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Abstract. At present, the importance of the biometric security increases a lot
in cotext of the events in the world. Development of the individual biometric
technologies such as the fingerprint recognition, iris or retina recognition or speaker
recognition has been considered very important. However, it comes to be true that
only one biometric technology is not sufficient enough. One of the most prosperous
solutions might be a combination of more such technologies. This article aims at
the technology of the speaker recognition and proposes a solution of its integration
into a more complex biometric security system. Herein a design of the complex
biometric security system is introduced based on the speaker recognition and the
fingerprint authentication. A method of acquisition of a unique vector from speaker

specific features is introduced as well.
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1 DESIGN OF THE BIOMETRIC SECURITY SYSTEMS

It has been quite a long time since the first Biometric Security Systems (BSS) were
introduced. However, until now, they have not become widely used. This is usual in
case of a new, not well-tested, and unverified technology, among which the biometric
systems shall be included. Scepticism, of course, has its place in our lives and is
necessary to improve our work. Such scepticism is doubled in case of the security



370 F. Orság

systems. Imperfections in the security systems are not tolerated and this is right.
A precise research is necessary because of the increased sensitivity to the quality
of the security systems. This is a reason for absence of the BSS in the real-world
applications.

1.1 Task of the BSS

Biometric security system is a security system, whose protection is based on the
biometric features. The BSS can be applied in many ways and situations. Usu-
ally, we want to protect a device or a service. Typically, we want to enable the
authorized users to access to some network resources such as a printer, a file server,
or a database, as a counterpart, we want to disable the unauthorized users to ac-
cess them. This task can be called biometric login. Another typical task can be
a protection of objects such as buildings or other facilities, which can be called bio-
metric doorkeeper. These applications require a trustworthy and reliable protection
method, since in these cases the price of the protected object is higher than in case
of the network resources.

The first thing to consider prior to installing a BSS is its price. How valuable
is the protected object and how strong should be the protection? There is a depen-
dency between the price of the protected object and the strength of the protection.
Nowadays, the doorkeeper task is performed by a key or a chip card and the login
task is accomplished by a login name with an appropriate password. These solutions
are very cheap, but the protection level is not that high. This holds true, since the
key could be easily lost and the login name with the password could be stolen (be-
cause of lack of the user’s caution). In case the protected object is not too valuable,
these solutions could fulfil this task. However, i.e. in case of a bank vault we need
very strong protection.

We can ask another question. How can we increase the strength of the protec-
tion? There are many possibilities and one of them is the biometric security system.
The BSSs are not widely used, because people do not trust them yet. The security
systems based on the biometry are relatively new and people usually do not trust
a new technology. Since present, only the one-level or single-biometric security sys-
tems have been used [16, 17, 18]. The multi-biometric systems are rare, but there
are some commercial solutions based on multiple biometric features [19] and some
books on this topic [7].

How much money do we want to spend to protect the object then? Answer
to this question depends directly on the price of the protected object. The more
expensive the object is, the more money we are willing to spend on the security
system. From the technical (hardware) point of view, the BSS are not very ex-
pensive! This should be said, since to check a speaker we need only a micro-
phone, which does not cost much, and a computer. The price of a fingerprint
scanner is not high as well. The most expensive portion of the BSS is the soft-
ware. The research and the development of the biometric systems account for most
of the costs. Testing and validating of the proposed algorithms is not free either.
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Thus, having these questions in mind we can decide whether to apply a BSS or
not.

1.2 Advantages and Disadvantages of the BSS

When talking of the BSSs, we shall mention their advantages and disadvantages. The
biometric features are relatively universal. Most people have their fingers, they can
speak, and their cells contain the DNA. Of course, there are some exceptions. Dumb
people cannot speak. People, who lost their finger or arm, cannot use fingerprint-
based systems etc. However, all of us have got the DNA for example.

The biometric features are extracted from various parts of the human body
(DNA, fingerprint, and others). The biometric security systems are supposed to be
reliable, because the biometric features used in the authentication process of the
biometric security systems are unique. It is not valid in every case, but it holds
mostly true.

The biometric security systems are very safe. It is not possible to deceive the
protected devices and services thanks to their biometric protection. Most biometric
features are possible to acquire by the authorised person only, so that his/her pre-
sence at the point, where the authorisation device is placed, is necessary. However,
it could be possible to fool the security system, i.e. you can cut off a finger and try
to persuade the system to accept it. Still, the security system designers are able
to prevent the system from accepting such a sham. Nowadays it is possible to use
a fingerprint scanner able to measure blood flow in veins in the scanned finger. This
scanner proves aliveness of the human, who is being identified.

