
Computing and Informatics, Vol. 28, 2009, 1001–1014, V 2009-Mar-2

A TABU SEARCH ALGORITHM FOR SCHEDULING
INDEPENDENT JOBS IN COMPUTATIONAL GRIDS

Fatos Xhafa, Javier Carretero

Department of Languages and Informatics Systems

Polytechnic University of Catalonia, Spain

e-mail: fatos@lsi.upc.edu

Bernabé Dorronsoro

Faculty of Science, Technology and Communication

University of Luxembourg, Luxembourg

e-mail: bernabe.dorronsoro@uni.lu

Enrique Alba

Deptartment of Languages and Computer Science

University of Málaga, Spain

e-mail: eat@lcc.uma.es

Revised manuscript received 9 December 2008

Abstract. The efficient allocation of jobs to grid resources is indispensable for high
performance grid-based applications, and it is a computationally hard problem even
when there are no dependencies among jobs. We present in this paper a new tabu
search (TS) algorithm for the problem of batch job scheduling on computational
grids. We define it as a bi-objective optimization problem, consisting of the mi-
nimization of the makespan and flowtime. Our TS is validated versus three other
algorithms in the literature for a classical benchmark. We additionally consider
some more realistic benchmarks with larger size instances in static and dynamic
environments. We show that our TS clearly outperforms the compared algorithms.

Keywords: Job scheduling, computational grid, tabu search

1002 F. Xhafa, J. Carretero, B. Dorronsoro, E. Alba

Mathematics Subject Classification 2000: 68T20

1 INTRODUCTION

Computational Grid (CG) is a new distributed computing paradigm for the deve-
lopment of large-scale distributed applications [4]. CGs currently represent a very
successful approach for large-scale distributed real-world applications [14]. Nonethe-
less, the grid computing paradigm is still raising important issues to be solved, like
the efficient dynamic allocation of jobs to geographically distributed grid resources.

Although the family of scheduling problems is one of the most studied ones by
the optimization research community, the application of the available approaches
to the job scheduling on CGs is not straightforward, as it differs significantly from
conventional scheduling in distributed systems. The reason is that scheduling in
grid systems adds new features not present in conventional scheduling problems.
Some examples are the heterogeneity of jobs, multi-objectivity (several – possibly
in conflict – objectives to reach, e.g., makespan, flowtime, or resource utilization),
the intrinsic dynamic nature of grids (jobs that are arriving, new resources arriving
or leaving, . . .), or the heterogeneity of resources and networks.

In this work, we are considering the scheduling of independent jobs, one simple
yet very important version of the problem. Given the large size and the decentralized
nature of grids, this type of scheduling arises naturally when independent users or
applications are continuously submitting jobs to the grid. One important implication
of this is that any grid scheduler must achieve allocations of jobs to resources in very
short times and must be able to adapt itself to the changes of the grid.

Heuristic methods have turned out to be a standard approach in combinatorial
optimization. Dealing in practice with real size problems makes the use of such
methods the de facto choice. One such method is the Tabu Search (TS), which
has shown its effectiveness in a broad range of combinatorial optimization problems.
In this work, we propose a new TS algorithm for a bi-objective definition of the
job scheduling problem on computational grids, consisting of the minimization of
makespan and flowtime.

The TS algorithm distinguishes for its flexibility in exploiting domain/problem
knowledge in the selection of parameters and other inner components. The TS im-
plementation presented here explores this flexibility, and thus by carefully designing
and implementing its sub-algorithms and tuning the parameters, our implementa-
tion is able to outperform other known heuristic approaches for a well-accepted
benchmark. We completed our experiments by analyzing the behavior of our TS on
more realistic benchmarks than the previous one, composed of larger size instances
(having up to 256 machines) in both static and dynamic environments.

The paper is organized as follows. In Section 2 we give the description of job
scheduling problem in CGs considered in this work. TS and its particularization
for the problem are given in Section 3. Next, we present our experimental study

TS for Scheduling Independent Jobs in Computational Grids 1003

in Section 4. In Section 5 we summarize our most important results, and indicate
directions for further work.

