Computing and Informatics, Vol. 35, 2016, 1359-1385

APPLICATION PERFORMANCE OPTIMIZATION
IN MULTICLOUD ENVIRONMENT

Martin BOoBAK, Ladislav HLUCHY, Viet TRAN

Institute of Informatics

Slovak Academy of Sciences

Dibravskd cesta 9

SK-845 07 Bratislava, Slovakia

e-mail: {martin.bobak, ladislav.hluchy, viet.tran}@savba.sk

Abstract. Through the development and accessibility of the Internet, nowadays
the cloud computing has become a very popular. This concept has the potential
to change the use of information technologies. Cloud computing is the technology
that provides infrastructure, platform or software as a service via the network to
a huge number of remote users. The main benefit of cloud computing is the utiliza-
tion of elastic resources and virtualization. Two main properties are required from
clouds by users: interoperability and privacy. This article focuses on interoperabil-
ity. Nowadays it is difficult to migrate an application between clouds offered by
different providers. The article deals with that problem in multicloud environment.
Specifically, it focuses on the application performance optimization in a multicloud
environment. A new method is suggested based on the state of the art. The method
is divided into three parts: multicloud architecture, method of a horizontal scala-
bility, and taxonomy for multicriteria optimization. The principles of the method
were applied in a design of multicriteria optimization architecture, which we verified
experimentally. The aim of our experiment is carried on a portal offering a platform
according to the users’ requirements.

Keywords: Cloud computing, multicloud computing, architecture, multicriteria
optimization

1360 M. Bobdk, L. Hluchy, V. Tran

1 INTRODUCTION

Cloud computing is one of the buzzwords of computer science. It was among the top
10 strategic technology trends for 2015 [10]. Cloud computing is useful in both the
academic and industrial fields. One of the main reasons for the expansion of cloud
computing is the need for high-performance computing in almost every modern area.
Users require two main properties from clouds:

1. interoperability,

2. privacy.

This paper focuses on the first property — interoperability. Nowadays, it is
still difficult to migrate an application between different cloud providers. Almost
every provider has a tendency to create specific API. Such approach causes vendor
lock in. Users have to adapt to provider’s API. Nowadays there is no standard API
or a reference cloud implementation.

Results of this paper are based on Minh Binh Nguyen’s research [17]. He created
a generic development and deployment framework for cloud computing. His model
describes interoperability on the operating system level. This paper extends the
model, in order to carry out the application performance optimization in multicloud
environment.

1.1 Motivation

Multicloud computing offers benefits not only to users, but also to providers. The
main advantages are: unified cloud-based architecture, avoiding vendor lock-in, in-
teroperability, scalability, improved accessibility, reduced latency and reduced oper-
ating cost.

There exist four fundamental cloud-based collaboration use cases [22]:

e hybrid cloud,
e multicloud computing,
e federated cloud,

e inter-cloud.

Users of hybrid cloud utilize public cloud partly (e.g. when resources of private
cloud are insufficient). Alternatively, the users offer their unused resources to cloud
providers. Hybrid cloud represents a resources’ extension of a private cloud.

Users of multicloud computing work in a third party environment. The provider
of the environment offers interoperability. That means the provider translates mes-
sages from different end-users to cloud providers and vice versa. However the man-
agement of resources is left to the end-users in many cases.

The concept of inter-cloud was introduced by Cisco [3]. The paper describes
the inter-cloud as a cloud made up of different clouds. This is in parallel with

Multicriterial Optimization in Multicloud Environment 1361

the Internet — the network of networks. Inter-cloud is characterized as a group
of clouds which communicates through uniform standards. The standards provide
cloud interoperability to users. This model has been inspired by Internet and tele-
phone networks. It is typical for them that, in spite of the infrastructure offered by
different providers, all elements are interconnected.

Federated cloud is an aggregation of multiple cloud providers which offers its
resources to improve services of individual cloud providers [15]. Providers made
their idle resources available to each other. Such policy improves scalability and
flexibility across the federation, and users work with resources that come from dif-
ferent providers. This property does not increase the load of the system. It is also
irrelevant from the point of view of the system as a whole.

Federated cloud, inter-cloud and multicloud computing are very new concepts.
Computer scientists often use their complete interchangeability. We view inter-
cloud as a global federated cloud. So, the federated cloud is the first step towards
an inter-cloud. Multicloud computing is the abstract concept as an expression of
the fundamentals of the inter-cloud and federated cloud.

The paper is organized into nine sections. Following the introduction, there is
a state of the art analysed in Section 2. Section 3 illustrates the architecture of
multicloud computing. Section 4 explains the methodology of a horizontal scalabil-
ity. Section 5 presents the taxonomy for a multicriteria optimization in the multi-
cloud environment. The implementation presented method is described in Section 6.
An experiment verifying the approach is demonstrated in Section 7. The results are
evaluated in Section 8 and summarized in Section 9.

2 STATE OF THE ART

There is a very good chance that the next evolution step of cloud computing will be
a distributed cloud computing — multicloud computing. Authors of this paper [7]
identified three evolutionary steps: monolithic stage, vertical supply chain, and hor-
izontal federation. Cloud services are offered by a single provider in the monolithic
stage. Next step is to offer a pipelined cloud service. The whole service is offered by
multiple providers. The providers create a vertical supply chain at the end of which
the service is offered to a user. The last step is horizontal federation. Providers
create a federation in which they share resources among themselves. This approach
makes their services more reliable and improves scalability of their services. On
the other hand, it is the interaction of the providers, which represents the greatest
challenge.

Currently, the monolithic cloud services (Amazon, Google, Microsoft...) are
dominant. Each provider has its own API which makes service administration and
maintenance complicated. Consequently, in many cases, a user is restricted by
one provider. It is very difficult to work with many providers when cloud services
combining is not supported. The heterogeneity causes vendor lock-in [21, 18]. That
means, a user becomes dependent on his/her provider. Users are unable to replace

1362 M. Bobdk, L. Hluchy, V. Tran

the provider without a considerable effort. This situation suits cloud providers who
do not engage in it at all [19].
There are two main ways to achieve multicloud computing [22]:

e collaborative service (e.g., middleware),

e standardization (e.g., interfaces or API abstraction).

A collaborative service is an intermediary between a user interface and cloud. Its
task is to ensure communication between cloud interfaces (e.g., by messages trans-
lating). This approach allows customers to use clouds from different providers. It
ensures cloud interoperability. Standardization offers another way to ensure interop-
erability (e.g., this approach was successful at network communication — it creates
TCP/IP protocols). Currently, it is very difficult to obtain standardization, so we
decided to create a collaborative service.

2.1 Standards Supporting Multicloud Computing

The following table of standards is based on the survey [22]. It implies two important
facts. Those facts influenced our research.

The first fact is that the design of a standard for multicloud computing deals
with three main factors: interoperability, security, and legality (of the service in
a particular country). Other obstacles follow: Cloud providers do not want to agree
on a uniform standard. They rather prefer the vendor lock-in [18].