The individual biometrical technologies can be stacked and can be built in a mul-
tilevel authentication system. Such multilevel system includes a standard login,
a voice login, a fingerprint login, and some others. Stacking of the separate tech-
nologies in one complex unit increases the security of the whole system. If one level
of the multilevel system is broken or cheated, the others have to decrease a break-
through possibility. The break-through possibility decreases with the count and
strength of each of the login levels. However, we must be careful when increasing
the count of the login levels, because a large number of them could result in worse
overall security than a set of two strong, well-designed login levels.

Some biometric features are permanent and some are not. Human voice is not
constant during the whole life. This effect is obvious mostly in the changes of
teenagers’ voices. The influence of illnesses or psychological condition should not
be neglected. This can be the greatest difficulty. Human voice is not the only
one unstable feature, even many other biometric features change during human’
life. Counterpart to the inconstancy of some biometric features is their permanency.
An example of the permanent feature set is a DNA-based feature set. DNA is
permanent and does not change. The same can be said of the fingerprints. Another
relatively permanent biometric feature is the retina image. Other biometric features
are not permanent – they are short-term (relatively to the length of a human’s
life).
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Some of the biometric features can be very exacting to acquire. Among them
could be included e.g. the DNA. Though the DNA is unique for all of us (apart
from the monovular twins), it is very difficult to extract and to analyse it quickly
enough. Besides, the price of the analysis is not low. This excludes the DNA from
the real time applications – it is not worth the advantages it can bring these days.

Not to be forgotten is the cooperation unwillingness. Some humans are not
happy with acquiring their biometrical features. Results of the recent public inquiry
show that most people dislike scanning their retinas. Many of them dislike scanning
their fingerprints and faces and the least of them dislike voice recording. It is clear
then that it would be very useful to develop a reliable technology based upon speech
processing. Most of us are ready to let the machine analyse our voices rather than
anything else.

Mass use of the biometric security systems is not breaking by difficult imple-
mentation, cooperation unwillingness, an inconstancy, or because they are too de-
manding. Another obstacle is inability of some people to pass an enrolment. Still,
this could be solved exactly by a multi-biometric security system. In such system,
one authentication level can be skipped for some people to enable them to use bio-
metrically protected devices or services.

1.3 Single-Biometric Security System (SBBS)

Usually, only a one-level biometric security system [3, 4, 5, 6] is applied to provide
the security services and protection. The one-level biometric system will be called
Single-Biometric Security System (SBBS). It consists typically of two hardware com-
ponents – an input device and a processing unit.

The input devices include: scanners (a fingerprint scanner, a palm scanner,
a retina scanner, or an iris scanner), microphone, special sensors (an odour sensor
or a thermal sensor), and many other devices. These devices serve the acquisition
of the physical biometric features. The physical biometric features are a fingerprint
scan, thermal scan, or speech signal. Data acquired from the input devices are sent
to the processing unit.

The processing unit can be a built-in device or an external device, which is
responsible for the further processing of the input data and for the final decision.
The input data are obtained from the input devices and the final decision is usually
an answer to the question: “Is the unknown individual really the one, who he/she
is claiming to be?” The processing unit can be, for example, a computer with an
appropriate application or a built-in processor of a smart card. Both the external and
built-in solutions have their advantages and disadvantages. The external solution
is cheaper but it provides weaker protection, because the communication channel
between the input device and the processing unit could be wiretapped and the data
could be misused. The built-in solution is more expensive but the protection is
better. The decision between these two solutions depends on the requirements of
the real application. In Figure 1 schematic comparison of the external and internal
solutions is shown. The external solution can be hazardous for the data. However,
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badly designed internal solution could be as hazardous for the data as the external
solution.

Though the protection strength of the external solution is not high, this solution
used more frequently than the internal one. The weakness of the external solution
can be solved in several ways. One possible solution is to encipher the information
sent through the communication channel using a symmetric key generated from
the biometric features. Another difficulty could be the storage question, i.e. in the
asymmetric cryptography, you get a private key, which must be stored somewhere
(usually in a storage device). If the storage device were stolen, the private key would
be misused. This can be solved as the first problem – by enciphering the private
information using a symmetric biometric key.

Fig. 1. Schematic diagram of the external solution and the internal solution of the SBSS

Thus, the main disadvantage of the SBSS solution is its solitariness. If the
recognition process failed in terms of false acceptance, access to the protected ob-
ject would be achieved by an unauthorised user. Sometimes this is not so crucial.
Usually, it is a question of the priorities and even the one-level system can be set up
so that it is able to reject all impostors. Price for this is higher false rejection rate.

To design a balanced system, in which the FAR and FRR rates were very low,
is the goal of BSS designers. Solution to this could be a multi-biometric security
system.