2 PROBLEM DEFINITION

In this section we present the job scheduling problem in computational grids. In this
paper we are using the model of Braun et al. [2] for simulating heterogeneous dis-
tributed environments. Using this model will allow us to make realistic simulations
of the grid system. It is presented in Section 2.1. Then, in Section 2.2 we describe
the bi-objective optimization problem we define for solving the problem.

2.1 The ETC Model

In the ETC model [2], a collection of independent jobs is considered for allocation of
resources. The model is based on the definition of the Expected Time to Compute
(ETC) matrix, in which ETC[j][m] indicates an estimation of how long will it take
to complete job j on resource m. One possible way to compute the ETC[j][m] values
is to divide the workload of job j by the computing capacity of resource m. We are
assuming here that the workload is known and, in practice, it can be obtained from
specifications provided by the user, from historical data, or from predictions [7, 8].

The ETC Matrix Model

1 8 10 4 5 2 3Workload

0 1 2 3 4 5 6

Job

3 15 9

0 4 3

Computing Capacity

Ready Time

0 1 2

Processor

2 5 7 3 9 4 3

6 9 8 7 4 3 7

7 8 9 5 3 2 5

0

1

2

0 1 2 3 4 5 6

Job

P
ro

c
e
s
s
o
r

Time needed
by machine 1
to compute
job 6

ETC Matrix

Fig. 1. The ETC matrix model is composed by the jobs workload, the processors com-
puting capacity and ready times, and the time required by processors to finish the
jobs

Using the ETC matrix model, an instance of the job scheduling, at an instant of
time, can be defined as (see Figure 1) a number of independent jobs to be allocated to
grid resources, a number of possible machines for the allocation of jobs, the workload

(in millions of instructions) of each job, the computing capacity of each machine
(in mips), the ready times, denoted readym, indicating when machine m can start
computing the assigned jobs, and the ETC matrix (with size nb jobs×nb machines),
where ETC[j][m] is the value of the expected time to compute of job j in machine m.

2.2 Objective Function

The problem of scheduling jobs for computational grids is in fact a multiobjective
task, since the we can use several criteria for measuring the quality of solutions.

1004 F. Xhafa, J. Carretero, B. Dorronsoro, E. Alba

Some examples are the makespan (the finishing time of the latest job), the flowtime

(the sum of finalization times of all the jobs), the completion time of jobs in every
machine (closely related to makespan), or maximizing the resource utilization.

In this work we are considering the minimization of makespan and flowtime

defined in (1), where Fj denotes the time when job j finalizes and Sched is the set
of all possible schedules in a single weighted function. On the one hand, makespan
is an indicator of the general productivity of the grid system (it is very commonly
used in scheduling problems). On the other hand, flowtime is an indicator of the
response time to the user petitions for job executions. Small response times indicate
high QoS of the system.

makespan = min
Si∈Sched

{

max
j∈Jobs

Fj

}

; flowtime = min
Si∈Sched

∑

j∈Jobs

Fj

. (1)

Note that makespan is not affected by any particular execution order of the
jobs in a concrete resource, while in order to minimize flowtime of a resource, jobs
should be executed in an ascending order of their ETC value. In fact, makespan
and flowtime are contradictory objectives, in the sense that trying to minimize one
of them could be in detriment of the other, especially for near-optimal schedu-
les.

For solving the problem, we designed a hierarchical algorithm in which the
two objectives are optimized in different steps: the algorithm first optimizes the
considered most important objective (makespan) and after that it optimizes the
secondary goal, namely, the flowtime, without worsening the makespan value. The
objective value of a given solution S is then computed as (being λ a predefined
parameter for weighting the importance of every objective):

fitness(S) = λ ·makespan(S) + (1− λ) ·
flowtime(S)

nb machines
. (2)

3 DESCRIPTION OF THE TABU SEARCH ALGORITHM

We present here the TS algorithm proposed for solving the problem described in
Section 2. TS was introduced as a high-level algorithm that uses other specific
heuristics to guide the search [5]; the goal is performing an intelligent exploration
of the search space that would allow to avoid getting trapped into local optima.
In Algorithm 1 we show a generic pseudocode for TS. This general template offers
many different possibilities for highly specializing our TS algorithm for a concrete
problem just by designing its inner heuristics and appropriate data structures.

