
Computing and Informatics, Vol. 24, 2005, 31–51

A SCALABLE NETWORK ARCHITECTURE
FOR CLOSELY COUPLED COLLABORATION

Christoph Anthes

GUP Linz
Johannes Kepler University Linz
Altenbergerstraße 69
A-4040 Linz, Austria/Europe
e-mail: canthes@gup.jku.at

Adrian Haffegee

Centre for Advanced Computing and Emerging Technologies
The University of Reading
Reading, RG6 6AY
United Kingdom
e-mail: sir04amh@reading.ac.uk

Paul Heinzlreiter, Jens Volkert

GUP Linz
Johannes Kepler University Linz
Altenbergerstraße 69
A-4040 Linz, Austria/Europe

Manuscript received 16 December 2004

Abstract. This article describes the architecture and the network communication
of a large-scale, networked virtual environment, which is designed to specifically
support closely-coupled collaboration in highly interactive scenarios.

Its main goals are the maintenance of low latency during user interaction and fast
multicasting of messages in order to fulfill consistency requirements. This is achieved
by sophisticated message distribution techniques, peer-to-peer connections between

32 C. Anthes, A. Haffegee, P. Heinzlreiter, J. Volkert

interacting clients and a global hierarchical communication topology. Scalability is

realised through partitioning the virtual world.

Keywords: Distributed virtual environments, closely-coupled collaboration, scal-
ability

1 INTRODUCTION

In recent years a growing interest can be observed in the area of large scale virtual
environments (VEs). They have become typical Virtual Reality (VR) applications.
These VEs can be identified by their huge size and complexity, as well as their large
population numbers. In many cases the characters populating these environments
represent human users which are connected to the environment over a network.
An important example application domain of these VEs are Massively Multiplayer
Online Roleplaying Games such as Everquest [12]. Other typical applications span
the areas of training scenarios, military simulations [15], or virtual meetings [9].

For supporting such large environments, while also maintaining a tolerable la-
tency during interaction within the VE such environments are commonly distributed
over several computers. They are therefore identified as distributed virtual environ-
ments (DVEs) or networked virtual environments (NVEs). The clients use replicated
databases and run their own simulations of the virtual world while being synchro-
nised over the network. The biggest challenge in these environments is allowing
many users to experience the world concurrently and to interact with it in real time.
Geographically dislocated users should be able to be immersed to the degree that
they really feel to be colocated within the environment.

Considering interaction its highest level is defined by [21] as truly concurrent
object manipulation. This is what we understand as closely-coupled collaboration;
the concurrent manipulation of the same attribute or attributes of an object by
two or more users. In a cooperative scenario which is different from a collaborative
scenario as defined by [5] users can share the same environment but they are only
able to manipulate the world sequentially, as implemented in the most computer
supported cooperative work (CSCW) applications. Closely-coupled collaboration
needs very low latencies since more than one user are directly integrated in the
simulation loop. The world is manipulated based on the perception of one user and
the reaction of another collaborating participant. Enabling this type of interaction
poses high requirements onto the systems network layer by requiring a maximum
lag of 200 milliseconds during interaction [23].

The networking architecture described in this article addresses the issues of
closely-coupled collaboration using peer-to-peer (p2p) connections between clients,
while the issue of scalability is addressed by distributing messages of global concern
hierarchically. This networking architecture is part of a framework which will allow
the intuitive design of highly interactive NVE applications.

Scalable Network Architecture for CCC 33

The article is structured as follows: After a discussion of related work in the area
of NVEs Section 3 gives an overview over the networking topology of our system.
Subsequently message types as well as their distribution mechanisms are discussed in
Section 4. Section 5 addresses the issues of fault tolerance of the environment before
Section 6 describes the testing environment with some test results being presented
in Section 7. Finally a discussion of future work concludes the paper.

2 RELATED WORK

In the last few years research has been undertaken in the area of NVEs. Many
different approaches have been suggested to address various issues. Good overviews
of the field are given in [16, 19, 22, 27].

A very common approach is to partition the whole environment into subsections
of different shapes and sizes. NPSNET [20] and SIMNET [8], which are focused on
military applications distribute state updates using broadcast messages and dead
reckoning to hide latencies. In NPSNET the world is partitioned into regions of
hexagonal shape. Entities in this environment send their messages to the multicast
group of the region they belong to as well as to the surrounding regions via their
multicast groups. This approach scales well if the entities are distributed evenly
over the groups. Participating entities in an NPSNET system communicate over the
DIS [11] protocol, which enables integration of independently developed components.