The second fact is that many standards have been produced, but none of them
has become globally recognized for multicloud computing [18, 22] (see Table 1). It
is the consequence of the situation that providers are not able to agree on a single
standard and this situation is good for them. Based on these facts, we decided to
focus only on collaborative services.

2.2 Cloud API Abstraction Libraries

Another way of achieving multicloud computing is a cloud API abstraction. There
are several cloud API abstraction libraries. The main benefit of the abstraction
is an independence from the cloud providers. However, the libraries are facing
similar issues as the standardization, because it is difficult to develop a common
API supported by every cloud provider. Another trait of the libraries is that the
degree of a support of the provider’s features varies among libraries. Some features
are not even supported by the libraries and so working with clouds is not easier with
them. Several cloud API abstraction projects have been studied.

Jclouds! is an open-source library for managing cloud resources from 30 different
cloud providers (such as Amazon, Azure, GoGrid, OpenStack, Rackspace, and
so on). The library is written in Java.

! http://jclouds.apache.org/

1363

Multicriterial Optimization in Multicloud Environment

(*[g] woxy peydepy) () sorwouoiny ‘(N) SromjeN ‘(F) Lwouooy (Jy) Surzojruoly (§) £3moeg (y1IS)
JUOMINRISY [0A0] 901AIRG ‘(0d) ANfiqeliod ‘(1) Suruoisiaold — welqold pasnooj 0} SUIpIooor SpIepUR)s JUSLIND Jo uostreduwo)) T o[qR],

2 P P P QA1 TITUL TOTYR)NSwe[dWI aInjonijsejuys 10j Aiqersdoisju] pue sprepuels <Zm:m
N N N s N 2 Surynduwoy) pnoy) uo dnoir) snoo;g J,-NII 01 L-NLI

N N Va N a N 8¢ DS/T DLL OSI ¢ Om\._u DLl OSI

N M oAnemu] 98e10yg pnof) (VINS) uoryerossy £1isnpuj SurjiomjoN 28eI1olg 1SO VINS

VRV NV ror dnoip Bupiiom a08ed SUE Z0ETd HEAAL

VA A VA QouRI[[Yy I9ua)) eye(uad() <<OQO

Y, 2 2 dnoix) quewe8eue]y 129(qQ OINO

Vs dnoir) sy10p7 Surpnduwoy) pnoy) dnoir) uad(oY, MDD

N N N wmnio AS0[ouyos, pno[)-Ieyuy I1SLH
s 2 91N31ISU] SpIRPUR]S SUOIIBOIUNUWITIOD[9], weodoiny oy T, ALOIOD
N N N SpIepue)g UOIJRULIONU] PAINIONI}G JO JUSWSIURAPY OY) I0J UOoljezIuesSIi() SISVO

N wnryrosuoy) pnop) uad(0D0

2 2 N wnio, Ajqiqeradoreju] Surynduoy) pnojd AI0D

2 N N so180[0UTDAT, puR SpIepUR]S JO 9INIIISU] [RUOIIRN] ISIN

N N ogsaqruey pnof) wedo AN

»r N eouRlly £4Lmoeg pnod Q)

/ rr P » wmieg pp 1240 FH0
N N N N N N 010, se, JuoumsSeuey poynquista TN
vV N d W § VIS od Iid plepuels

1364 M. Bobdk, L. Hluchy, V. Tran

Fog? is an open-source library for managing cloud resources from 43 different cloud
providers (such as Amazon, DigitalOcean, IBM Softlayer, Joyent, OpenStack,
Rackspace, vCloud, XenServer, and so on). The library is written in Ruby.

Boto? is an open-source library for managing cloud resources provided by Ama-
zon. However, it is also applicable to cloud that uses the same interface (like
Eucalyptus or OpenStack). The library is written in Python.

d-cloud* is an Apache project, that is currently retired. The main focus of the
project is managing cloud resources. 15 different cloud providers (such as Ama-
zon, GoGrid, OpenNebula, Eucalyptus, Rackspace, OpenStack, and so on) have
been supported by the project. §-cloud offers cloud resources via a REST API,
so it is independent from programming languages (although d-cloud provides
client libraries for Ruby, Java, C, and Python). The project is written in
Ruby.

Libcloud?® is an open-source library for managing cloud resources from 55 different
cloud providers (such as Elastic Hosts, RackSpace, Eucalyptus, AWS, Joyent,
OpenNebula, GoGrid, Enomaly, SliceHost, vCloud, and so on). The library is
written in Python.

Supported Languages Number of Supported Providers

Jclouds Java, Clojure 30
Fog Ruby 43
Boto Python 1
d-cloud REST-capable 15
Libcloud Python 55

Table 2. Comparison of current cloud API abstraction libraries

2.3 Collaborative Services

Various collaborative services are discussed in this subsection. This is the best way
to achieve multicloud computing, taking into account the current situation. The
service can be performed either on a user’s side or it can be offered as a third party
service. The following analyses of collaborative services is based on the survey [22].

2.3.1 Reservoir

Reservoir model [21] is the architecture for cloud federation. The authors distin-
guish between two operations in the model. That also means that the model has

2
3
4

http://fog.io/
http://boto.cloudhackers.com/
http://deltacloud.apache.org/
5 http://libcloud.apache.org/

Multicriterial Optimization in Multicloud Environment 1365

two types of Reservoir sites — infrastructure providers sites, and service providers
sites. Customers are offered by their service providers the applications that exploit
an infrastructure provided by a particular infrastructure provider. Service providers
do not own computing resources, network, or storage. Those are owned by infras-
tructure providers who offer them to service providers in the form of isolated virtual
environments — virtual execution environment (VEE).

Reservoir architecture has three main components (see Figure 1): service man-
ager, virtual execution environment manager and virtual execution environment
host. The service manager is on the top layer. It interacts with service providers —
it receives their service manifests (e.g., deployment of virtual environments, SLA
monitoring. ..). Middle layer is virtual execution environment manager. Its role is
to manage a virtual environment, to interact with virtual execution environment
manager of other Reservoir sites (this property creates the federative cloud) and
places virtual environments into virtual execution environment hosts. The bottom
layer is virtual execution environment host. It is responsible for supporting various
types of virtualization, virtual environment monitoring and it provides migration of
a virtual environment within the federated cloud.

} [

[
‘ Service provider H—H
Manifest @

1

- 1
Service manager 1
1

@ SLA

1
1
1
SLA
K VMI VEE manager (VEEM) VMI
i
1
1
1
1
1
1
1
1
1
1
1
1

e

1
1
1
1
1
1
VEEH 1
1
1
1
1
1
1

(e.g., hypervisor,
OSGi container)

Reservoir site

Figure 1. Basic components of Reservoir and their interfaces (OSGi: Open Services Gate-
way initiative; SMI: service management interface; VMI: VEE management inter-
face; VHI: virtual host interface). Taken from [21].