As can be seen from the template of Algorithm 1, one of the distinguishing
features of TS versus other heuristics is the use of a historical memory, which consists
of a short term memory (or recency) with information on recently visited solutions,
and a long term memory (or frequency) storing information gathered during the

TS for Scheduling Independent Jobs in Computational Grids 1005

Algorithm 1 A Template for Tabu Search Algorithm
Compute an initial solution s; let ŝ← s;
Reset the tabu and aspiration conditions;
while not termination-condition do

Generate a subset of solutions N∗(s) that do not violate the tabu conditions or hold
the aspiration criteria;
Choose the best s′ ∈ N∗(s) with respect to the cost function; s← s′;
if improvement(s′, ŝ)) then ŝ← s′;
Update the recency and frequency;
if (intensification condition) then Perform intensification procedure;
if (diversification condition) then Perform diversification procedures;

end while
return ŝ;

whole complete exploration process. The movements in these two lists are considered
tabu and then they cannot be used. Thus, some aspiration criteria are needed
for removing the tabu movements. Additionally, we need to specify some inner
heuristics like the local search, used for exploring the neighborhood of a solution,
or the intensification and diversification procedures, for appropriately managing the
exploration/exploitation tradeoff on the search space. We describe the components
of our algorithm next:

Solution representation. A schedule is represented as a vector of size nb jobs, in
which schedule[i] indicates the machine where job i is assigned to.

Movements. Two types of movements are considered for this representation [13]:
transfer and swap. Transfer moves a job from one machine to another, while
swap exchanges two jobs assigned to different machines.

Initial solution. It is generated with the Min-Min method. It starts by com-
puting a matrix completion[i][j] with the time when every job would finish in
each machine (completion[i][j] = ETC[i][j] + ready[j]). Then we choose the
job k and machine m with the earliest completion time (completion[k][m] ≤
completion[i][j] ∀i, j), remove k from the set of jobs, and update completion[i][j]
for the rest of jobs. This process is repeated until all jobs are assigned.

Historical memory. Three different memories have been used: 1) the recency

memory (a tabu list with the last time each job was assigned to every ma-
chine [12]), 2) a tabu hash table with the visited solutions, and 3) a frequency

memory (storing how many times every job has been assigned each machine).

Aspiration criteria. Two criteria are used to accept tabu movements: 1) fitness
(they are accepted when yielding to better solutions), and 2) makespan (move-
ments improving the makespan of the solution are allowed).

Neighborhood exploration. It is done by means of load balancing: movements
made among jobs assigned to most- and less-loaded machines. Our TS considers
first the neighbors providing the best improvements – in terms of the completion

1006 F. Xhafa, J. Carretero, B. Dorronsoro, E. Alba

time, i.e., the time when a machine finishes all its tasks, see (3) – in the solution,
or the least worst movement in case no better solutions are found.

completion[m] = ready times[m] +
∑

{j∈Jobs | schedule[j]=m}

ETC[j][m] , (3)

Intensification. It is executed when there is evidence that the current solution is in
a promising region. Thus, a deeper exploration of this area is done by rewarding
(attributes of) the current solution, forcing their presence in the new ones. For
that we use a combination of the following three strategies (they are applied in
this order one by one until no improvements are possible):

1. The most promising attributes of solutions (from the frequency memory)
are rewarded. The most frequent job assignments are chosen with probabi-
lity .75, while in other case (probability .25) a roulette-wheel is used in the
assignment.

2. The values for the maximum and minimum load factor parameters are tem-
porarily changed by using the current state of the grid (in terms of the
workload of machines) with the only condition that the number of resulting
transfers and swaps are bounded by their respective upper bounds. Then,
the neighborhood is defined by these new values.

3. The structure of the neighborhood is changed by applying all the possible
swap movements between two machines, and then performing just one trans-
fer from one machine to the other.