1.4 Multi-Biometric Security System (MBSS)

Multi-Biometric Security System (MBSS) is a biometric system based on a combina-
tion of more than one biometric technologies [3, 4, 5]. The MBSS is counterpart to
the one-level system. Its main advantage over the SBSS is its complexity that makes
the system more robust to the FAR, before all. The security system administrators
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usually design the BSS so that the FAR is as low as possible even for the price of
the higher FRR. This limitation can be solved using an MBSS.

Generally, authorisation using multiple biometrics is reduced to a fusion problem
(Figure 2), which utilises results of multiple biometric technologies to increase the
fault-tolerance capability, to reduce uncertainty, to reduce noise, and to overcome
the limitations of the SBBS. Well-designed MBSS can increase the reliability of
the final decision. Multiple biometrics used in the MBSS enable some user to be
identified even if they are not able to provide all biometric features. However, when
permitting exceptions, details of the exceptions must be specified when designing
a MBSS. It is not possible to make general exceptions, since this would cancel the
advantages of the MBSS.

In Figure 2 you can see a schema of the integration of the multiple biometric
features into one complex. The most important part is the block of the decision fu-
sion and the partial decision blocks (here for the fingerprint recognition, the speaker
verification, and the iris recognition).

Fig. 2. Integration of multiple biometrics

As each of the individual biometric subsystems in a MBSS has very different
characteristics and pattern matching scheme, it is useful to integrate them at the
decision level.

Let Φ = {φ1, φ2, . . . , φI} denote a set of templates φi representing each of I users
of the MBSS. Each user has exactly one multi-biometric template, which consists
of one biometric template for each biometric feature used in the system. Template
φi = {φi

1
, . . . , φi

M} of the i-th user consists of biometric templates, hence the MBSS
consists of M various biometric technologies (M = 3 in case of the situation in
Figure 2). There are two classes of users denoted ωtrue (an authorised user, whose
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template φ is one from the set Φ) and ωfalse (an unauthorised user). Given a classifier
C(φ1, φ2) we can say

C(φi, φi) = ωtrue, i = 1, 2, . . . , I . (1)

When verifying an unknown user, whose template is denoted φ and who claims to
be one of the authorised users φi, i ∈ {1, 2, . . . , I}, we evaluate distance (or decision)
D(φ, φi) as a function of the templates φ and φi. Given a threshold T , the unknown
user is classified as

C(φ, φi) =

{
ωtrue, D(φ, φi)≥T
ωfalse, otherwise

, 0≤T≤1 (2)

where D(φa, φb) is the distance between the template φa and φb satisfying

0≤D(φa, φb)≤1 (3)

and defined as
D(φa, φb) = F

(
d1(φ

a
1
, φb

1
), . . . , dM(φa

M , φb
M)

)
(4)

where F
(
d1(φ

a
1
, φb

1
), . . . , dM(φa

M , φb
M)

)
is a decision fusion of all M partial decisions

dj(φ
a
j , φ

b
j). A partial decision can be i.e. a result of the speaker verification of or

the fingerprint recognition. The overall distance (decision) D(φa, φb) and the partial
distances (decisions) dj(φ

a
j , φ

b
j) can be a probability or a measure of similarity of the

two templates.
The overall decision D(φa, φb) is based on the integration of the decisions made

by the individual biometric modules. The value of the overall decision can be based
on the theory of probability. Based on a Bayes’ decision rule, we can determine the
overall decision as

F
(
d1(φ

a
1
, φb

1
), . . . , dM(φa

M , φb
M)

)
=

p
(
d1(φ

a
1
, φb

1
), . . . , dM(φa

M , φb
M)

)
|ωtrue

p
(
d1(φa

1
, φb

1
), . . . , dM (φa

M , φb
M)

)
|ωfalse

(5)

when knowing the class-conditional probability density functions
p
(
d1(φ

a
1
, φb

1
), . . . , dM(φa

M , φb
M)

)
|ωtrue and p

(
d1(φ

a
1
, φb

1
), . . . , dM(φa

M , φb
M)

)
|ωfalse.

The value of the threshold T as needed for the final classification using the Equa-
tion (2) can be expressed as

T =
P (ωfalse)

P (ωtrue)
. (6)

The probabilities P (ωtrue) and P (ωfalse) are the prior probabilities reflecting the
prior values of the probabilities corresponding to the classes ωtrue and ωfalse.

This is one possible approach to the fusion decision making. Other possibilities
can be the fusion mechanism based on a neural network classifier or a fuzzy classifier.
Then, the overall decision D(φa, φb) is replaced by the chosen classifier. There must
be one classifier for each user. Hence, not only the template φi need to be stored
but also the congruent network.
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2 UNIQUE VECTOR GENERATING

Biometric features can be used in cryptography to generate a symmetric key [3].
The key is given as a combination of vectors acquired using the individual biomet-
ric technologies. Each of the biometric technologies should be able to provide at
least one unique vector, which will be then considered as a part of the biometric
cryptographic key. To be able to generate the unique vector we have to design an
algorithm producing unique and re-estimable vector when provided with a biometric
feature set.

