left, so we do not need to compute the space required by A<, nor
to distinguish between elements equal to and greater than z. In addition, only one
hole is required here and hence a single extra location for putting elements aside is
sufficient.

We shall now return to the selection problem, and present an upper bound for
the sum of comparisons and moves. First, we shall modify the second phase of the
algorithm, which gives slightly better results.



Linear-Time In-Place Selection with ε · n Element Moves 345

Phase 2, modified. After collecting a sample of n′ elements in the first phase, select
from the sample an element x of rank kx. This needs cc ·n

′+ o(n′) comparisons and
cm · n′ + o(n′) moves.

If k is so small that it does not satisfy the condition (4), the algorithm goes
immediately to the third phase.

Otherwise, for k ≥ n ·ℓ/d+(2ℓ+3), we have also to find an element y of rank ky
in the sample. This is done as follows. First, using the two-way partition procedure
of Phase 4, divide the sample into two blocks, with elements smaller than x, and
greater than or equal to x. This needs only n′− 1 comparisons and n′+2 moves. It
should be clear that the partitioning procedure returns also a value of x≪, the lower
rank of x among the elements of the sample.

Now there are two cases to consider. If x≪ ≤ ky, then an element y of rank ky
must satisfy y ≥ x; but we have already shown that y ≤ x. Thus, we could use
x = y as the desired element of rank ky; but then x≺ = y≺ ≤ k ≤ x≻, i.e., x is of
rank k in the original sequence. Thus, if x≪ ≤ ky, return x as the element of rank k,
skipping the third phase of the algorithm.

Consider now ky < x≪. Then y of rank ky can be found by selection in the block
of x≪ − 1 ≤ kx − 1 sample elements smaller than x; but then, by (5), (1), and (6),

x≪ − 1 ≤ kx − 1 ≤ k/(ℓ+ 1) ≤ (n/2 + 1)/(ℓ+ 1)

= 1

2
· n · (1− ℓ/d)/(ℓ+ 1) · d/(d− ℓ) + 1/(ℓ+ 1) < 1

2
· (n′ + 2) · d/(d− ℓ)

+ 1

< 1

2
· n′ · d/(d− ℓ) + 3.

That is, only about a half of the sample is examined in order to find y, which requires
only cc · n

′/2 · d/(d− ℓ) + o(n′) comparisons and cm · n′/2 · d/(d− ℓ) + o(n′) moves.
Summing up, the modified version of the second phase uses C ′

2 ≤ n′ ·cc · [1+1/2 ·
d/(d− ℓ)]+n′+ o(n′) comparisons and M ′

2 ≤ n′ · cm · [1+1/2 · d/(d− ℓ)]+n′ + o(n′)
moves. By (3), we get

C ′
2 ≤ n · [cc + 1 + cc/2 · d/(d− ℓ)] · q/d+ o(n),

M ′
2 ≤ n · [cm + 1 + cm/2 · d/(d− ℓ)] · q/d+ o(n).

By summing the respective costs over all three phases and using k ≤ n/2 + 1,
by (1), we get the total number of comparisons and moves for the modified in-place
selection:

C ′(n) ≤ n · [f(d)/d+ (cc + 1 + cc/2 · d/(d− ℓ)) · q/d+ 3/2 + (2cc + 1) · ℓ/d ]

+ o(n),

M ′(n) ≤ n · [(cm + 3 + cm/2 · d/(d− ℓ)) · q/d+ 2 · (cm + 2) · ℓ/d ] + o(n).