Diversification. We use three soft diversification methods (performing slight per-
turbations to the solution), and a strong diversification (hard perturbation):

• Using the job distribution (or influential diversification [6]). It lies in redis-
tributing the jobs to machines so that both long and short jobs are assigned
to every machine, thus improving the load balancing of resources.

• Using penalization of ETC values. We use the frequency memory to penalize
the corresponding ETC values of most frequent job-machine assignments.

• Freezing jobs. Jobs that have most frequently changed their assignments are
frozen (we set tabu to all movements involving the job during the iteration).
After the diversification, the tabu status of this (these) job(s) is cancelled.

• Strong diversification. We perform a large perturbation of the current solu-
tion by randomly changing the assignments of a sufficient number of jobs.

4 EXPERIMENTAL STUDY

In this section, we present the results we obtained with our TS implementation. Our
tests were made on a Pentium III 550MHz, 256MB RAM, and the algorithm was
implemented in C++ using the MALLBA framework [1]. We validate our TS by

TS for Scheduling Independent Jobs in Computational Grids 1007

comparing it with some other algorithms in the literature on a classical benchmark
of the problem (Section 4.1). After that, we tackle two new benchmarks composed
by a set of much larger static (Section 4.2) and dynamic (Section 4.3) instances.

4.1 Validation of the Algorithm in a Classical Benchmark

The objective of the study presented in this section is to show the quality of the
TS algorithm we propose in this work. For that, our algorithm is compared versus
some other optimization algorithms that were previously applied in the literature
to the considered problem. The benchmark of instances considered in this study
is presented in Section 4.1.1, while the parametrization used for the TS algorithm
for solving these problems is given in Section 4.1.2. Finally, our results and the
comparison with other algorithms in the literature is provided in Section 4.1.3.

4.1.1 Benchmark Description

This section describes the benchmark by Braun et al. [2]. It is a frequently used
benchmark, very effective in simulating grid systems and capturing most important
characteristics of the job scheduling problem. In it, instances are classified according
to three parameters (job heterogeneity, machine heterogeneity, and consistency)
into 12 different types of ETC matrices, each of them consisting of 100 instances.
All instances are composed from 512 jobs and 16 machines. They are labelled as
u x yyzz.k where u means uniform distribution (in the matrix generation), x is the
type of consistency (c – consistent, i – inconsistent and s means semi-consistent),
yy and zz indicate the job and machine heterogeneity (hi – high, and lo – low),
and k is used to number instances of the same type. An ETC matrix is consistent
when if a machine is faster than other for some job, then it is faster for all the jobs.
Inconsistency means that a machine is faster for some jobs and slower for some
others, while it is semi-consistent if it contains a consistent sub-matrix.

4.1.2 Parametrization

In this section we present the parameters of our algorithm. The size of the tabu
hash table (TH) is set to 918 133, which is a high number and non divisible by 20,
as it is recommended by Srivastava [11]. The maximum number of iterations
a solution remains tabu (max tabu status) is chosen uniformly from the interval
[nb machines, 2 · nb machines], and the maximum number of successive iterations
without improvements of the current solution implying the activation of the intensi-
fication is fixed to 4 ln(nb jobs)·ln(nb machines). The number of iterations of a diver-
sification and an intensification are set to log2(nb jobs). Finally, we consider a num-
ber of 30 elite solutions, and a value of (max tabu status/2)− log2(max tabu status)
for the minimum number of iterations after which a tabu movement can aspire. The
algorithm runs for 100 seconds (a realistic run time for scheduling tasks in grids).

1008 F. Xhafa, J. Carretero, B. Dorronsoro, E. Alba

Additionally, we did not use a fast computer in our tests, so we are providing here
lower bounds for the results, that are expected to be improved with faster machines.

4.1.3 Computational Results

Here we compare the proposed TS algorithm to other state-of-the-art algorithms
for the classical benchmark described in Section 4.1.1. These compared algorithms
are a TS implementation and a hybrid ACO+TS algorithm due to Ritchie [10], and
a cellular memetic algorithm cMA hybridized with a TS as local search step [15].