Spline [4] splits the world into regions called ‘Locales’ which can be of arbitrary
size and shape. The world can be designed to avoid the initial occurrence of too
many clients in one region. The disadvantage in this approach is due to movement
of the entities in the environment; the size and shape of the regions would have to
change dynamically, which is computationally intense.

The RING system [14] takes the line of sight between two participants into
account to judge the update rate between two clients. If two entities cannot see
each other no real-time updates are needed, the latency requirements for updates
are reduced significantly. This is achieved by a client-server system, where the server
routes the messages according to the visibility relation between two clients. The
visibility approach is also applied for spatial partitioning by identifying non-visible
portions of the scene.

All of the above address the issue of scalability by partitioning NVEs. Other
NVEs work with completely replicated databases or by using a p2p architecture.
Another notable NVE system, MASSIVE, is described in [3]. It uses p2p connections
for managing interaction between the VE participants and implements a spatial
model of interaction by taking into account the aura of two avatars for judging
the necessity of a p2p connection. MASSIVE guarantees a high responsiveness and
low latencies using p2p connections between several clients once the connections
are established. Another interesting aspect of MASSIVE is the use of different
connections for different media types. Some approaches try to work only on p2p
architectures, like the distributed VR chat application described in [17].

34 C. Anthes, A. Haffegee, P. Heinzlreiter, J. Volkert

The DIVE system [13] can be used for building distributed VR applications
across local and wide-area networks. It supports different types of devices like the
CAVE [10] and desktop workstations and uses a replicated database which is updated
concurrently using multicast network communication.

Virtual Life Network (VLNET) [24] is a collaborative, client-server based DVE,
which offers a modular, extendible architecture as well as support for gestural and
facial communication by a high-level virtual human representation.

Another huge field in the area of NVEs is the research on protocols which allow
efficient communication between dislocated entities. The most important of these
protocols are VRTP [7], DWTP [6] and the DIS protocol. An interesting approach in
this field is Bamboo [28] which uses dynamical download and installation of network-
ing protocols, to guarantee an optimal runtime performance in the communication
between objects.

Considering the collaboration aspect of DVEs, not many approaches supporting
closely-coupled collaboration have been undertaken so far. A scenario where two
users are carrying a piano through a virtual scene is described in [26]. To minimize
the effects of network latency, this system operates over a LAN, which results in
smooth avatar movement. Within the scenario described in [25], the users collabo-
ratively build a virtual gazebo. This scenario is built on top of DIVE.

In [18] an approach for collaborative virtual sculpting is elaborated, which is
based on a hybrid client-server and a peer-to-peer architecture to allow real-time
deformation and rendering of objects.

Considering the work discussed above, none of the network architectures is
specifically addressing the aspects of closely-coupled collaboration in combination
with large scalability. Our approach is to combine the concepts of hybrid client-
server and p2p architectures with a replicated world database in order to guarantee
latencies below 200 milliseconds and still provide high scalability.

3 NETWORK TOPOLOGY

3.1 Terminology

For supporting the understanding of some important terms within the network to-
pology a short description of their meaning within the context of this paper is given
here:

Client: A client is a computer which has joined the VE and is represented therein
as an avatar.

Portal server: The portal server acts as a single entry point into the NVE for new
clients.

Domain: A domain is a VE part of varying size which is managed by a single
domain server.

Domain server: A domain server is a client, which has taken over the additional
responsibility of managing the domain where it is located.

Scalable Network Architecture for CCC 35

Segment: A segment is a part of a domain which has a fixed size and serves as an
atomic element for domain splitting, merging, or resizing operations.

Cluster representative: A cluster representative routes global state update mes-
sages between the domain servers.

Area of interest: An area of interest (AoI) is a sphere around a client defining the
part of the VE which can be directly influenced by it.

3.2 Structure

Several approaches of different NVEs are combined in our network architecture to en-
able closely-coupled collaboration in a scalable environment. The distributed system
is composed of the following entities: clients, domain servers, cluster representatives,
and the portal server.