Tuning up. In the modified algorithm above, we can use cc = 6.83 and cm = 18.69,
i.e., the search for elements of ranks kx, ky, and k′′ in short blocks is performed by
the selection algorithm of Lai and Wood [9]. By choosing q(1) = 43 and ℓ(1) = 30



346 V. Geffert, J. Kollár

(the reasoning for such odd choices will be explained later), which gives d(1) = 1363
and f(d(1)) = 12271, we get an algorithm A(1) with minimized C ′(n) +M ′(n), using
fewer than 11.183n+ o(n) comparisons and 1.897n+ o(n) moves.1

Note that this yields an algorithm with new constants c(1)c = 11.183 and c(1)m =
1.897, i.e., with c(1)c + c(1)m < cc + cm. Now we can construct another algorithm A(2),
that uses A(1) to search for elements of ranks kx, ky, and k′′ in short blocks. In
order to minimize C ′(n) +M ′(n) for A(2), we choose q(2) = 20 and ℓ(2) = 15, which
implies that d(2) = 335 and f(d(2)) = 2344. This gives a selection algorithm A(2)

using 10.621n+ o(n) comparisons and 0.701n+ o(n) moves, i.e., an algorithm with
constants c(2)c = 10.621 and c(2)m = 0.701, satisfying c(2)c + c(2)m < c(1)c + c(1)m .

It is obvious that this process can be iterated, which yields a sequence of selection
algorithms A(1), A(2), A(3), . . . with parameters q(i), ℓ(i), and d(i) = q(i) · ℓ(i) + q(i) + ℓ(i),
for i = 1, 2, 3, . . ., using c(i)c · n + o(n) comparisons and c(i)m · n + o(n) moves. We
are free to fix the parameters q(i) and ℓ(i) quite arbitrarily; however, we shall choose
them so that we minimize c(i)c + c(i)m , where c(i)c and c(i)m are defined by

c(i)c = f(d(i))/d(i) + (c(i−1)
c + 1 + c(i−1)

c /2 · d(i)/(d(i) − ℓ(i))) · q(i)/d(i) + 3/2

+ (2c(i−1)
c + 1) · ℓ(i)/d(i),

c(i)m = (c(i−1)
m + 3 + c(i−1)

m /2 · d(i)/(d(i) − ℓ(i))) · q(i)/d(i) + 2 · (c(i−1)
m + 2) · ℓ(i)/d(i).

(8)
Here c(0)c = cc = 6.83 and c(0)m = cm = 18.69.

It turns out that by choosing q(i) = 15 and ℓ(i) = 10, for each i ≥ 3, which
implies that d(i) = 175 and f(d(i)) = 1064, we obtain the best sum of comparisons
and moves. Using these values in (8) and simplifying, we get, for each i ≥ 3, that

c(i)c = 27

110
· c(i−1)

c + 2703

350
,

c(i)m = 27

110
· c(i−1)

m + 17

35
.

It can be easily verified that both c(0)c , c(1)c , c(2)c , . . . and c(0)m , c(1)m , c(2)m , . . . are conver-
gent sequences. They approach their respective fixed points c(∞)

c and c(∞)
m , defined

by

c(∞)

c = 27

110
· c(∞)

c + 2703

350
,

c(∞)

m = 27

110
· c(∞)

m + 17

35
.

Thus, the sequence c(0)c , c(1)c , c(2)c , . . . is approaching the limit c(∞)
c = 2703

350
/(1 − 27

110
) =

29733

2905
< 10.236, while the sequence c(0)m , c(1)m , c(2)m , . . . the limit c(∞)

m = 17

35
/(1 − 27

110
) =

374

581
< 0.644. By calculating the first few values, one can easily verify that already

c(7)c < 10.236 and c(7)m < 0.644.

Corollary 1. There exists an in-place algorithm that, given the value of k and
array of n elements, finds an element of rank k, using at most 0.644n element moves
and 10.236n comparisons.

1 All real constants presented here are rounded up at the last displayed digit.



Linear-Time In-Place Selection with ε · n Element Moves 347

The above corollary hides some details deserving additional explanation. First,
for each i ≥ 1, the algorithm A(i) uses A(i−1) as a subprogram for selection of some
elements in short blocks only if the input size exceeds some constant n0. By the-
oretical analysis given above, the constant n0 depends on d(i); however, it actually
does not depend on i, since we have fixed q(i) = 15, ℓ(i) = 10, and hence d(i) = 175,
for each i ≥ 3. Shorter inputs are handled in a different way. (For more details, see
remarks below Theorem 1.)