The four algorithms are compared in Table 1 in terms of the average makespan
values. We can not compare them in terms of flowtime because the authors of the
other algorithms do not provide this result. In the case of both our TS algorithm and
the cMA, each reported value is the average makespan value out of 10 executions.
Conversely, in the case of the other two compared algorithms, the results were
obtained after one single run, as it is reported in the original work.

As can be seen in Table 1, our TS outperforms the other algorithms for 8 out of
the 12 considered instances (see the bold values). In the other 4 instances, ACO+TS
provides the best results, but differences with respect to our TS algorithm (which is
the second best one for these instances) are small. Additionally, we should mention
at this point the reduced execution time of 100 seconds fixed as the stopping criterion
for our TS, which is far lower than Ritchie’s run times (over 3.5 hours).

In order to measure the accuracy of our proposal, we computed the deviation of
the average makespan with respect to our best makespan value (in percentage), and
the average value obtained for this parameter in all the tested instances is 0.112 %.

Instance
TS ACO+TS cMA

Our TS
Ritche et al. Ritche et al. Xhafa et al.

u c hihi.0 7 568 871.83 7 497 200.85 7 554 119.35 7 458 864.45
u c hilo.0 154 644.48 154 234.63 154 057.58 153 438.08
u c lohi.0 245 981.55 244 097.28 247 421.28 242 385.38
u c lolo.0 5 202.51 5 178.44 5 184.79 5 155.78
u i hihi.0 3 021 155.10 2 947 754.12 3 054 137.65 2 959 029.35
u i hilo.0 74 400.68 73 776.24 75 005.49 73 734.84
u i lohi.0 104 309.12 102 445.82 106 158.73 103 867.13
u i lolo.0 2 580.62 2 553.54 2 597.02 2 559.96
u s hihi.0 4 248 200.21 4 162 547.92 4 337 494.59 4 181 985.83
u s hilo.0 97 711.72 96 762.00 97 426.21 96 432.14
u s lohi.0 126 115.39 123 922.03 128 216.07 123 600.51
u s lolo.0 3 505.69 3 455.22 3 488.30 3 454.02

Table 1. Comparison versus other algorithms in the literature. Average makespan values.

Summarizing, the proposed TS outperforms the compared algorithms for all the
instances. The exceptions are the inconsistent ones, for which the ACO+TS obtains
slightly better results. We believe that this better performance of our TS imple-
mentation is due to a better embedding of problem specific knowledge into the

TS for Scheduling Independent Jobs in Computational Grids 1009

components of the algorithm. Additionally, our TS algorithm runs for 100 seconds,
much less than the 3.5 hours of ACO+TS. This is an important result, since the
execution time of the scheduler in the dynamic environment of grid systems is a cri-
tical factor. Thus, the short execution times achieved by our TS yields to fast and
significant reductions of makespan, making it very suitable for real grid schedulers.

4.2 Experimentation with Larger Size Static Instances

After validating our TS algorithm in Section 4.1 with other existing algorithms in
the literature, we proceed now to analyze its behavior with more realistic problems.
For that, we generated a new benchmark by extending the HyperSim open source
package [9] to simulate a grid system. The parametrization used for the simulator
(shown in Table 2) has been carefully set in order to have different kinds of real
grids. This way, we have defined grids of different sizes (all of them larger than
those of Section 4.1.1), grouped into four different sets called small (32 hosts/512
tasks), medium (64 hosts/1 024 tasks), large (128 hosts/2 048 tasks), and very large
(256 hosts/4 096 tasks). Both the capacity of resources and the workload of tasks
are randomly set following a normal distribution. Finally, all resources of the system
can be used, all tasks must be scheduled, and the benchmark is created from the
average results obtained after 15 runs of the simulator.