The interrelation of these entities is illustrated in Figure 1. The cluster repre-
sentatives are shown on top in dark grey, the domain servers are on the intermediate
layer coloured in light grey, whereas the white clients are located at the bottom. The
figure also illustrates the communication topology.

Fig. 1. Entity hierarchy

The main role of the portal server is that of a single entry point for new clients
joining the system. It accepts client connections, does the initial synchronisation
with the world database by providing the client with the scene information required
and integrates it into the communication topology.

The clients are represented within the VE by their avatars. They have abilities
to interact with each other and the environment and hold a replicated VE database.

A domain server is a client, which additionally acts as administrator of its do-
main and as a communication interface towards the other domain servers and the
responsible cluster representative. This interface function is used for the distri-
bution of messages of global concern, such as state updates. Thus all clients are
directly connected to the domain server responsible for the domain in which they
are currently located.

Domains can be split, which subsequently generates a new domain, by turning
a client system into a new domain server. This takes place if the number of clients
becomes too large for a single domain server. New clients joining the domain are then

36 C. Anthes, A. Haffegee, P. Heinzlreiter, J. Volkert

connected to the new domain server. If the population count of a domain becomes
too low to justify its existence or if the domain server loses its network connection
the reverse operation takes place and the domain is merged with a neighbouring
one.

A cluster representative embodies the next level up the hierarchy. It routes
messages between the clients located within its cluster of domain servers and the
outer world.

For starting up a new NVE only a portal server is needed. The first client
connecting to the portal server becomes domain server and also a cluster represen-
tative. As a domain server it will arrange the connections between its future clients
in order to provide maximum communication performance. A subsequently joining
client connects to the portal server and receives the object states to initialize its
replicated object database. After that it is passed on to the domain server, which
is responsible for the domain where the client is currently located within the VE.

We identify inter-domain and intra-domain communication as different types of
communication using their own types of logical network topologies. Position and
orientation changes of objects and avatars are handled by intra-domain commu-
nication, while inter-domain communication deals with state updates and avatar
migration. Domain splitting and merging are two operations which involve both
types of communication. Although domain splitting is initiated within the intra-
domain topology, it mainly affects the inter-domain topology. A domain merge is an
operation initiated by inter-domain communication, while ending up in intra-domain
communication when finished.

3.3 Inter-Domain Topology

The main task of the inter-domain network topology is the distribution of state
updates between different domains. Each domain server is directly connected to its
cluster representative and also to the directly adjacent domain servers, which are
identified by their domains sharing a common border or corner.

The inter-domain topology is shown in Figure 2, where the domain servers are
shown as light grey blocks, while the cluster representatives are represented as black
boxes. The connections to the neighbouring domain servers are shown as thin arrows,
while the connections to the cluster representatives are displayed by the dashed
strong ones. The cluster representatives are interconnected with large grey arrows
within the picture.

3.4 Intra-domain topology

The communication topology within a domain consists of the connections of the
domain server towards all the clients and transient p2p connections between clients
currently performing a closely-coupled collaboration. The establishment of such a
p2p connection is initiated by the domain server, since it knows the location of all
clients within its domain. If two avatars are approaching each other, their areas

Scalable Network Architecture for CCC 37

Fig. 2. Inter-domain topology

of interest (AoIs) are used by the domain server to decide the necessity for a p2p
connection. In contrast to the approach used within the MASSIVE system [3] where
the AoIs are referred to as auras, we define an AoI as a sphere around an object
defining its area of possible influence and interaction. Figure 3 shows a domain
server and several clients in a typical intra-domain topology. It shows different levels
for the AoI as rings around each of the entities. These represent ranges that are
used for influencing p2p connections, and the messages sent over them. The solid
lines represent permanent connections between the DS and every client, whereas
the dotted lines indicate the transient connections which are established based on
inter-client distances.

Fig. 3. Intra-domain topology

3.4.1 Segments

Each domain is split up into several segments. The segments have a fixed size
and are used for geometrical structuring of the scene. For splitting and merging
operations segments are treated as atomic. Another important use of segments is
the addressing of positions in the VE. Each segment has its own local coordinate

38 C. Anthes, A. Haffegee, P. Heinzlreiter, J. Volkert

system which is required to deliver the necessary precision while not limiting the
size of the whole VE.