1366 M. Bobdk, L. Hluchy, V. Tran

2.3.2 Contrail

Contrail project [6] enables the utilization of cloud resources offered by different
cloud providers (horizontal integration) and it also gives an opportunity to work
with TaaS and PaaS (vertical integration). Contrail is based on agents who act
as intermediary between cloud users and cloud providers. Contrail consists of
three layers (see Figure 2): interface, core, and adapters. The interface layer
has two forms — command line and web interface. Its role is to collect require-
ments from users and provide services of the federated cloud as a REST service.
Core layer contains modules for security, application management and SLA man-
agement. The federation runtime manager looks after the application manage-
ment which exploits services of the image manager and the provider watcher. The
adapters layer is the bottom layer. Adapters are subdivided by type of resources
provided into external and internal modules. Internal modules make virtual in-
frastructure network, global autonomous file system and virtual execution plat-
form available. External modules translate messages from federated cloud to cloud
providers.

Federation support

Interface layer (HTTP) (cu)
(REST)
Core layer C Y
‘ v Security
‘SLA Organizer jon Runtime Authentication
SLA Template Manage' User Identity : :
Reposllory Mapplng ’ I Atiribute Authority

| (=)
Ima Administration Point
ge Registry =]
SLA Coor Stat
e Policy Decision Point
Watcher

Adapters layer
[[VEP driver](GAFS driver)(VIN driver j[Ext:;r;a;eor?ud]]

i

SLA
Management

SLA
Management

Contrail Provider External Provider

Figure 2. Basic components of Contrail. Taken from [6].

Multicriterial Optimization in Multicloud Environment 1367

2.3.3 OPTIMIS

The main components of OPTIMIS (see Figure 3) are as follows. Services are
created by the service builder. It has integrated development environment that
allows a development (via the programming model) and a configuration (via the
configuration manager). SaaS cloud is received at the end (a service is offered
over the Internet and it is executed in multicloud environment). The basic toolkit
supplies the functionality for service management (e.g. monitoring, security...) to
other components. Once the service set up is finished, deploying of the service is
started. Deploying is carried out by its deployment engine. It is checking for the best
infrastructure provider for the service. If the search is successful, deployment engine
sends a request to the admission controller. The admission controller decides if the
service exploits the resources of the infrastructure. Subsequently, cloud optimizer
allocates the resources for the new service. Successful deployment of the service
is reported to service optimizer. Afterwards, the service is monitored by service
optimizer which is able to make its subsequent migration to the other infrastructure
if necessary, and the service level agreement is not broken.

Service Builder (SB) Admission Deployment Service Cloud
Controller (AC) Engine (DE) Optimizer (SO) | Optimizer (CO)
IDE
s Economical
Programming Configuration Basic Security Optimizer TrustFramework
Model Manager i
Toolkit Monitoring 2ieedl Risk Framework

Assessment

Figure 3. Components of OPTIMIS. Taken from [8].

2.3.4 PaaSage

PaaSage project® is a model-based cloud platform for deployment and optimization
of applications among different clouds. The applications are automatically scaled
according to their demands. Multicloud computing is achieved through its Cloud
Application Modelling and Execution Language (CAMEL). CAMEL (see Figure 4)
comprises four main parts — Cloud Modelling Language (CloudML) [11], Saloon [20],
CERIF [13], and Scalability Rule Language (SRL) [14]. The project is accessible
through Cloud Modelling Framework (CloudFM) [9]. CloudFM has two main com-
ponents: modelling environment (CAMEL) and Models@run-time environment.

2.3.5 ModaClouds

ModaClouds project [2] is a MOdel-Driven Approach for design and execution of
applications on multiple clouds. The project is built on a Model-based Software

 http://www.paasage.eu/

1368 M. Bobdk, L. Hluchy, V. Tran

Infrastructures Executionware Deployment plans
/ Platforms

Provisioning and
deployment
modelling

Quality of
service
modelling

Provisioning and .
Service-level

deployment S Scalability rules Historical data
Adapt
requirements objectives apter
CAMEL CAMEL
' Cloud provider- Profiler Constraint problem REaSoner Cloud. Prowder—
independent model specific model

Organisation models Provider models

\Organisation/ \ Provider - - -

modelling modelling Modelling Deployment Execution
phase phase phase

Figure 4. PaaSage workflow. Taken from [1].

Engineering. It aims to support application developers and operations in exploiting
(multi)clouds. ModaClouds is composed of (see Figure 5a)): a Decision Support
System (DSS) to provide the selection of cloud providers, an Integrated Development
Environment (IDE) to support a migration of applications between clouds, a design
of software systems and a partial code generation, and a run-time environment en-
able a monitoring and a self-adaptation. The user models a cloud application at
different levels of abstraction through IDE (see Figure 5b)): a Computation In-
dependent Model (CIM) in which non-functional requirements and constraints are
designed, a Cloud-Provider Independent Model (CPIM) in which CIM artefacts are
semi-automatically processed and cloud concepts are incorporated into the model
but kept abstract from any cloud specific platform, and a Cloud-Provider Specific
Model (CPSM) in which CPIM artefacts are semi-automatically translated and de-
ployment artefacts are created.

3 MULTICLOUD COMPUTING ARCHITECTURE

Building on the above mentioned ideas, our architecture was created. From state of
the art, we made several observations:

1. Nowadays, there are many cloud providers offering a cloud service through a pro-
prietary API (e.g., Amazon, Microsoft...). This situation creates the vendor
lock-in [21, 18].

2. Cloud customers mostly focus on two types of clouds — SaaS and IaaS [21].
This is due to the fact that a platform (in the current form) is suitable for
small group of users. The situation has resulted from two factors. If users are
interested in a particular product, they choose SaaS. On the other hand, if users

Multicriterial Optimization in Multicloud Environment 1369

i Goal: Cost & Risk Analysis CIM Goal:]
. High-level Model-Driven N T ;
Application Design i : it i

Goal: Cloud Independent
Model Representation
spanning across all
abstraction layers,

[
Large memory
Resource

- / CPIM

Reliable
Resource

Continuous changes
for changing context
and

._./././_“..4......”.,..

{Goal: Cloud Specific';

X Y

/ \ . : ! fic:

nitoring & Data syncronizatio \ oy A < iCode Representation:
Run-time adaptation . H \

B1
VM-Large CPU | 1\
Instance

" Goal: QoS assurance & costs minimization |

a) | b)

Figure 5. ModaClouds approach. Taken from [2].

want to be more variable (or they are interested in virtualized environment),
they are currently forced to use IaaS. PaaS appears to be the only suitable for
this problem, at the first glance (see Section 2). That is the reason why the
article focuses on laaS at multicloud computing environment.

3. There are several ways to achieve multicloud computing [19]. The most common
ways are standardization of interfaces and collaborative services. The state of
the art shows that the standardization is very difficult to enforce. This is due
to the fact that today cloud providers refuse to accept a common interface [22].
That is the reason why the article presents the collaborative service.