Small Medium Large Very Large

Number of hosts 32 64 128 256
Resource capacities (in MIPS) N(1 000, 175)∗

Total number of tasks 512 1 024 2 048 4 096
Workload of tasks N(2.5 ∗ 108, 4.375 ∗ 107)
Host selection All
Task selection All
Number of runs 15
∗N(µ, σ) is a uniform distribution with average value µ and standard deviation σ

Table 2. Settings for the grid simulator for generating large static instances

In Table 3 we give the makespan and flowtime values obtained by our TS algo-
rithm for the new larger set of instances. In Table 3 we observe that makespan value
increases slowly as the instance size is doubled, while flowtime increases considerably.
It is almost doubled when doubling the instance size.

Instance size Small Medium Large Very large

Makespan ±% C.I (0.95) 3 969 016.842 3 970 894.032 3 980 381.381 3 972 429.011
±0.3833% ±0.4103% ±0.4092% ±0.4074%

Flowtime ±%C.I (0.95) 104 786 744.1 210 295 284.0 419 926 173.3 833 351 728.9
±0.9284% ±0.8355% ±0.8440% ±0.9033%

Table 3. Makespan valued for larger size instances (C.I. – Confidence Interval)

1010 F. Xhafa, J. Carretero, B. Dorronsoro, E. Alba

4.3 Experimentation with Dynamic Instances

As an extension to the experiments carried out in previous sections, we proceed here
to apply our TS algorithm to a more realistic benchmark composed by dynamic
instances (from 32 to 256 machines) in order to evaluate its performance in more
realistic scenarios. The application of the scheduler to dynamic instances is possible
because its high speed finding quality planning allows us to run it in batch mode. In
this case we use the same simulator, but with some additional parameters (explained
below). The TS-based scheduler is plugged into the Grid simulator. When an event
schedule occurs in the simulator, the problem instance is passed to the TS scheduler
to find a good scheduling. This solution of the TS is then sent back to the simulator
to generate the new state of the grid. This process is repeated until all jobs are
scheduled. Results are averaged over 15 runs of the simulator.

Small Medium Large Very Large

Init. hosts [max., min.] 32 [37, 27] 64 [70, 58] 128 [135, 121] 256 [264, 148]
MIPS N(1 000, 175)
Add host N(625 000, 93 750) N(562 500, 84 375) N(500 000, 75 000) N(437 500, 65 625)
Delete host N(625 000, 93 750)
Total tasks 512 1 024 2 048 4 096
Init. tasks 384 768 1 536 3 072
Workload N(2.5 ∗ 108, 4.375 ∗ 107)
Interarrival E(7 812.5)† E(3 906.25) E(1 953.125) E(976.5625)
Activation Resource and time interval (250 000)
Reschedule True
Host select All
Task select All
Number of runs 15
†E(µ) is an exponential distribution an average value µ

Table 4. Settings for the dynamic grid simulator

The parameters used in this case are shown in Table 4. As can be seen, the
value for the number of hosts is now defined as an initial value and an interval in
which this value can vary during the simulation, emulating resources that become
available and unavailable in the grid (the frequency of appearing and disappearing
resources is defined with the normal distributions given by add host and delete host,
respectively). The initial number of tasks is given by init. tasks, and new tasks arrive
with frequency interarrival until total tasks is reached. Activation establishes the
activation policy according to an exponential distribution. The already scheduled
tasks that have not been executed yet will be rescheduled if reschedule is true.

In Table 5 we give the makespan and flowtime values obtained for this dynamic
benchmark. We observe here a similar behavior as in the case of the large static
instances (see Section 4.2): the makespan value increases slowly as the instance size
is doubled, while the flowtime value is also doubled. Additionally, in Table 5 we
compare the performance of our TS versus a steady-state genetic algorithm (ssGA)
proposed by Carretero and Xhafa in [3]. The algorithms are compared only in
terms of the makespan because no values for flowtime were reported in the referred
work. As can be seen, our TS outperforms the compared algorithm for the studied
instances, as it previously happened in Section 4.1 for the static benchmark. Thus,

TS for Scheduling Independent Jobs in Computational Grids 1011

our TS is a robust solution that outperformed some of the state-of-the-art algorithms
both in static and dynamic environments.