If the vector were not unique, there would be the possibility of false acceptance
of the biometric features of some other (possibly unauthorised) user. This one might
be granted access to some private resources and information, which is not desired.
Speech technology can provide only one unique vector that is very difficult to re-gain.
The fingerprint technology can produce many possible keys, but these keys are not
the same each time a fingerprint is scanned and analysed. This is because some fin-
gerprint minutiae need not to be recognised and some new ones could be recognised.
However, fingerprint offers a better set of features than speech.When using more
than one biometric technology, we can supply ambiguity of the vectors between two
different users given by one technology by the other biometric technology. Both of
them can supply each other.

Having a symmetric key produced using the biometric features, we can encrypt
all private information using this key and store it securely anywhere. We can even
generate a private key for an asymmetric ciphering, encipher it using the symmetric
biometric key, and store it safely in a public storage device. An example of the
encryption process using the fingerprint and speech technologies for the symmetric
ciphering is illustrated in Figure 3.

We can use such key for the authentication purposes as well. When a user is
about to login, he/she claims his/her identity and then must provide the biometric
features needed to be authenticated. The possibility of losing private data decreases
with growing number of the biometric technologies used for this purpose. However,
when increasing the number of technologies, the possibility of errors grows as well.
Again, an optimal solution must be chosen. Sometimes it can be impossible to
reconstruct the key, which can be caused by the inconstancy.

The process of unique vector generating from the speech signal is rather chal-
lenging. As the speech features are so unstable, it is not easy to fulfil the precon-
ditions given – the uniqueness and the re-estimableness. The speaker’s vocal tract
characteristics change during his/her whole life, which aggravates the process, since
the system must be held up to date and the parameters of the estimator must be
properly updated.

2.1 Signal Processing Mathematical Background

Most of the signal processing math used for the unique vector generating is well
known and can be found i.e. in [9, 11, 12, 13]. For the purposes of the unique
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Fig. 3. Encryption using the biometric keys

vector generating will be used autocorellation coefficients and Linear Prediction
Coefficients (LPC) in this case. Autocorrelation and the LPC coefficients are very
useful for various tasks in speech processing. It can be used for speech recognition
as well as for speaker recognitinon.

LPC coefficients can be used to calculate an LPC frequency spectrum. The
main difference from the common frequency spectrum is its smoothness. In the
smoothed spectrum, there are obvious resonance frequencies of the formants. These
frequencies are very useful both in speech recongition and speaker verification. The
LPC spectrum is defined as

SLPC(f) =

∣∣∣∣∣1−
M∑

m=1

a(m)·z−m

∣∣∣∣∣

−2

(7)

where M is number of the LPC coefficients (prediction order), a(m) are the LPC

coefficients themselves and f is frequency. Now we can substitute z = e
2πj f

FS which
results in

SLPC(f) =
∣∣∣1− a(1)·e

−2πj
f

FS − a(2)·e
−4πj

f

FS − . . .− a(M)·e
−2Mπj

f

FS

∣∣∣ (8)
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where FS denotes the sampling frequency. As we work with the finite discrete signal,
it is useful to transform the Equation (8) to the following form:

SLPC(k) =

∣∣∣∣∣1−
M∑

m=1

a(m)·e−2mπj k
N

∣∣∣∣∣

−2

(9)

where N is length of the signal s(n).

Fig. 4. Frequency spectrum (left) and LPC frequency spectrum (right) of a vowel /ah/ as
pronounced in the word “but”

Comparison of a frequency spectrum and an LPC frequency spectrum is shown
in Figure 4. You can obviously see the difference – on the left side you can see the
frequency spectrum as obtained by an FFT, and on the right side there is the LPC
frequency spectrum. In the LPC spectrum the main formants are clear, which is
very useful.

Long-term statistics of many various features are used often to recognise
speech [10, 14]. However, not only the area of the speech recognition is a domain of
the long-term statistics. The average long-term LPC spectrum is applicable to the
speaker verification as well.