4. Collaborative service, offering infrastructure, is a young field of cloud comput-
ing. There exist only several projects focusing on such services. Our article has
presented five FP7 — Reservoir [21], Contrail [6], OPTIMIS [8], ModaClouds [2],
and PaaSage”. The main difference between these projects is the way the inter-
operability is achieved. Reservoir has to be carried out on multicloud provider’s
side. This approach has the same problem as standardization — the providers
have to agree on it. Contrail and OPTIMIS take a reverse approach — the col-
laborative service is executed on user’s side (alternatively it can be provided as
a service). This approach is independent of the providers because the services
are located between the providers and the users. Contrail applies the agent ap-
proach to achieve multicloud services. However, the approach is redundant (it

" http://www.paasage.eu/

1370 M. Bobdk, L. Hluchy, V. Tran

is too heavy load on a network). In this case, agents are used for discovering
and selection of resources. OPTIMIS is not the architecture, it is a software
kit allowing some kind of optimization. ModaClouds and PaaSage are projects
based on Model-based Software Engineering. They offer modelling as a service.
This approach has many arguments pro and con. The biggest advantages of the
approach are interoperability and vendor lock-in avoiding. However, a user of
the projects needs to learn a new (modelling) language. This is non-trivial and
problematic for non-IT users. One of our aims is the user-friendliness. The pro-
posed approach is dealing with this issue without creating a specific language.
It is designed for a common user.

The main ideas that influenced the design of the architecture are as follows:

e allow scalability,

e allow interoperability on a virtual machine level (of an infrastructure offered as
a (multi)cloud),

e avoid vendor lock-in,
e create collaborative service,
e be independent of providers,

e allow flexible provider administration (new provider changes the architecture
minimally),

e user-friendly approach.

Let us start with a characterization of the multicloud issue. Multicloud com-
puting is a technology which obtains virtual resources from different providers and
returns back uniform multicloud virtual resources. The aim is to merge obtained
resources in order to be accessible in the uniformed way. The formalism of multi-
cloud computing was derived from this characterization. A whole multicloud with
k virtual machines is labelled as Cy. Detailed definition looks as follows [4].

Definition 1 (Multicloud computing). Multicloud architecture is represented by
a (k+1)-tuple Cy, = (V My, ...,V My, M), where V' M; is an abstract virtual machine
and M is a cloud middleware of a multicloud environment.

Software SW,; = (BaseSW, Appa, . .., App,) of an abstract virtual machine V M;
from C} has to satisfy the following condition:

V1<i<n3l<ji,...,5m < n:check(App;, Appj,, ..., App;,.)-

It is crystal clear that a tool for the application compatibility is needed. A pred-
icate approach is supposed in this paper. The paper presents a predicate check(x,
Y1,---,Ym). The predicate ensures that applications from a virtual machine are
compatible.

Multicriterial Optimization in Multicloud Environment 1371

Definition 2 (Abstract resources checking). check(z,y1,...,ym) 18 a predicate
(check : {x,y1,...,ym} — {True, False}) which on input gets an abstract appli-
cation x and abstract applications ¥y, ..., ¥, running on the same virtual machine
as .

True <+ req(x) C U™ prov(y;),

check(x,y1,...,Ym) =
(7,31 Ym) {False < otherwise.

The predicate verifies if there is a conflict among applications running on the
same virtual machine. The basic view is that if an application requires a property
then another application running on the same virtual machine provides the property.

Definition 3 (Abstract application interface).
prov(z) = {vl,... u}

where v; is a property provided by an application .
req(x) = {vl,..., v}

where v; is a property required by an application x.

4 METHODOLOGY OF A HORIZONTAL SCALABILITY

Let us start with a characterization of multicriteria optimization, as known before.
A method receives internal virtual resources® and set of optimization criteria. The
method reallocates internal virtual resources based on the requirements with respect
to running applications in the cloud.

The methodology works in the multicloud architecture. The main advantage of
the architecture is that it operates with applications as independent components.
It supports a creation of a virtual machine, a deletion of a virtual machine, or
a migration of an application among virtual machines as necessary. So, a formal
definition looks like follows [16].

Definition 4 (Inter-cloud multicriteria optimization). Multicloud Cy = (V My,
.o, VM, M) is balanced if and only if:

V1 < <k :balanced(V M;).

A concept of balanced multicloud expresses that multicloud is balanced if and
only if its every virtual machine is balanced.

Definition 5 (Virtual machine optimization). balanced(vm) is predicate (balanced :
{vm} — {True, False}), which gets a virtual machine vm on input. Let us have

8 For example it could be virtual machines of IaaS cloud

1372 M. Bobdk, L. Hluchy, V. Tran

a set of predicates T', which describes non-optimality. The predicate is defined as
follows:
True < Vp e T :p(vm) = False,

bal d =
alanced(vm) {False < otherwise.

The methodology deals with infrastructure metrics of a multicloud system, which
means that the monitoring and optimization criteria are aimed at virtual machines.
The proposed approach is able to optimize every key performance indicator (KPI)
that is capable of being modelled through a predicate. The KPI has to be detectable
via a Boolean condition and improvable via a finite set of actions (e.g., CPU uti-
lization, RAM utilization, resource cost, and so on).

Non-optimality of the system is characterized by a set of rules (formally predi-
cates), which we marked by letter T' (there are rules such as: the usage of a virtual
machine processor is less than 30 %, the usage of a virtual machine processor is more
than 80%. ..).

5 TAXONOMY FOR A MULTICRITERIA OPTIMIZATION
IN A MULTICLOUD ENVIRONMENT

A taxonomy (see Figure 6) describes a functional abstraction of a multicriteria
optimization in a multicloud environment. The taxonomy is also composed from
properties of entities. The basic entity is a multicloud. The multicloud offers an
optimization (as defined in the Definition 1). The optimization relates to the criteria
monitoring. The multicloud has to detect non-optimal virtual machines. If a virtual
machine is non-optimal then an inter-cloud migration is triggered. The inter-cloud
migration is one of the basic functionalities offered by multicloud. However, the
selection of a suitable configuration of the virtual machine is not always straightfor-
ward. This explains why a hierarchy of virtual machines is needed. The hierarchy
organized configurations of virtual machines respects the criteria of the optimiza-
tion. The virtual machine’s hierarchy has to be in the form of the directed acyclic
graph. It is obvious that the hierarchy is a partially ordered set. The partially
ordered set is visualized as a Hasse diagram. The Hasse diagram is an abstraction
of directed acyclic graph [12].

The multicloud entity is composed of two entities — cloud and criterion. The
criterion entity is modelled with the following properties: a condition of a non-
satisfiability, a consequence of non-satisfiability and a type of optimization. The
model of the criterion is a derivation of the predicate definition of the balance (see
Definition 5). The condition describes the state when a virtual machine is unbal-
anced. The consequence describes the transition from a non-optimal state to the
optimal state. The last property is a type of optimization. As for any (mathemat-
ical) optimization, it is essential to know whether the aim is to find a minimum or
maximum value.