Size
Makespan ±%C.I (0.95) Flowtime ±%C.I (0.95)

TS ssGA TS

32 3 969 016.8±0.4% 4 063 425.5±0.8% 104 786 744.1±0.9%

64 3 970 894.0±0.4% 3 994 804.9±0.9% 210 295 284.0±0.8%

128 3 980 381.4±0.4% 3 995 162.0±1.3% 419 926 173.3±0.8%

256 3 972 429.0±0.4% 4 009 852.0±1.8% 833 351 728.9±0.9%

Table 5. Makespan and flowtime values for dynamic instances (C.I.: Confidence Interval)

5 CONCLUSIONS AND FURTHER WORK

In this work we have presented a Tabu Search (TS) implementation for scheduling
independent jobs in grid systems. This scheduling problem is currently receiving
considerable attention from researchers due to its importance in obtaining high per-
formance applications for running highly costly algorithms using grid systems. TS
has been considered here to cope with the complexity of the problem and because
it has shown to be very effective for a variety of optimization problems, including
scheduling problems. As a matter of fact, TS has been previously considered for
solving the scheduling problem by Ritchie and Levine in 2004, but the reported
execution times are prohibitive for a grid system given its dynamic nature. There-
fore, our main objective was to obtain an efficient implementation that would yield
to a scheduler for realistic grid systems. Our computational results show that our
TS scheduler outperforms Ritchie’s implementations for most of the considered in-
stances at far inferior executions times. Additionally, our TS has also been tested
in more realistic frameworks (larger static and dynamic instances), outperforming
also previous approaches.

In our further work we would like to go deeper into the experimental study of
the TS scheduler in the dynamic setting. Also, we would like to consider much larger
size instances, and to address parallelization of the TS implementation using existing
parallel models for the method in the literature. Finally, another interesting issue is
the decentralized definition of the problem, so that the grid can support more than
one scheduler.

Acknowledgment

The research was partially supported by ASCE TIN2005-09198-C02-02, FP6-2004-
IST-FETPI (AEOLUS) and MEC TIN2005-25859-E Projects. E. Alba acknowledges
partial support for project P07-TIC-03044 (http://diricom.lcc.uma.es/).

1012 F. Xhafa, J. Carretero, B. Dorronsoro, E. Alba

REFERENCES

[1] Alba, E.—Almeida, F.—Blesa, M.—Cotta, C.—Dı́az, M.—Dorta, I.—

Gabarró, J.—León, C.—Luque, G.—Petit, J.—Rodŕıguez, C.—

Rojas, A.—Xhafa, F.: Efficient parallel LAN/WAN algorithms for optimization.
The Mallba project. Parallel Computing, Vol. 32, 2006, No. 5–6, pp. 415–440.

[2] Ali, S.—Siegel, H.J.—Maheswaran, M.—Hensgen, D.—Ali, S.: Repre-
senting Task and Machine Heterogeneities for Heterogeneous Computing Systems.
Tamkang Journal of Science and Engineering, Vol. 3, 2000, No. 3, pp. 195–207.

[3] Carretero, J.—Xhafa, F.: Using Genetic Algorithms for Scheduling Jobs in
Large Scale Grid Applications. Journal of Technological and Economic Development –
A Research Journal of Vilnius Gediminas Technical Univ., Vol. 12, 2006, No. 1,
pp. 11–17.

[4] Foster, I.—Kesselman, C.: The Grid – Blueprint for a New Computing Infra-
structure. Morgan Kaufmann Publishers, 1998.

[5] Glover, F.: Future Paths for Integer Programming and Links to Artificial Intelli-
gence. Computers and Op. Res., Vol. 5, 1986, pp. 533–549.

[6] Hübscher, R.—Glover, F.: Applying Tabu Search With Influential Diversifi-
cation to Multiprocessor Scheduling. Comput. Oper. Res., Vol. 21, 1994, No. 8,
pp. 877–884.

[7] Hotovy, S.: Workload Evolution on the Cornell Theory Center IBM SP2. In Job
Scheduling Strategies for Parallel Proc. Workshop, IPPS ’96, 1996, pp. 27–40.