4 MESSAGE DISTRIBUTION

Actions within the VE initiated by clients such as movement and interaction result
in messages which have to be distributed to maintain the consistency of the envi-
ronment. One can identify tracking data, state updates, and synchronisation data
as different categories of messages.

4.1 Tracking Data

Tracking data is automatically generated when using VR systems like Head Mounted
Displays (HMDs) or CAVEs [10]. It represents the position and orientation of dif-
ferent sensors, whose number can differ according to the hardware which is available
within the VR system. Typically two sensors are used which are tracking the head
of the user as well as the input device located in the users hand. Each sensor is de-
livering position and orientation information, each represented as a vector of three
floating point values.

The head trackers position and orientation as well as the controller are evaluated
for positioning the avatar representing that user within the VE. The position values
of the head are also used to measure the distance between two avatars within the VE.
This distance information steers the level of detail which is used to represent the
other avatar within the users field of view.

If two users are close to each other communication using postures is possible
since the avatars head and hand within the VE are positioned according to the
tracked position and orientation values. To represent the users motion in a correct
way the avatar is positioned using inverse kinematics. However, to perceive postures
correctly the users have to stay comparably close together. A minimum distance
between two avatars must be maintained to avoid unrealistic visual representations.
On the other hand, if the distance exceeds a certain limit awareness of the other
avatars presence is in most cases sufficient, since the possibilities of interaction are
limited.

Since the head’s position is more important than orientation for representing
the whole avatar within the VE, the position information is distributed at a higher
rate than the orientation. For supporting this differentiation the AoI of the clients
has been separated into five different levels which are distinguished based on the
distance between two clients. Based on the AoI level between two clients (far, long,
mid, near, and collaborating) the amount of data to be transmitted is selected as
shown in Table 1. The number of asterisks indicates the relative frequency of updates
(four being the most frequent).

The message format used for the transmission of tracking data is specified as
shown in Figure 4. At first the user id identifies a specific client as the source of

Scalable Network Architecture for CCC 39

Range Visibility Head
Position

Head Ori-
entation

Wand
Position

Wand Ori-
entation

Far Out of sight * n/a n/a n/a

Long Nearly visible ** n/a n/a n/a

Mid Visible *** * * n/a

Near Visible **** ** ** **

Collaborating Visible **** **** **** ****

Table 1. Update rates depending on client distance

the message before the position and orientation of the users head sensor are sent,
followed by the same type of values for the wand. The position is represented by
a (x, y, z) coordinate triple, while the orientation is encoded by heading, pitch, and
roll which represent the rotation around the z, x, and y-axis respectively. The
six degrees of freedom for each tracking value are sent at a 32 bit floating point
resolution.

Fig. 4. Tracking message format

The avatar’s position and orientation are also transferred as two floating point
triplets. The position of the avatar within the world coordinate system of the VE
is calculated by adding the tracking coordinates to the navigated coordinates of
the VR device being used. The user’s movement within the VE can be interpreted
as moving the VR hardware being used through the VE. Within this model the
navigated coordinates represent the position of the device within the VE.

Navigation can be performed in many different ways, which is not subject of the
paper. For more details refer to [2].

4.2 State Updates

State updates are used for distributing changes to the world database and can be
initiated by several entities within the VE but in most cases an avatar is the source
of such an event. In addition to avatars, other objects and entities can also act as
event sources. In general we can identify avatars, actors and interactive objects as
different types of event sources.

Avatars represent users within the VE and act on their behalf while actors are
active objects which are steered by background scripts as part of the simulation.
Interactive objects are defined by their ability to interact with an avatar or an
actor, but the interaction is not initiated by them.

40 C. Anthes, A. Haffegee, P. Heinzlreiter, J. Volkert

Events generated by an avatar or an actor in combination with an interactive
object can be classified into five different types:

• Touch

• Untouch

• Grab

• Release

• Use.

The touch and untouch events refer to the avatar touching the interactive object
without changing its position, while grab and release delimit a time period of the
avatar holding the object in its hand. The use event refers to the avatar holding an
object and using it as a tool for manipulating other interactive objects.

The message format for state update messages is specified as shown in Figure 5,
whereMT defines the message type, UI is the user id, OI holds the object identifier,
OT identifies the object type, SG contains the segment, while PS indicates the
position and TI is the timestamp of the message.