Second, the values of c(∞)
c and c(∞)

m do not depend on characteristics c(0)c = cc
or c(0)m = cm of the “base” algorithm A(0), used as a starting point for the sequence
A(1), A(2), A(3), . . .. Replacing A(0) by a different selection algorithm affects signifi-
cantly only the first few levels. Afterwards, the pairs [q(i), ℓ(i)] become identical
with [15, 10], and the computational cost differences become negligible. As a conse-
quence, we do not gain too much if we use as a starting point A(0) the best known
algorithm, presented by Carlsson and Sundström in [3]. On the contrary, we are free
to replace the Lai and Wood’s algorithm [9] by any simpler but linear-time in-place
selection algorithm that, though less efficient, is easier to implement. This simplifies
the implementation of any algorithm in the sequence A(1), A(2), A(3), . . ..

Compared to the best known upper bound for C(n) + M(n), based on the
Carlsson and Sundström’s algorithm with 3.75n+ o(n) comparisons and 9n+ o(n)
moves [3], the selection algorithm of Corollary 1 saves about 1.87n comparisons/mo-
ves. This is not too much at the first glance; however, we save much more if the
cost of moving an element exceeds the cost of a comparison. This is typical in many
applications, where the relative order of an element is induced by the relative order
of some key, forming a small part in a large record of data.

As an example, in an application where a single element occupies ten machine
words, one of them being used as a key, the total running time is not characterized
by C(n) + M(n) but, rather, by C(n) + 10 · M(n). This corresponds to 93.75n
in the Carlsson and Sundström’s algorithm, but only to 16.676n in the algorithm
presented by Corollary 1. Moreover, we can tune up the values of q(i) and ℓ(i), in order
to minimize the new cost criterion c(∞)

c + 10 · c(∞)
m : For each i ≥ 1, let q(i) = 43 and

ℓ(i) = 30. Using these values in (8), together with d(i) = 1363 and f(d(i)) = 12271,
we get that c(i)c = 7749

84506
· c(i−1)

c + 28777

2726
and c(i)m = 7749

84506
· c(i−1)

m + 249

1363
. This gives

c(∞)
c = 28777

2726
/(1− 7749

84506
) = 892087

76757
< 11.623 and c(∞)

m = 249

1363
/(1− 7749

84506
) = 15438

76757
< 0.202.

Corollary 2. There exists an in-place algorithm that, given the value of k and
array of n elements, finds an element of rank k, using at most 0.202n element moves
and 11.623n comparisons, i.e., with C(n) + 10 ·M(n) ≤ 13.634n.

More specifically, one can easily verify, by a straightforward calculation, that
these bounds are obtained already by the algorithm A(6) in the updated sequence.

In general, we are given a value of r > 0, the cost ratio between a single move
and single comparison. Our objective is to tune up the values of q and ℓ so that
they minimize C(n) + r ·M(n).

First, by Corollary 1, we already have an algorithm with C(n)+r ·M(n) ≤ µ ·n,
where µ = 10.236 + r · 0.644, corresponding to [q(i), ℓ(i)] = [q, ℓ] = [15, 10], for each



348 V. Geffert, J. Kollár

i ≥ 1. (For the purpose of asymptotic analysis, the differences in [q, ℓ] for the first
few levels are not essential.)

This rules out all pairs [q, ℓ] with q ≥ 2µ−1 or ℓ ≥ 2µ−1. For each such pair and
each i ≥ 1, using (8) and the general lower bound for sorting d elements [8], we get:

c(i)c ≥ f(d)/d+ 3/2 ≥ ⌈ log2 d! ⌉/d+ 3/2 ≥ (d · log2 d− d · log2 e)/d+ 3/2

≥ log2 d = log2(q · ℓ+ q + ℓ) > log2(2 · 2
µ−1) = µ.

But then c(∞)
c = limi→∞ c(i)c ≥ µ, and hence c(∞)

c + r · c(∞)
m > µ. Thus, the pair [q, ℓ]

does not yield a better value of c(∞)
c + r · c(∞)

m than does the pair [15, 10].