The long-term LPC spectrum is estimated using the average autocorrelation
coefficients [10]. These are estimated over all frames of the given signal s(n). Assume
the signal s(n) divided into total count of J frames N samples long. Then, the
average autocorrelation coefficients are defined as

R(k) =
1

J
·

J∑

j=1

R(j, k) (10)

where R(j, k) is the autocorrelation of the jth frame, the index j should be 1≤j≤J .
The average autocorrelation coefficients R(k) can be used to derive the average
LPC coefficients a(i) from using the Durbin recursive procedure. In the redefined
equation the autocorrelation coefficients R(k) are substituted by the average auto-
correlation coefficients R(k), the result of which are the average LPC coefficients
a(i). The average LPC coefficients a(i) can be used then to estimate the long-term
LPC spectrum derived from Equation (8). The LPC coefficients in this equation are
replaced by the average LPC coefficients, and thus
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SLPC(f) =
∣∣∣1− a(1)·e

−2πj f
FS − a(2)·e

−4πj f
FS − · · · − a(M)·e

−2Mπj f
FS

∣∣∣ (11)

In Figure 5, there is a sample of a long-term LPC spectrum derived from the
average LPC coefficients of the orders M∈{4, 8, 22}. The original signal is sampled
at the sampling frequency FS = 16 000Hz, length of the signal is N = 512 samples
and the LPC spectra belong to one speaker only.

Fig. 5. Sample of a long-term LPC spectrum derived from the average LPC coefficients
of the orders of M∈{4, 8, 22}. The original signal is sampled at sampling frequency

FS = 16 000Hz, and length of the signal is N = 512 samples.

Another very useful tool is signal normalisation by a long-term spectrum. This
is applicable primarily to speaker-independent speech recognition [15], but here it
will be used for unique vector generating purposes. Given a framed signal, the
autocorrelation coefficients R(j, k) of the jth frame and the order k = 0, 1, . . .,M ,
the normalised autocorrelation coefficients are defined as with

Rnorm(j, k) = Ra(0)·R(j, 0) +

M∑

m=1

Ra(m)· [R(j, |k−m|) +R(j, |k +m|)] (12)

with
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Ra(k) =

M−k∑

i=0

a(i) · a(i+ k) (13)

where a(i) are the average LPC coefficients. The effect of the signal normalisation
is shown in Figure 6. You can see an original LPC spectrum (solid line) that is
normalised by a long-term spectrum. The normalisation (dotted line) emphasises
formant peaks. It is useful for speech recognition because it improves its results.

Fig. 6. Effect of the signal normalization by a long-term spectrum. The original LPC
spectrum is drawn by a solid line, the normalized LPC spectrum by a dotted line.

2.2 Unique Vector Generating from the Speech Signal

To generate a unique vector, a special method must be designed, since the features
usable to get a unique vector are not precisely re-estimable. A tolerance must be
defined within which the features can vary. This process is very similar to sampling
of a signal or to quantization. We define a step – a sampling period or a quantisation
step – and then we sample the features along one dimension. The most difficult task
in this process is the step estimation. One possible solution to this results from the
statistical measures.

Consider a long-term LPC spectrum derived from the LPC coefficients of
the 22nd order. There is a set of frequencies (positions of the maxima, see Figure 7)

Fmax(l) = {fmax
l } = {fmax

1
, fmax

2
, . . . , fmax

L } , l = 1, . . . , L (14)
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Fig. 7. Example of a long-term LPC spectrum with L = 8 emphasized and marked maxima

omitting just the maximum at the position l = 0. This set is the basis for the
unique vector. We chose a group of L = 8 extremes (maxima). Eight maxima is the
experimentally determined value. All tested speech signals contained at least eight
maxima. Hence, we can have eight unique values. When we scale them so that they
range from 0 to 255, we can use them to create an array of 16 bytes, i.e. there are
eight numbers consisting two hex-digits, which means we can have a 128 bits long
vector. How should be the maxima scaled, so that the same values are re-estimated
when analysing a new sample of the same speaker? To define the quantisation steps
ql for each group l = 1, 2, . . . , L of maxima fmax

l,n , we need more than one training
sample. Having N training samples we get N sets of maxima

F n
max(l) =

{
fmax
l,n

}
=

{
fmax
1,n , fmax

2,n , . . . , fmax
L,n

}
, l = 1, . . . , L ∧ n = 1, . . . , N . (15)

Upon these sets, we can base estimation of the quantisation step. There is
a desired range from 0 to 255 and there is a real range of the frequencies representing
positions of maxima of the long-term LPC spectrum. Now, we can unite these
ranges. The quantisation step q1 of the 1

st maximum equals the range of the 1st group
of frequencies (see Figure 8 for illustration). Generally, the quantisation step of
the lth generated value is defined as

ql = max
n=1,...,N

(fmax
l,n )− min

n=1,...,N
(fmax

l,n ), l = 1, 2, . . . , L. (16)

Except from the quantisation step, a value of the initial shift must be defined.
Prior to get the quantised value using the quantisation step ql, we have to subtract
the initial shift sl to get proper results. The initial shift is defined as
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sl = min
n=1,...,N

(fmax
l,n )− ql int




min
n=1,...,N

(fmax
l,n )

ql
+ 1


 , l = 1, 2, . . . , L (17)

where the function int(x) returns the integer part of the x.