Fig. 5. State Update Message Format

4.2.1 State Update Distribution

The distribution of state update information aims at distributing the state update
as fast as possible to all interested clients, but first providing the information to
the nearby clients. Therefore a hierarchical message distribution scheme is applied,
which involves different visibility levels. Messages are only distributed if the clients
involved are visible and therefore aware of each other.

First the state update is done locally on the client. For the next step the update
is distributed within the segment where the client is located, with first the initiating
client sending the message to its peers. Then it passes the message upward to its
domain server, which distributes the message to the clients in the same segment
which have not been informed by the initiator. The required receivers of the update
are found by the domain server based on the connectivity information which the
domain server holds about its domain. Not only do the clients within the segment
in question receive the message, but also the ones within the neighbouring segments.

If the message to be distributed is of importance for all the clients within the VE,
global message distribution as the third visibility level is done by the domain server,

Scalable Network Architecture for CCC 41

first by starting with updating the remaining clients within its domain before in-
forming its peers to which it is connected, and which are assigned to the same
cluster representative. After the cluster representative has received the message it
subsequently multicasts the information to the other domain servers which have
not been informed, before then distributing the message to its peers which proceed
accordingly.

In the case where the source of the update message is a client currently migrating
from one domain to another, and is therefore connected to two domain servers, both
of them distribute the update within their domains.

4.2.2 Event Cascades

During state update distribution event cascades can occur. This is the case if an
event occurs as a consequence of another. The initial event results from an avatar
action or is triggered by system time. Within the architecture described the simu-
lation runs independently on each client using a fully replicated world database and
scene graph. This means that each state update must be broadcast to the other
participants. In case of an event cascade where one event is causally determined by
its predecessor only the initiating event needs to be distributed since the occurrence
of the subsequent events is determined by the first event received as trigger and the
contents of the world database.

If the exact time of occurrence of an event is needed, a message can also be
distributed even if it encodes a subsequent event. Such an explicit distribution is
only allowed if the messages are distributed by a unique source. Such a unique source
is guaranteed by letting the initiating avatar of an event cascade act as the source
of all messages within the cascade. In case of a collaborative object manipulation
which involves more than one avatar, the avatar which first connects to the object
acts as the initiator of the object manipulation and thus of all messages generated
during the collaborative action. The direct synchronization between the involved
avatars besides the state update messages which are of global interest is done over
a p2p connection between the avatars involved.

4.2.3 State Update Distribution Example

A good example is given by the following scenario: A user picks up a key to unlock
a door and afterwards grabs the door handle to open it. The messages in this
scenario to be sent would be a pickup message for the key, since the key is an
interactive object. The position updates of the key do not have to be distributed
since all clients get a notification that the avatar carries a key, therefore they can
calculate the key position according to tracking data which has been distributed
for correct representation of that avatar. Once the key collides with the door and
a use event is generated by the user the next state update is distributed. Through
this use event every client is notified that the door is in a state in which it can be
opened. The avatar drops the key and generates a drop event which is distributed.

42 C. Anthes, A. Haffegee, P. Heinzlreiter, J. Volkert

The new position of the key is transmitted as well. To open the door the avatar
grabs the door handle and gets attached to it leading to the generation of the next
message. Now the user is able to open the door by changing his hand position.
The axis of the door has to be connected to an orientation interpolator which will
calculate the position of the door according to the tracking data. When the user
finally releases the door handle a release message is generated, which will leave the
door open at a position which is distributed via the release message. During this
whole process five messages are generated which have to be distributed. All clients
which are connected via p2p connect will be able to see a smooth interaction due
to the transmission of the tracking data which is distributed to provide a smooth
animation of the avatar.

4.3 Synchronization Data

Based on the hierarchical structure of the network topology changes to it have to be
done in a synchronized manner. Messages carrying information about such changes
are called synchronization messages and occur when a client migrates from one
domain to another, during the merging and splitting of domains as well as due to
the leaving of a domain server or cluster representative.

4.3.1 Moving Through Segments

For exploring the VE or completing certain tasks the user moves his avatar through
the virtual world. To guarantee scalability only the actual area in which the avatar
moves is loaded into memory at the client machine. The area consists of the segment
where the avatar is located and the adjacent eight segments for supporting faster
data fetching.