The cloud entity makes the administration of its virtual machine. That means,
it has to start the virtual machine and shut down the virtual machine. It makes

Multicriterial Optimization in Multicloud Environment 1373

Multicloud

Multicriteria optimization
Intercloud migration
Hierarchy of virtual machines

Monitoring

Cloud
Start a virtual machine Criterion
Shut down a virtual machine Condition of a nonsatisfiability
Backup of a virtual machine Consequence of a nonsatisfiability
Restoration of a virtual machine Type of an optimization
Command line of a virtual machine
Download data on a virtual machine
Upload data on a virtual machine

Virtual machine Data

Figure 6. Schema of taxonomy for multicriteria optimization

an actual mirror of the virtual machine (making a snapshot) on the fly. This ability
is the reason why the backup of the virtual machine and restoration of the virtual
machine is needed. Last but not least, the cloud entity has to provide a way to
access the virtual machine. That means, users are able to download and upload
data on the virtual machine and they have an access to some type of a command
line.

The cloud entity is composed of two entities — the virtual machine and data.
Data entity often encapsulates other entities. However, it is pointless from the
taxonomy view. In the same way, the virtual machine entity is also too low-level
from the taxonomy point of view.

6 IMPLEMENTATION

The implementation is based on the results of the previous sections. It is composed
of three components (see Figure 7): multicloud interface, multicloud manager and
cloud driver. Whole implementation is made in Python.

1374 M. Bobdk, L. Hluchy, V. Tran

Multicloud manager E
Multicloud interface E Python calls «Python calls»
« »
v Monitoring E (
%07 tools O
Optimization E
modul
«Python calls» ?
«Python calls» Cloud driver E «Python calls»
©),
2
«Python calls»
«external» E «external» E «external» E
Cloud services Cloud services Cloud services
provider 1 provider n provider n

Figure 7. Schema of multicriteria optimization modules

Multicloud interface obtains requests from users and it offers multicloud services
in form of REST services. Multicloud manager carries out the integrity of cloud
resources provided by different providers and it processes requests from users. The
last part of the implementation is cloud driver. Cloud driver transforms requests
which were sent between the particular cloud manager and the particular cloud
provider.

For the purpose of the multicriteria optimization, multicloud manager has been
extended by monitoring tools and optimization algorithm. In order to know the
actual state of the virtual machine load, monitoring tools have been implemented
into the multicloud manager. Monitoring is focused on the infrastructure. Virtual
machines (maintained by particular cloud providers) are monitored (e.g., processor,
RAM, storage, etc.) and this information is mediated to other subsystems. Nowa-
days, there are many monitoring tools for big distributed systems. However, the
approaches are not usable straightforwardly in the multicloud environment. The
main complication is a heterogeneous aspect of the environment. Cloud providers
offer cloud services through different API which makes monitoring difficult. The
implementation is able to monitor cloud resources independent of cloud providers.

Monitoring information is important for the optimization algorithm (see Al-
gorithm 1). The algorithm controls whether all virtual machines satisfied every
optimization condition. The algorithm is testing the balance of a virtual machine.
If a criterion is not satisfied then the operations (defined by a user) addressing the
situation are carried out. Multicloud interface is expanded with the possibility to
enter the optimization criterion.

Multicriterial Optimization in Multicloud Environment 1375

Algorithm 1 Multicriteria optimization algorithm
Require: VR = {VM,... V M},

C={C,...Ch},
R={Ry,...R,}
Ensure: VR,
1: VRopt = @

2: for ¢ :=1 to k step 1 do

3: if V' M; is optimal then

4 VRopt := VRop U{V M}

5 else

6: for j:=1ton step 1 do

7 if condition;(V M;) then

8 Make V R, satisfying rule R; of condition;(V M;).

The approach supports multiple criteria. This should lead to a state when the
objectivities are conflicting. The situation often does not have a single solution and
such approach tries to find a trade off solution.

Each condition has a rule describing how to move from unbalanced to balanced
virtual machine and a priority defining the importance of the condition. For exam-
ple, a user wants to optimize a CPU utilization and so one of the conditions is: if
CPU utilization is greater than 85% (then a virtual machine is unbalanced). The
rule of the condition should be: to increase a frequency of the virtual machine. The
proposed approach uses the action of the infringed condition until the objective is
not satisfied or in a contradiction to a rule with higher priority.

7 EXPERIMENT

Presented approach had been tested in the environment of tailored platforms —
platforms created to comply the needs of the users. Tailored platform is offered as
a (multi)cloud service in the form of a flexible and dynamically generated platform.
The system is able to receive the users demands and to offer a suitable platform
according to the demands.

For example, a user focuses on a machine learning, s/he is a Linux user and
wants to program in language C. So a configuration of the tailored platform is
as follows: an operating system is Linux (e.g., Ubuntu) and it has preconfigured
tools for machine learning that support programming in language C (that should be
specified by the user). Another user is a bioinformatics, s/he is an MS Windows user
and wants tools for a genome analysis. So a configuration of the tailored platform
is as follows: an operating system is MS Windows and it has preconfigured tools for
the genome analysis.

We assume, that this is a future of PaaS clouds, according to the current sit-
uation. The PaaS clouds need to be independent of a community that uses them.
Otherwise, the PaaS clouds will depend on a small group of suitable users and loose

1376 M. Bobdk, L. Hluchy, V. Tran

more bigger group of potential users which do not need an infrastructure however
the offered platform does not match their needs. This implies that the services will
be adapted to users, and-not vice versa. However, this cannot be achieved immedi-
ately. The technology has to grow up. The starting point could be to think about
multicloud environments — the platforms created according to users’ requirements.
Nowadays, the platforms are pre-constructed. Users, however, need a platform that
offers a provider or where they have the ability to move to another type of cloud (it
is often the cloud offering an infrastructure). This is problematical in many cases,
especially for non-informatics users. Other important problems are caused by the
integration of a software executing on the platform and the insufficient knowledge
about the operating system. The characterization of tailored platforms is as follows.
The portal obtains users requirements and internal virtual resources”. The aim of
the portal is to reallocate internal virtual resources into the tailored platform which
satisfies the users’ demands.

Portal

Authentication

Tailored platform
provider

Virtual machine
manager

)
Tailored platform

Virtual machine

Application | | Application

Virtual machine

Application | Application

Application | Application Application | | Application
Operating system Operating system

—

Figure 8. Schema of a portal offering tailored platforms

9 For example, it could be virtual machines of IaaS

Multicriterial Optimization in Multicloud Environment 1377

A portal (see Figure 8) supporting tailored platforms is designed according to
the characterization of the portal. The portal consists of three parts: authentication,
tailored platform provider and virtual machine manager [5]. The portal consists of
multicloud resources. As it has already been mentioned, authentication is not taken
into account. It is left to cloud providers.

Platforms have been represented as images. The user chooses an image and vir-
tual machine configuration. The portal creates a platform based on these demands.
Such simple approach allows us to give users some freedom in the platform context.
The images (of platforms) could be prepared by a portal provider or by other users.

The runtime platform model (see Figure 9) describes deployment of the elements
of the portal. The experiment was carried out on FedCloud’s clusters (on the infras-
tructure offered by the Institute of Informatics of the Slovak Academy of Sciences).
A cluster has 176 cores with 3GB RAM and its storage is 50 TB. The biggest
offered virtual machine has 8 cores with 16 GB RAM and its storage is 160 GB.
Application server of the portal is Django because that portal is implemented at
Python.