As a consequence, the optimal values of q and ℓ, resulting in the smallest value of
c(∞)
c +r · c(∞)

m , can be found by a straightforward brute-force enumeration, examining
all possible pairs [q, ℓ] with q < 2µ−1 and ℓ < 2µ−1, which is a finite number of cases.2

For each examined pair [q, ℓ], compute d = q · ℓ + q + ℓ and f(d), and use all
these values in (8). This gives, after some simplification, two recurrences in the
form c(i)c = α · c(i−1)

c + βc and c(i)m = α · c(i−1)
m + βm, where α, βc, and βm denote some

positive real constants, with α < 1. Thus, the fixed points are c(∞)
c = βc/(1−α) and

c(∞)
m = βm/(1− α), which in turn gives a positive real constant µq,ℓ = c(∞)

c + r · c(∞)
m .

Thus, for each [q, ℓ], we get a different sequence of algorithms A(1), A(2), A(3), . . .,
approaching the upper bound C(n) + r ·M(n) = µq,ℓ · n.

After fixing the pair [q, ℓ] with the smallest value of µq,ℓ, we can calculate the
exact characteristics of some first few members in the sequence A(1), A(2), A(3), . . .,
for this pair, until we obtain an algorithm A(i0) with c(i0)c + r · c(i0)m “sufficiently close”
to µq,ℓ = c(∞)

c + r · c(∞)
m . After that, one can even try to do some fine-tuning of the

first few levels, by fixing different pairs [q(i), ℓ(i)] for different i’s, so that it minimizes
c(i)c + r · c(i)m . This does not reduce the asymptotic characteristic c(∞)

c + r · c(∞)
m , but

can result in a smaller value of i0.

5 CONCLUDING REMARKS

Theorem 1 has presented a selection algorithm using only ε · n element moves,
where ε > 0 denotes an arbitrarily small, but fixed, real constant. The price we
pay for reducing the number of moves is reasonably small, namely, O(log(1/ε) · n)
comparisons and O((1/ε)2 · log(1/ε)) auxiliary index variables. That is, we do not
have to remember too much information at a time. There is at use only a constant
number of index variables and, since there are only ε · n moves available, we do not
encode too much in the in-place element ordering. (This was the case of algorithms
presented in [3].) We neither recompute too much information over and over again,
since the total running time is linear. (This was the case of algorithms for read-only
memory [11], using a superlinear number of comparisons.)

2 This tedious work can be handed over to a simple computer program, as we actually
did in the case of r = 1 and r = 10.



Linear-Time In-Place Selection with ε · n Element Moves 349

An unexpected, but useful, side effect feature of the sequence A(1), A(2), A(3), . . .
is that, for each i0, the algorithm A(i0) takes advantage of sequential memory access
to the given input array A, if the computer uses a storage with some memory block
pages stored in a faster cache memory, with at least two cache pages available.
A(i0) first scans the entire input array A from left to right, collecting a small block
of n′ elements at the left end of A. This small block is also built from left to right.
After processing n′ elements in the small block, A(i0) scans the entire input again,
this time from right to left, collecting another block of n′′ elements at the left end,
after which it concentrates on this small block only. The access for processing two
small blocks of size n′ and n′′ can be determined recursively. Practical experiments
with several different applications (see Section 1.2 in [12]) have shown that, for
a modern computer with a cache memory, the order in which memory locations are
accessed has considerable influence on the running time.

The bottleneck of our algorithms is n · f(d)/d comparisons, spent to pick up
q evenly distributed sample elements in each segment of length d. A possible im-
provement could replace the Ford-Johnson’s sorting algorithm by an algorithm that,
for a fixed q and d, selects an evenly distributed sample without sorting. A factory
production of such partial orders, analogous to those used in [13] or [4, 5], would be
sufficient.

So we leave as open problems the cost of selecting q evenly distributed sample
elements in a segment of d elements, and the unit cost per each such segment
processed, with continual input and output of elements.