[8] The Hebrew University Parallel Systems Lab. Parallel workload archive. http://www.
cs.huji.ac.il/labs/parallel/workload/.

[9] Phatanapherom, S.—Kachitvichyanukul, V.: Fast Simulation Model for Grid
Scheduling Using Hypersim. In Winter Simulation Conf., Vol. 2, 2003, pp. 1494–1500.

[10] Ritchie, G.—Levine, J.: A Hybrid Ant Algorithm for Scheduling Independent
Jobs in Heterogeneous Computing Environments. In Workshop of the UK Planning
and Scheduling Special Interest Group, PLANSIG2004, 2004.

[11] Srivastava, B.: An Affective Heuristic for Minimising Makespan on Unrelated Pa-
rallel Machines. Journal of the Op. Research Soc., Vol. 49, 1998, No. 8, pp. 886–894.

[12] Taillard, E.: Robust Tabu Search for the Quadratic Assignment Problem. Parallel
Computing, Vol. 17, 1991, pp. 443–455.

[13] Thesen, A.: Design and Evaluation of Tabu Search Algorithms for Multiprocessor
Scheduling. Journal Heuristics, Vol. 4, 1998, No. 2, pp. 141–160.

[14] Talbi, E.-G.—Zomaya, A.: Grids for Bioinformatics and Computational Biology.
John Wiley& Sons, USA, 2007.

[15] Xhafa, F.—Alba, E.—Dorronsoro, B.—Duran, B.: Efficient Batch Job
Scheduling in Grids Using Cellular Memetic Algorithms. Journal of Mathematical
Modelling and Algorithms, Vol. 7, 2008, No. 2, pp. 217–236, Kluwer.

TS for Scheduling Independent Jobs in Computational Grids 1013

Fatos Xhafa received his Ph.D. in computer science from the

Technical University of Catalonia, UPC (Barcelona, Spain) in
1998. He is currently Associate Professor and member of the
ALBCOM Research Group of LSI department. His current re-
search interests include parallel algorithms, combinatorial opti-
mization, approximation and meta-heuristics, distributed pro-
gramming, Grid and P2P computing. He has published in lead-
ing international journals and conferences and has served in the
Organizing Committees of many conferences and workshops. He
served as Organizing Chair of ARES 2008, PC chair of CISIS

2008, Workshops co-chair of CISIS 2008 and General co-chair of HIS 2008 conferences.
Presently he is Workshop Chair of CISIS-2009.

Javier Carretero received the M. Sc. degree in computer en-
gineering from UPC in 2005. Since April 2006, he is a research
scientist of the Intel Barcelona Research Center. He is currently
doing the PhD at UPC on the area of resiliency. His main re-
search interests include processor micro-architecture, hardware
reliability, and lightweight on-line testing, Grid computing, op-
timization, failure detection and networking systems.

Bernabé Dorronsoro received the degree in engineering
(2002) and the Ph.D. in computer science (2007) from the Uni-
versity of Málaga (Spain), and he is currently working as scien-
tific collaborator at the University of Luxembourg. His main
research interests include grid computing, ad hoc networks, the
design of new efficient meta-heuristics, and their application for
solving complex real-world problems. He has been member of
the organizing committees of several conferences and workshops,
and he usually serves as reviewer for leading impact journals and
conferences.

1014 F. Xhafa, J. Carretero, B. Dorronsoro, E. Alba

Enrique Alba received his degree in engineering and Ph. D.

in computer science in 1992 and 1999, respectively, from the
University of Málaga (Spain). He works as a Professor in this
university. He leads a team of 7 doctors and 8 engineers in the
field of complex optimization. In addition to the organization
of international events he has offered dozens doctorate courses,
multiple seminars in more than 20 international institutions and
has directed several research projects (4 with national funds, 3 in
Europe and numerous bilateral actions). He also works as invited
professor at INRIA and the University of Luxembourg. He is

editor in 13 international journals and one book series of Springer-Verlag. He has published
in journals indexed by Thomson ISI, papers in LNCS, and in refereed conferences.