A creation of a portal prototype is a part of the experiment. The prototype
carries out applications running on Linux OS (a portable application is an alternative
on Windows OS). The reasons for this decision are:

1. the proposed system should not require learning new skills,
2. there does not exist standard for applications,

3. an application migration demands of a realizable manipulation with the appli-
cations (it requests a sufficient independence of an operation system).

The proposed system is in the form of a dynamic web application and is con-
trolled through its GUIL. The GUI supports working with virtual machines (to cre-
ate/restore/backup/delete/get information about a virtual machine, download/up-
load a data from/to a virtual machine, run a command line of a virtual machine),
applications (to backup of an application, and migrate an application between vir-
tual machines) and optimization criteria (to create/delete/get information about
an optimization criterion). The proposed system is connected to a SQLite database
where the information about optimization criteria, virtual machines, and a hierarchy
of the virtual machines is stored.

«HW Application server»

«Application server»
:Django «HW Application server»

Browser ;
‘Firefox SRESTS | i] «REST» ‘OpenStack 2]

User

Figure 9. Runtime platform model of a portal offering tailored platforms

1378 M. Bobdk, L. Hluchy, V. Tran

This work does not focus on security, as mentioned before. Therefore the user
connects directly to the portal in a network model (see Figure 10). Security issues
are left on cloud providers.

«HW Application server»

«Application server»
:Django

:Platform E

portal

User

«Brlowser» «REST»
:Firefox

Figure 10. Network model of a portal offering tailored platforms

The approach was also evaluated through a synthetic scenario. The experiment
was performed on an infrastructure of the Institute of Informatics of the Slovak
Academy of Sciences. The resources were offered as a cloud services in the form
of the infrastructure through an OpenStack environment (a survey of preconfigured
virtual machines is shown in Table 3).

CPU Cores Hard Disk RAM

tiny 1 1 GB 512 MB
small 1 20GB 2048MB
medium 2 40GB 4096 MB
large 4 80 GB 8192 MB
xlarge 8 160GB 16384 MB

Table 3. Preconfigured virtual machines in OpenStack

The aim was to balance the resources of the portal offering tailored platforms
according to a resource utilization and optimization criteria. The resource utilization
has been generated through simple python scripts (infinite loop and saving a large
array into RAM). The cause of the utilization is irrelevant. The important thing is
how the proposed architecture reacts to imbalanced states.

Imbalanced states (predicates) with their associated actions are described in
Table 4. The monitoring was carried out every 15 minutes and the number of virtual
machines was three. An operating system of each virtual machine was Ubuntu 14.04.

The experiment has a minor issue caused by the OpenStack environment. The
environment does not support changing of one parameter of the virtual machine. It
is necessary to change the whole configuration of the virtual machine (other cloud
environments behave similarly). This action may not be demanded and can be
solved by defining more configurations of a virtual machine.

The experiment is summarized in the Table 5. Our multicriteria optimization
approach was able to customize the resources of the multicloud system according to

Multicriterial Optimization in Multicloud Environment 1379

Imbalanced State Set of Actions
CPU usage is greater than 80% | increase the number of cores of the processor
CPU usage is less than 20 % decrease he number of cores of the processor
RAM usage is greater than 80% | increase size of RAM
RAM usage is less than 20 % decrease size of RAM

Table 4. Optimization criteria used in the experiment

0 min. 15 min. 30 min. 45 min. 60 min.

VM1 medium small medium small small
VM 2 medium small medium large xlarge
VM 3 medium large medium small medium

Table 5. Configurations of the virtual machines during the experiment

the actual load. The unoptimal situation is when the allocation of the resources is
static. The resources are unused or needed in another virtual machine and so the
whole multicloud is working non-optimally.

We realized that the verification should be more rigorous. We plan to deploy the
approach into real projects and thus replace the simulated data with real data. On
the other hand, although the verification is synthetic, it demonstrates the benefits
of presented approach.

8 EVALUATION

Considering the current situation, when a method providing multicriteria in mul-
ticloud environment does not exist, we decided to compare our approach with the
current cloud providers and scientific multicloud projects (see Table 6). No com-
mercial multicloud environment exists nowadays. One of the biggest problems of
cloud computing (in a common form) is vendor lock-in. We propose to deal with
the problem through interoperability, as other research groups.

Efficiency of virtual resources utilization is another problem which is equally
important as the previous problem. This aspect is important particularly for the
cloud offering the infrastructure as a service (IaaS). Other cloud models have some
mechanisms solving that problem by means of a definition. Only [aaS’ users have
to deal with it.

Amazon offers one of the most used IaaS’ cloud. It offers extensive monitoring
tools as the CloudWatch. This tool allows some type of optimization. A user is
able to set up some alerts (they are similar with our optimization criteria) checking
a load of cloud resources. However, they are not resolved automatically. Solu-
tion is left to the user. Another significant cloud provider is Microsoft and its
cloud Azure. However, Microsoft relies on the fact that its products are used by
every big corporation, and thus Microsoft decided to offer its products in virtual
form over the Internet. Microsoft makes it easier to users, and void their admin-
istration steps, on the other hand, it however, locked the users much more than

1380 M. Bobdk, L. Hluchy, V. Tran

Amazon did. Google App Engine, and Saleforce have chosen a similar approach as
well.

The situation is quite similar in the cloud open-source projects. Other impor-
tant characteristics of the projects are that they are only “cloud operating sys-
tems”. That means they do not own any resources. This may be a problem
for many users. Eucalyptus and OpenStack, as well as Amazon, contain mon-
itoring tools. Nevertheless, virtual machines utilization is not optimized in any
way.

The situation is more interesting among research projects. Reservoir is the
architecture for cloud federation. However, the development has shown that the
architectural design does not take a root. The reason is the same as with cloud
standards. In order to take care of the architecture, it has to be also installed on
the provider’s side. Nowadays, the leading cloud providers do not want to merge
with other providers. Therefore, the architecture has to be provider independent.
Reservoir, as well as Contrail, does not support optimization. OPTIMIS is the only
project that supports both multicloud computing and optimization. However OP-
TIMIS focuses on SLA, while presented approach focuses on user’s requirements.
PaaSage and ModaClouds are Model-driven approaches. Given that the users have
to learn modelling language that could be the cause of several problems. Both
projects offer modelling (of cloud applications) as a service, that means the users
are not able to apply for a pure infrastructure. PaaSage is the most similar to our
methodology. Many objectivities addressed by PaaSage are covered by proposed
approach. However, they focus on different type of users. PaaSage provides mod-
elling of a cloud application. On the other hand, our approach is aimed on offering
of an infrastructure which resources are optimized. So the realization of overlapped
objectivities is different.

Several autoscaling projects exist. The proposed approach is compared with
two of them — OpenShift and ScalR. Those projects offer environment (platform)
for developing and deploying an application. The focus of the projects is similar
to OPTIMIS project. They are aimed on a software that is offered as a cloud
service while our approach is focused on a virtual machine of the infrastructure
offered as a cloud service. The other important feature of the proposed method
is the customization of optimization, an ability to govern a multicloud system in
real time, and an easy integration of a new multicloud participant into the sys-
tem.