Fig. 8. Illustration of L = 8 groups of maxima extracted from a group of six speech
samples using the long-term LPC spectrum. The quantisation step, and the maximal
and minimal frequencies from the sixth group of maxima (n = 6) are marked

This is illustrated in Figure 8, where you can see L = 8 groups of maxima ex-
tracted from six speech samples using the normalised long-term LPC spectrum (like
the one in Figure 7). You can see markings of the quantisation step q6, max

n

(
fmax
6,n

)
,

and min
n

(
fmax
6,n

)
calculated from the sixth group of maxima extracted from six nor-

malised long-term spectra.
Now, we can generate a unique vector. Given the quantisation step ql and

corresponding initial shift sl, the quantized value ṽl(x) is defined as

ṽl(x) = int

(
x− sl
ql

)
. (18)

It is clear that the quantisation step cannot include all frequencies, which the
speaker is able to produce in the given band. Hence, we have to define percentage
tolerance, which enlarges the accepted range slightly whereby the quantisation step
increases as well. The more the training samples, the lower can be the tolerance and
the final error. Thus, given a normalized tolerance factor t, the quantisation step
with the tolerance is defined as

q̂l = ql + t·ql, l = 1, 2, . . . , L ∧ 0≤t≤1 (19)
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and, correspondingly, the initial shift must be redefined as

ŝl = min
n=1,...,N

(fmax
l,n )−

t·ql
2

− q̂lint




min
n=1,...,N

(fmax
l,n )− t·ql

2

ql
+ 1


 , l = 1, 2, . . . , L (20)

which gives us an equation for the quantised value v̂l(x) as

v̂l(x) = int

(
x− ŝl
q̂l

)
. (21)

Fig. 9. Detail of the fifth group (n = 5) of maxima. The most important variables are
marked.

In Figure 9, you can see detail of Figure 8. The fifth set of maxima is emphasized
and the important variables are marked. The only value which cannot be marked
is the initial shift, which is applied later when calculating the quantised values.
The initial shift is illustrated in Figure 10, in which the third group of maxima is
emphasized and the congruent initial shift and quantisation step are marked.

There is one more problem to solve. In case the quantised value exceeds the
interval 〈0, 255〉, we have to correct it. The easiest way to do that is using the
remainder of the division by 256, which results in the quantised value defined as

vl(x) = rem (v̂l(x), 256) (22)

where rem(x, y) returns the remainder of the division x/y. Having this, we can
create a unique vector for each speaker in the voice database. The unique vector
can be defined as

V =
(
v1(f

max

1
), v2(f

max

2
), . . . , vL(f

max

L )
)

(23)
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Fig. 10. Detail of the third group (n = 3) of maxima with the initial shift and the quan-
tisation step marked

whereby

f
max

1
=

1

N

N∑

n=1

fmax
l,n (24)

and N is total number of the training samples (see the definitions above). Given
the unique vector V it is possible to transform it to a hexadecimal string, which
is defined as a concatenation of the individual components of the unique vector
transformed to the hexadecimal form. It can be defined as

Vhex = hex(V1)hex(V2). . .hex(VL) = vhex
1,1 v

hex
1,2 v

hex
2,1 v

hex
2,2 . . .v

hex
L,1 v

hex
L,2 (25)

whereby the function hex(x) returns a hexadecimal representation of the integer

value x and Vi = vi

(
(f)max

i

)
, i = 1, 2, . . . , L are the components of the unique vector

defined by Equation (23). The returned hexadecimal value given by the function
hex(x) ranges from 00 to FF , since the values of the unique vector components range
from 0 to 255. This allows to write the unique vector as an array of 2L hexadecimal
digits denoted in Equation (25) by vhexl,i , l = 1, 2, . . . , L and i = 1, 2. This helps
define a measure d (V 1, V 2), which expresses a distance between two unique vectors
as

d (V m, V n) =
L∑

l=1

2∑

i=1

∣∣∣vm,hex
l,i − vn,hexl,i

∣∣∣, m, n = 1, 2, . . . ,M (26)

where M is total number of the users stored in the voice database. Another possible
measure of the distance can be defined as

d′ (V m, V n) =

L∑

l=1

|V m
l − V n

l |, m, n = 1, 2, . . . ,M (27)
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where Vi = vi

(
f
max

i

)
, i = 1, 2, . . . , L are the components of the unique vector

defined by Equation (23) above.