If it becomes likely that the client will change its segment, the adjacent segments
of the segment to which the client might want to move are loaded. The probability of
a segment change is measured by comparing the actual distance between the avatar
and the segment border to a threshold distance.

In a scene graph representation using quadratic segment dimension a maximum
of 14 segments have to be loaded at once, as shown in Figure 6. The central segment
in which the user currently moves, and the eight surrounding ones, are loaded any
time during client movement. In the worst case, if the client leaves a segment
through a corner point five new segments have to be loaded. Using this method
the client always has the data needed, even if the avatar is moving quickly through
the NVE.

Splitting up the whole NVE as described above supports scalability but leads
to a complex structure in world design. The coordinates of an object have to be
enhanced with index values for the segment. Five coordinates are needed to define
the exact position of an object in the data structure. Two coordinates are needed to
identify the current segment of the object. The other three coordinates determine the

Scalable Network Architecture for CCC 43

Fig. 6. Prefetched segments during client movement

position in space inside of the segment. As a consequence of domain segmentation
a much higher coordinate resolution is available.

4.3.2 Client Join

Another important issue is providing a consistent and up to date view of the whole
VE for clients joining the VE. Therefore the world data is provided by the domain
server to which the client is assigned by the portal server.

If a new client joins the VE it initially connects to the portal server where
a unique user id is assigned to it. The client is handed over to the domain server of
the starting segment, which has been chosen by the user. The domain server holds
the database of the segment being entered as well as the databases of the adjacent
segments. If the databases are not available, they are downloaded automatically
from the portal server. If the client connects to a domain server it is registered
and can receive all changes within the domain compared to the database received,
although its representation is not visible for the other clients. It updates its local
view of the VE applying the data, which has been received in between onto the
received database. After the client has current information about its current segment
the same process is applied for the adjacent segments. The avatar of the client
becomes visible within the VE after it holds the required data and is fully integrated
into the communication topology.

4.3.3 Domain Splitting

If the split of a domain is considered reasonable all adjacent domain servers of the
domain which is supposed to be split are notified. During the splitting operation the
adjacent servers are not allowed to split their own domains. The splitting is done
along borders of segments which serve as atomic units for a split operation. The
best suited of the clients within the splitting domain is promoted to a domain server.
The selection is done based on system performance, load and available network con-
nectivity. The new domain server which results from the split operation establishes
connections to the adjacent servers, which are identified by their connections to the
old domain server and their position relative to the domain being splitted. The

44 C. Anthes, A. Haffegee, P. Heinzlreiter, J. Volkert

clients inside the splitting domain remain connected to the old domain server, while
some of them also establish connections to the new one. The selection of clients to
be connected to the new domain server is done based on the location of the clients
within the domain, with those nearest to the new server being the ones selected.
To complete the splitting operation client connections to the old domain server are
removed if they are not needed. Finally the adjacent domain servers and the cluster
representative are notified that the split operation has completed.

4.3.4 Domain Merging and Resizing

The reverse operation for domain splitting is given by domain merging. We identify
two reasons which make a domain merge necessary. The first reason is a significant
amount of message traffic generated due to synchronization if clients frequently
change between two adjacent domains. A reason for this could be the result of an
inefficient split operation. Another reason would be a certain event which has taken
place in the virtual world leading to an accumulation of avatars at a domain border.

The domain server sends a message to all adjacent domain servers that it is
willing to merge or resize. The recipients check their load with special attention to
the traffic at the domain borders. Even in case the load of two domain servers is
high a merge operation could be beneficial, if the reason for their high load is border
traffic generated by clients which frequently change between the two domains.

Resizing for the reduction of frequent domain change traffic can only be taken
into account if the sidelength of the border, which is going to be moved, is equal to
the length of the two involved domains on both sides. That can be judged locally
because each domain server holds the size of the adjacent domain servers.

If a resize or a merge operation is decided between two adjacent domains, the
adjacent domains of the resizing or merging ones are notified. The cluster repre-
sentatives are informed about this domain change, but are not directly involved
in it.

5 FAULT TOLERANCE

The issue of fault tolerance is a very important one within this system, where clients
can be promoted to domain servers or even cluster representatives. The system has
to cope with a node going off the network, independent of its current role.