Acknowledgement

The authors thank anonymous referees for pointing to the special case of a rank k
that is very small.

REFERENCES

[1] Bent, S.W.—John, J.W.: Finding the Median Requires 2n Comparisons. In Proc.
ACM Symp. Theory of Comput., pp. 213–16, 1985.

[2] Blum, M.—Floyd, R.W.—Pratt, V.—Rivest, R. L.—Tarjan, R.E.: Time
Bounds for Selection. J. Comput. System Sci., Vol. 7, 1973, pp. 448–61.

[3] Carlsson, S.—Sundström, M.: Linear-Time in-Place Selection in Less Than 3n
Comparisons. In Proc. Internat. Symp. Algorithms and Comput., Lect. Notes Com-
put. Sci., 1004, pp. 244–53. Springer-Verlag, 1995.

[4] Dor, D.: Selection Algorithms. Ph.D. Thesis, School Math. Sci., Tel-Aviv Univ.,
1995.

[5] Dor, D.—Zwick, U.: Selecting the Median. SIAM J. Comput., Vol. 28, 1999,
pp. 1722–58.

[6] Ford, L.R.—Johnson, S.M.: A Tournament Problem. Amer. Math. Monthly,
Vol. 66, 1959, pp. 387–89.



350 V. Geffert, J. Kollár

[7] Hadian, A.: Optimality Properties of Various Procedures for Ranking n Different

Numbers Using Only Binary Comparisons. Ph.D. Thesis, Dept. Statist., Univ. Min-
nesota, 1969. (Tech. Rep. 117.)

[8] Knuth, D.E.: The Art of Computer Programming, Vol. 3: Sorting and Searching.

Addison-Wesley, 1973. (Second edition: 1998.)

[9] Lai, T.W.—Wood, D.: Implicit Selection. In Proc. Scand. Workshop on Algorithm
Theory, Lect. Notes Comput. Sci., Vol. 318, 1988, pp. 14–23. Springer-Verlag.

[10] Munro, J. I.—Raman, V.: Sorting with Minimum Data Movement. J. Algorithms,
Vol. 13, pp. 374–93, 1992.

[11] Munro, J. I.—Raman, V.: Selection from Read-Only Memory and Sorting with
Minimum Data Movement. Theoret. Comput. Sci., Vol. 165, 1996, pp. 311–23.

[12] Pasanen, T.: In-Place Algorithms for Sorting Problems. Ph.D. Thesis, Dept. Com-
put. Sci., Univ. Turku, 1999. (TUCS Dissert. No. 15.)

[13] Schönhage, A.—Paterson, M.—Pippenger, N.: Finding the Median. J. Com-
put. System Sci., Vol. 13, 1976, 184–99.

Viliam Geffert was born in 1955. He finished his studies at
P. J. Šafárik University, Košice, Slovakia, in 1979, and received
his Ph.D. degree in computer science at Comenius University in
Bratislava, in 1988. His present position is professor at the De-
partment of Computer Science, P. J. Šafárik University, Košice.

His main research interests are space bounded computations,
formal languages and finite automata, and in-place sorting algo-
rithms.

Ján Koll�ar (Assoc. Prof., M. Sc., Ph.D.) received his M. Sc.
summa cum laude in 1978 and his Ph.D. in computing science
in 1991. In 1978–1981 he was with the Institute of Electrical
Machines in Košice. In 1982–1991 he was with the Institute of
Computer Science at the P. J. Šafárik University in Košice. Since
1992 he has been with the Department of Computers and Infor-
matics at the Technical University of Košice. In 1985 he spent
3 months in the Joint Institute of Nuclear Research in Dubna,
Soviet Union. In 1990 he spent 2 months at the Department
of Computer Science at Reading University, Great Britain. He

was involved in the research projects dealing with the real-time systems, the design of
(micro) programming languages, image processing and remote sensing, the dataflow sys-
tems, the implementation of programming languages. Currently he is working in the area
of multi-paradigmatic languages, with respect of aspect paradigm. He is the author of
PFL – a process funtional language.