Fig. 11. Example of the scaling for all eight maxima with a congruent example of the
unique vector given by Equation (25)

The experimental results of the creation of the unique vector are summarised
in Section 3.2. If this vector proved unique, it would be used for the cryptographic
applications even for the purposes of the identification and verification. Since this
vector is usable for the purposes of the verification and identification, the measures
of the FRR and FAR can be used for the performance measures.

3 EXPERIMENTAL RESULTS

Some experiments had to be made to prove validity of the algorithms and to test
quality of the proposed features. The experiments were made on a voice database
created at the university in cooperation with the students of the 1st term. In the
following sections the results of the experiments are described.

3.1 Voice Database

A voice database is necessary to test all suggested features and algorithms. The
voice database used for all the performed experiments was built in cooperation with
a group of the first term students of the Faculty of Information Technology. Finally,
there were 125 students willing to cooperate. Two of them were females and the rest
of them were males. All students were in the age from 19 to 21 years. This gives us
a set of voices that are very similar one to another. Such testing set is deadly for
the speaker recognition algorithms.

The voice database consists of 125 speaker samples. Each speaker was asked to
say eleven times the Czech word ‘Emanuel’, which is a name phonetically good for
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recognition purposes. Six of the utterances were signed as training samples and the
remaining five utterances became testing samples. These samples were used to test
the quality of the speaker recognition process. As all speakers said the same word, in
case of speech recognition it is wanted to recognise the word, but in case of speaker
recognition, we want to distinguish one speaker from another. Hence, we have 1 word
and 125 various speakers. Good algorithm with a proper set of features must be
able to recognise the speakers well. Given these conditions, this task is not easy.

The utterances were recorded using a common microphone with a low signal-to-
noise ratio, which should test the quality of the algorithms and the chosen features.
The sampling frequency of the recordings was 22 050Hz and the precision 16 bits
per sample. The sampling frequency was higher than usually. However, you can
downsample it easily, but you cannot resample when a better sampling frequency is
needed.

3.2 Unique Vector Generating

In Section 2.2 an algorithm is proposed that creates a unique vector from the speech
signal using the long-term LPC spectrum. To test the quality of the generated
vector, some experiments were made. The quantisation performed on the groups
of frequencies influences the final unique vector. The higher is the value of the
tolerance as used in Equations (19) and (20), the worse is the quality of the vector.

For all tests the first eight maxima were chosen to generate a unique vector. In
Figure 12, you can see influence of the size of the tolerance to the FAR and the
FRR when testing using a) the training samples, and b) the unknown samples. As
expected, when using the training samples the FRR equals zero, since the vector
is constructed so that it is not possible to reject a training vector. Of course, the
increasing tolerance increases the FAR, which is not desired. However, even when
the tolerance equals 1, the FAR does not exceed 4%, which is very good result. The
results of the unknown samples testing are compared with testing of the training
samples. When testing the unknown samples, the FRR ranges from 35% to 85%,
which is bad result. Nevertheless, the FAR values are below 4%, which is again
very good result, since it proves the vectors are far one from another in terms of the
distance defined by Equation (26).

In Table 1, unique vectors of the training sample of a valid user can be compared
to the corresponding unique vectors of another sample of the same user and of
a sample of an unauthorized user. The congruent values of the distances between
the individual vectors given by Equation (27) are marked. It is clear that some
tolerance is necessary, since even the sample of the same user does not generate the
same unique vector when the tolerance is low. Positive is the fact that even when
the tolerance is high, no one of the vectors of the sample of the unauthorized user
is. To compare the distances given by Equation (26) and (27), see Figure 13. In
the tests when using Equation (26), the minimal distance of all the unique vectors
generated for each valid user was 23 and, when using Equation (27), the minimal
distance was 74, which is rather good result.
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Fig. 12. Comparison of the FAR and the FRR as functions of the tolerance a) when testing
the training samples, and b) when testing unknown samples

In Figure 14, the distances given by Equation (26) as a function of a sample of
the model and a sample of the reference model are shown. Samples used for this
test were the unknown ones.

The distinguishable diagonal is desired, since it represents distance of the refe-
rence models, which should equal zero; or, in this case, it should be represented by
the highest values (the Z-axis is reversed to show the diagonal). You can also see
that sometimes the distance of the reference model and corresponding model is not
the lowest (or the highest) one. This is because the unknown samples were used to
testing and this behaviour illustrates the difficulty of re-estimableness of the unique
vector.
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unique vector unique vector unique vector
of the training of the unknown of the unknown