The architecture is based on two aspects. The first aspect, that leads us to cre-
ate a new architecture is that the projects mentioned above do not offer a sufficient
freedom to new providers of (multi)cloud services. In addition, we have suggested
the new multicloud taxonomy for multicriteria optimization. The taxonomy clearly
specifies the cloud functionality. Thus, if new providers want to be a part of a fed-
eration, they just create a driver characterizing a dictionary of the taxonomy. The
second aspect is to provide an optimization tailored to users’ requirements. Multi-
criteria optimization is able to solve the issue.

1381

'spoaloxd Surpeossoine pue ‘spooloxd yoreasoar ‘spodford somos-uado ‘spodlo1d femIowod — sjred IOy OJUT POPIAID
S1 mostIedwIod Y], "9INGI9)IYDIR 9} JO WIle UTRUI Y} ST JUOUWIUOIIATD PNOPINUW Je UoTjeziuijdo BLIDJLIDINN]N "9IAISS PLO ©
SB POIOPO 9INIONLIJSRIUI UR UO PIUSLIO ST INIIVIIYDIR I "I 0s pajuasald seypeordde yym yorordde o jo uostreduwio)) "9 9[qe],

Multicriterial Optimization in Multicloud Environment

SOX SOX SOX SOA oeoxdde mQ

SOA ON O[qezIuojsnoun ON 1eos

SOA ON O[qRZIWO)SnOU() ON yrysuad(y

SOX SOX SOX ON odegreJ

SOA SOX [enuey ON SPNO[D)BPOIN

SOA SOA VIS UO pesnoog SOA SINLLJO

SOA SOX [enue]y SOX [reIquo))

SOx Aswmp) renuey SOX II0ATOSY

SOA ON [enuey SOX yoeyguad(

SOX ON renuey SOx snjdATeonsy

- - - ON 90I0Jo[RS

- - - oN ourduy ddy s[3oor)

- - - ON 9INZY }JOSOIDIIN

SOA ON renuey SOX ¢ uozewry
s[o0T, JUOWIUOIIAUG] uoryezrwipdQ 9JIAIDG ® Se
SULIOTUOTA pnopnNA BLISIIOININ 9INdNnijserjuy

1382 M. Bobdk, L. Hluchy, V. Tran
9 CONCLUSION

The proposed approach has focused on cloud computing, concretely on an issue of
a resource wasting in a multicloud environment. Nowadays, a user is responsible for
virtual machine management of an infrastructure offered as a (multi)cloud service.

In order to solve the issue, several abstract models has been created. The en-
vironment (of a multicloud computing) is expressed as the multicloud computing
model (see Definition 1). The methodology is described through the multicriteria
model that is based on the multicloud computing model (see Definition 4). The
core of the abstract model is a balanced virtual machine. That means the amount
of resources assigned to the virtual machine has to match running applications (and
their demands). Finally, the paper presented a taxonomy for a multicloud system
supporting a multicriteria optimization. It is a form of abstraction of every system
of this kind.

The theoretical results were applied at the prototype the implementation of
which is described in Section 6. Subsequently, the prototype was used in the ex-
periment (see Section 7). The aim of the experiment was to provide the portal
that offers a platform based on the specific requirements of users. After that, the
approach was also evaluated through the synthetic scenario and compared with the
other similar approaches.

Acknowledgement

This work is supported by the project VEGA 2/0167/16, H2020 project EGI-Engage
EU H2020-654142, and ERDF — ITMS 26240220060.

REFERENCES

[1] AcHILLEOS, A.P.—KAPITSAKI, G.M.—CONSTANTINOU, E.—HORN, G.
PapaDOPOULOS, G. A.: Business-Oriented Evaluation of the PaaSage Platform. 2015
IEEE/ACM 8 International Conference on Utility and Cloud Computing (UCC),
Limassol, Cyprus, December 2015, pp. 322-326.

[2] ARDAGNA, D.—D1 NitTO, E.—CASALE, G.—PETCU, D.—MOHAGHEGHI, P.—
MOSSER, S.—MATTHEWS, P.—GERICKE, A.—BALLAGNY, C.—D’ANDRIA, F.
et al.: MODACIlouds: A Model-Driven Approach for the Design and Execution of
Applications on Multiple Clouds. Proceedings of the 4" International Workshop on
Modeling in Software Engineering, Zurich, Switzerland, June 2012, pp. 50-56.

[3] BERNSTEIN, D.—LUDVIGSON, E.—SANKAR, K.—DIAMOND, S.—MORROW, M.:
Blueprint for the Intercloud-Protocols and Formats for Cloud Computing Interoper-
ability. Proceedings of the 2009 Fourth International Conference on Internet and Web
Applications and Services, Venice, Italy, May 2009.

[4] BoBAk, M.—HrucHY, L.—TRAN, V.: Abstract Model of k-Cloud Computing.
Proceedings of the 11*" International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD 2014), Xiamen, China, August 2014.

Multicriterial Optimization in Multicloud Environment 1383

[5]

[6]

(7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

BoBAK, M.—HLUCHY, L.—TRAN, V.: Tailored Platforms as a Cloud Service. Pro-

ceedings of 13" International Symposium on Intelligent Systems and Informatics
(SISY 2015), Subotica, Serbia, September 2015.

CARLINI, E.—CoprrPoLA, M.—DAzz1, P.—Ricci, L.—RIGHETTI, G.: Cloud Fed-
erations in Contrail. In: Alexander, M. et al. (Eds.): Euro-Par 2011: Parallel Pro-
cessing Workshops. Springer Berlin Heidelberg, Lecture Notes in Computer Science,
Vol. 7155, 2012, pp. 159-168.

CELESTI, A.—TusA, F.—VILLARI, M.—PULIAFITO, A.: How to Enhance Cloud
Architectures to Enable Cross-Federation. 2010 IEEE 3'¢ International Conference
on Cloud Computing (CLOUD), Miami, USA, July 2010.

FERRER, A.J.—HERNANDEzZ, F.—ToORDSsON, J.—ELMROTH, E.—ALI-EL-
DIN, A.—ZsIiGRrl, C.—SIRVENT, R.—GUITART, J.—BaADIA, R.M.—DJEMA-
ME, K.—ZIEGLER, W.—DIMITRAKOS, T.—NAIR, S.K.—KoUSiOoUris, G.—
KonsTANTELI, K.—VARvARIGOU, T.—HubDz1A, B.—Kipp, A.—WESNER, S.—
CORRALES, M.—F0ORGO, N.—SHARIF, T.—SHERIDAN, C.: Optimis: A Holis-
tic Approach to Cloud Service Provisioning. Future Generation Computer Systems,
Vol. 28, 2012, No. 1, pp. 66-77.

FERRY, N.—CHAUVEL, F.—Ro0sSINI, A.—MORIN, B.—SOLBERG, A.: Manag-
ing Multi-Cloud Systems with CloudMF. Proceedings of the Second Nordic Sympo-
sium on Cloud Computing & Internet Technologies, Oslo, Norway, September 2013,
pp- 38-45.