If a pure client loses the connection to the VE no recovery mechanism is needed.
In contrast, domain servers as well as cluster representatives need to be backed up
by their peers. Since a domain server is used for connection establishment between
clients, the data of which clients are in its domain has to be backed up by the
adjacent domain servers.

In case a domain server leaves the environment unexpectedly this is noticed by
the adjacent domain servers and the clients in the domain. The adjacent domain
servers delegate a client in the domain to replace the domain server. Messages sent
by the clients during the loss time have to be resent to the new domain server.

Scalable Network Architecture for CCC 45

Cluster representatives are used mainly for the distribution of state updates
within the VE. If a cluster representative leaves the VE unexpectedly, the domain
servers belonging to the cluster as well as the peers of the cluster representative
notice this. A new cluster representative is selected from the group of domain
servers which were connected to the former cluster representative. Connections are
re-established to the domain servers and the cluster representatives. In case of global
message distribution during the time where no cluster representative was available,
the messages have to be resent.

6 TESTING ENVIRONMENT

Testing and evaluating the network layer of a NVE system is a complicated but
crucial task for judging the performance of the overall system. To prove the func-
tionality of the described architecture, an application has been written that can be
used for the evaluation of the architecture and the simulation of a large number of
clients.

The implementation follows a systematic approach. First the low level func-
tionality for establishing connections as well as sending and receiving messages was
developed. This was then extended to create a process for handling connections,
and for managing buffers containing transmit and receive data. From these it was
possible to create the topology of networking entities that would support the pro-
posed architecture. This last stage was developed in tandem with various test and
simulation tools to validate the implementation.

6.1 Testclient

The testclient utility was created to allow the simulation of a single user instance.
It is a wrapper around the client object implementation, and controls it imitating
a human user.

Having successfully connected to a domain server through the portal server,
the application generates a random initial position. It also establishes a desired
destination, and a temporary mode of travel (walking, running or stationary).

A periodic timer, currently with a resolution of 50ms, is started for effecting
changes in the client’s behaviour. For each iteration the application calls a heartbeat
function in the client, allowing it to service any necessary networking tasks required
by the topology. Next the testclient updates its position based on its travel mode
and informs the client. If this new position is its destination it randomly selects
a new one. Additionally it checks if it is time to change its mode of movement.

Basic wand (hand) usage support for the client is available, although currently
just consisting of the client moving its wand up and down in a regular motion.
This motion is reported to the client object for dissemination over the network as
required.

The utility also gathers information on other clients, some of which is written
to shared memory where it can be used for further debugging, simulation analysis

46 C. Anthes, A. Haffegee, P. Heinzlreiter, J. Volkert

and visualization. In the future it could also be used as an input to the testclient’s
behaviour, for example reacting to the presence of other clients by moving towards
other avatars and offering a handshake.

Configuration support has been provided for tuning the testclient. Some of it
serves informational purposes such as the portal server network adress, but it can
also be used for controlling the behaviour of the client.

6.2 Simtest

Simtest has been developed to test and stress the full network environment. It is
configured to optionally create the portal server object, and any number of testclient
client simulations each one using its own configuration.

Simulated entities can be mixed with real ones as desired. A real client connect-
ing to the Simtest portal server would see multiple clients moving around within the
environment, and acting as dictated by their individual configuration.

6.3 Visual representation

Full network simulation generates large quantities of data due to the constant send-
ing of tracking updates. Interpretation of textual log files is trivial to interpret for
the human user. Graphical representation can help, therefore a basic visualization
tool, showsim, has been developed. It uses client information, stored in shared
memory by the various test and simulation tools, to generate a birds-eye graphi-
cal representation of the VE. One of the main purposes of this tool is the detailed
evaluation of client behaviour and the resulting network communication.

Fig. 7. Screenshots of showsim simulation application

Figure 7 shows a sample snapshot of the showsim output. It gives a bird’s eye
view of a single domain containing various clients and the domain server (just to
the left of centre). Connections between clients are indicated by lines. It can be
seen that all clients are connected to the domain server, but only those within their
respective AoI ranges have connections to each other. The image is updated as the
clients move, and one can dynamically see as connections are made and broken as
the clients first move close, and then away.