t sample of sample of the d sample of d

a user same user another user

0.00 0F0D07160E2C1E68 0F0D07160E2B1D68 2 0E0D07150D2D1E68 4

0.05 0E0C06150D2A1C63 0E0C06150D291B63 2 0D0C06140C2B1C63 4

0.10 0D0B06140D281B5E 0D0B06140D271B5E 1 0C0B06130C291B5E 4

0.15 0D0B06140C261A5A 0D0B06140C251A5A 1 0C0B06130B271A5A 4

0.20 0C0A06130C251957 0C0A06130C241957 1 0B0A06120B261957 4

0.25 0C0A05120B231853 0C0A05120B221853 1 0B0A05110A241853 4

0.30 0B0A05110B221750 0B0A05110B211750 1 0A0A05110A231750 3

0.35 0B0905110A21164D 0B0905110A20164D 1 0A0905110922164D 3

0.40 0A0905100A20154A 0A0905100A1F154A 1 090905100921154A 3

0.45 0A0905100A1E1448 0A0905100A1E1448 0 09090510091F1448 3

0.50 0A08040F091D1445 0A08040F091D1445 0 0908040F081E1445 3

0.55 0908040F091C1343 0908040F091C1343 0 0808040F081D1343 3

0.60 0908040E091C1241 0908040E091C1241 0 0808040E081D1241 3

0.65 0908040E081B123F 0908040E081B123F 0 0808040E071C123F 3

0.70 0907040D081A113D 0907040D081A113D 0 0807040D071B113D 3

0.75 0807040D0819113B 0807040D0819113B 0 0707040D071A113B 3

0.80 0807040C0819103A 0807040C0819103A 0 0707040C0719103A 2

0.85 0807040C07181038 0807040C07181038 0 0707040C06181038 2

0.90 0807030C07171037 0807030C07171037 0 0707030C06171037 2

0.95 0706030C07170F35 0706030C07170F35 0 0606030C06170F35 2

1.00 0706030B07160F34 0706030B07160F34 0 0606030B06160F34 2

Table 1. Comparison of the unique vectors of the training sample of a user, the unknown
sample of the same user, and the unknown sample of another user together with the
distance given by Equation (27)

Fig. 13. Comparison of the distance measures. The first one was chosen as the reference
model. On the left there is the distance given by Equation (26), and on the right
there is the distance given by Equation (27).
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Fig. 14. Distance given by the Equation (26) as function of a model and a reference model,
Z-axis reversed. You can clearly see the diagonal. Low (in this case high due to the
reversed Z-axis) diagonal values express high distance of the reference model from the
other models. In this case, a set of five unknown samples from each of 125 models
(speakers) was tested.

In any case, the experimental results prove this way as a possible one. The
results are not as good as necessary for a real application. However, some principles
proposed here can be improved so that our voice could be used as a biometric key.
When using the features as proposed, there are e.g. some possibilities of improving
the quantisation step estimation – instead of the linear scale a non-linear one could
be used, or another mechanism of the estimation of the quantisation step. It is even
not necessary to quantise the frequencies, because there are surely other possibilities.

4 CONCLUSIONS

The designed MBSS was presented in conferences and was accepted by many experts.
However, the final realisation of this MBSS is a future work. The vectors that
are generated using the introduced algorithm are unique in the given set of voice
samples. The distance of the nearest pair of the unique vectors was 23 (74, using
another distance measure). There are some serious problems when generating the
unique vectors. Though they are unique for the given set, they are not easily re-
estimable. This is very limiting factor, since the FAR was very low, which is desired,
but the FRR was too high. In many cases this is not a problem, but in the real
application is it a big trouble for the user leading to uninstalling of such security
system. As the users are indolent, they do not like to repeat the voice password
many times before it is accepted, at last.

Biometric security systems are advancing and their importance is growing. An
example of this can be the way of use of the biometric technologies in Germany.



390 F. Orság

Nowadays, they are testing quality of the fingerprint scanners to use them in the
near future. The German government prepares ID cards containing fingerprints,
which is a great step ahead. Nevertheless, the fingerprints have been many times
verified and proved unique, and they are a respected biometric feature. Voice based
technology is still waiting for such respect – it has its strengths, i.e. there is a source
of information, but there is no suitable tool to extract them and use them yet.

This work offers many suggestions for further research. In the BSS field, there are
many ways of possible research topics, too. Remember we used only two biometric
technologies to design a MBSS. This can be improved and some methods of the
decision fusion must be designed, though there are many existing solutions, some
new ones could be developed especially for this task. A more complex way of the
unique vector generating would be welcomed. When talking of the unique vector,
more topics of further investigation can be named, namely the basis for unique vector
specification, the quantisation step estimation, the overall algorithm specification,
and many others.

The Biometric Security Systems can offer much space for further work. Reward
for the development of the first-quality BSS is a higher reliability and users’ sat-
isfaction with the functionality and absence of all the passwords, keys, and other
tools used nowadays.
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