Gartner. Top 10 strategic technology trends for 2015.
http://www.forbes.com/sites/gartnergroup/2014/10/21/
gartners-top-10-strategic-technology-trends-for-2015/, 2014.

GongALvEs, G.—ENDO, P.—SaNTOS, M.—SADOK, D.—KELNER, J.—
MELANDER, B.—MANGS, J.-E.: CloudML: An Integrated Language for Resource,
Service and Request Description for d-Clouds. Cloud Computing Technology and
Science (CloudCom), 2011 IEEE Third International Conference, Athens, Greece,
December 2011, pp. 399-406.

GRIMALDI, R.P.: Discrete and Combinatorial Mathematics. An Applied Introduc-
tion. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2004.

JEFFERY, K.—HoUSsos, N.—JORG, B.—ASSERSON, A.: Research Information
Management: The CERIF Approach. International Journal of Metadata, Semantics
and Ontologies, Vol. 9, 2014, No. 1, pp. 5-14.

KRrITIKOS, K.—DOMASCHKA, J.—ROSSINI, A.: SRL: A Scalability Rule Language
for Multi-Cloud Environments. 2014 IEEE 6 International Conference on Cloud
Computing Technology and Science (CloudCom), Singapore, December 2014, pp. 1-9.

Kurze, T.—KrLEMS, M.—BERMBACH, D.—LENK, A.—Tar, S.—KuNzg, M.:
Cloud Federation. Proceedings of the 2"d International Conference on Cloud Com-
puting, GRIDs, and Virtualization (Cloud Computing 2011), Rome, Italy, September
2011.

BoBAK, M.—HLucHY, L.—TRAN, V.: Methodology for Intercloud Multicriteria
Optimization. Proceedings of the 12" International Conference on Fuzzy Systems
and Knowledge Discovery (FSKD 2015), Zhangjiajie, China, August 2015.

1384

[17]

[18]

[19]

[20]

[21]

[22]

M. Bobdk, L. Hluchy, V. Tran

NGUYEN, M. B.—TRAN, V.—HLucHY, L.: A Generic Development and Deploy-
ment Framework for Cloud Computing and Distributed Applications. Computing and
Informatics, Vol. 32, 2013, No. 3, pp. 461-485.

PETCU, D.: Portability and Interoperability Between Clouds: Challenges and Case
Study. Proceedings of the 4" European Conference on Towards a Service-Based In-
ternet, Poznan, Poland, October 2011.

PeTcu, D.—MAcARIU, G.—PanNicA, S.—CRcIuN, C.: Portable Cloud Applica-
tions — From Theory to Practice. Future Generation Computer Systems, Vol. 29,
2013, No. 6, pp. 1417-1430.

QUINTON, C.—ROMERO, D.—DucHIEN, L.: Cardinality-Based Feature Models
with Constraints: A Pragmatic Approach. Proceedings of the 17" International Soft-
ware Product Line Conference, Tokyo, Japan, August 2013, pp. 162-166.
ROCHWERGER, B.—BREITGAND, D.—LEVY, E.—GaAL1S, A.—NaciN, K.—LLo-
RENTE, I. M.—MONTERO, R.—WOLFSTHAL, Y.—ELMROTH, E.—CACERES, J.—
BEN-YEHUDA, M.—EMMERICH, W.—GALAN, F.: The Reservoir Model and Archi-
tecture for Open Federated Cloud Computing. IBM Journal of Research and Devel-
opment, Vol. 53, 2009, No. 4, pp. 535-545.

Toosi, A.N.—CALHEIROS, R.N.—Buyyva, R.: Interconnected Cloud Comput-
ing Environments: Challenges, Taxonomy, and Survey. ACM Computing Surveys
(CSUR), Vol. 47, 2014, No. 1, Article No. 7.

Martin BOBAK is a researcher and a Ph.D. candidate in applied informatics at the In-
stitute of Informatics of the Slovak Academy of Sciences. He received his M.Sc. degree in
computer science from the Faculty of Mathematics, Physics and Informatics, Comenius
University in Bratislava (Slovakia) in 2013. His research interests are cloud computing,
algorithms and data structures. He is (co-)author of several scientific papers and has par-
ticipated in international and national research projects. He is a reviewer for international
scientific conferences and journals, and a teaching assistant at the Faculty of Informatics
and Information Technologies, Slovak University of Technology in Bratislava (Slovakia).

Multicriterial Optimization in Multicloud Environment 1385

—

Ladislav HLucHY (Associated Professor, M.Sc., Ph.D.) is Head
of the Parallel and Distributed Information Processing Depart-
ment, and former Director of the Institute of Informatics, Slovak
Academy of Sciences (IISAS) for more than 20 years. He received
his M.Sc. and Ph.D. degrees, both in computer science. He is
R & D Project Manager, Work-Package Leader and Coordinator
in a number of 4" 5th gth 7th 541d H2020 EU IST RTD projects
as well as Slovak R&D projects (VEGA, APVV, SPVV). His
research topics are focused on parallel and distributed comput-
ing, large scale applications, cluster/grid/cloud computing, ser-
vice oriented computing and knowledge oriented technology. His highlighted research
works are within EU IST RTD projects EGI-Engage H2020-654142 Engaging the Research
Community towards an Open Science Commons, EGI-InSPIRE FP7-261323, EGEE IIT
FP7-222667, EGEE II FP6 RI-031688, EGEE FP6 INFSO-RI-508833, REDIRNET FP7-
607768, VENIS FP7-284984, SeCriCom FP7-218123, Commius FP7-213876, ADMIRE
FP7-215024, DEGREE FP6-034619, INTAS FP6 06-1000024-9154, int.eu.grid FP6 RI-
031857, K-Wf Grid FP6-511385, MEDIGRID FP6 GOCE-CT-2003-004044, CROSSGRID
FP5 IST-2001-32243, PELLUCID FP5 IST-2001-34519, ANFAS FP5 IST-1999-11676,
SEIHPC, SEPP and HPCTI as well as in international and Slovak national research
projects. He is a member of IEEE, e-IRG, EGI Council, the Editor-in-Chief of the cur-
rent contents (CC) journal Computing and Informatics (CAI). He is also (co-)author of
scientific books and numerous scientific papers (more than 300), contributions and invited
lectures at international scientific conferences and workshops. He is a supervisor and
consultant for Ph.D. study at the Slovak University of Technology (STU) in Bratislava.

Viet TRAN is a senior scientific researcher at the Institute of
Informatics, Slovak Academy of Sciences (IISAS) with research
focused on high-performance distributed computing and cloud
computing. He received his M.Sc. degree in informatics and in-
formation technology and his Ph.D. degree in applied informatics
from the Slovak University of Technology (STU) in Bratislava.
He has participated in a number of EU RTD FP projects as
well as international and Slovak national research projects as
a work-package leader, key person and scientific coordinator.
He is (co-)author of scientific books and scientific papers, mem-
ber of program committees, reviewer for international scientific conferences, journals and
projects.