Scalable Network Architecture for CCC 47

Additionally showsim supports basic console input and output, allowing polling
of state information of the environment, or any of the clients.

6.4 Monitoring Client Status

The topology objects have been designed to generate debug and status information
on request. Such information is useful in determining the load on an entity, and in
tuning parameters for obtaining optimal network performance.

A debug and monitoring utility, debmon, has been created that provides a me-
thod for remotely connecting to any client and then interacting with it through
console input resulting in various actions. The types of interaction currently sup-
ported are as follows:

• Text messages can be sent to the remote client. These can then be displayed
on the remote users console terminal, providing a basic textual communication
medium.

• ping functionality has been implemented, which determines the round-trip delay
for a simple message.

• Requesting networking statistics such as the number of bytes sent and received
on a per connection basis.

• Requesting basic remote client status (e.g. name, topology role, etc.).

• Requesting networking process status, including information on network IPC
buffer usage, which can be indicative of potential delays due to slow networks.

7 RESULTS

Using the test and simulation tools various results have been gathered. Currently
these have just been acquired for the intra-domain case, however it is expected that
the performance will also scale well when used in the inter-domain case.

The basic infrastructure ping was used to prove the functionality of the topology,
and to get a baseline of network response time. On a moderately loaded simulation
system the ping was observed not to take much more time than a regular ICMP ping.
It was in the order of tens of milliseconds for international connections (averaging
38ms for connections between the UK and Austria), and milliseconds between local
sites. Obviously this could increase for heavily loaded sites, or for connections
spanning multiple entities in the hierarchy, however the latency certainly won’t be
in the order of seconds as sometimes experienced using other architectures.

The quantity of intra-domain network traffic was also analysed while running
the simulated environment. Many factors can impact these results, obviously if there
are numerous users in a small domain their traffic will be much more due to their
intersecting AoIs, than for a similar number of users in a larger domain. Through
running simulations in which domain size, AoI ranges, and frequency of updates can

48 C. Anthes, A. Haffegee, P. Heinzlreiter, J. Volkert

all be changed it is possible to start building up an overview of optimal networking
parameters.

Table 2 demonstrates the effect that the number of clients in an intra domain
topology can have on network traffic. It shows the number of bytes transmitted and
received, by both domain server and client entities. The results are the averaged
readings over multiple runs for each of the different user counts, and show the general
traffic trends. To stimulate excessive message interaction, and to stress the system,
these results were taken from a relatively small domain (units of 4000×4000×1000)
using clients with sizeable AoIs (awareness at 1000 units, disconnection at 1500,
and with 800, 700, 600, 400 and 200 being far, long, mid, near and close ranges,
respectively). The clients sent updates to the domain server every 300ms, and to
each other between 100ms and 500ms when at ranges between close and far.

No Users DS Tx DS Rx Client Tx Client Rx

5 1.6 250 230 180
15 12 700 250 200
25 26 1200 570 530

Table 2. Network traffic (bytes/second) for intra domain topology entities for differing
numbers of users

While the pre-averaged figures for the domain server traffic over the multiple
runs was fairly consistent, those for the clients’ showed a higher variance. This
was due to the clients’ quasi-random motion having variable effects on the AoI
intersections, and therefore the message quantity. As expected, the table shows that
average client traffic increases exponentially with an increased number of domain
users. This reflects the higher density of users creating a greater quantity of p2p
messaging. From these figures it can be seen that acceptable throughput can be
achieved at a user count up to 25 clients.

Without further study it is difficult to exactly determine the inter-domain scala-
bility. However, since such messaging will not involve tracking information, but just
the lightweight event traffic, it can be assumed that the scalability will surpass the
25 entity intra-domain level simulated here. Based on this assumption as a lower
boundary full system scalability would exceed 15 000 users (253).

8 CONCLUSIONS

This article introduced an adaptive, scalable, highly responsive network architec-
ture, which has been designed to support closely-coupled collaboration. The high
responsiveness is realised by the use of p2p connections between interacting clients,
whereas scalability is supported by a three level hierarchy. The message passing
mechanisms as well as the different types of messages have been defined. A proto-
type application has been used for evaluation of the proposed architecture.

Future work will include further development of the network architecture, as
well as a framework supporting highly interactive applications.

Scalable Network Architecture for CCC 49

REFERENCES

[1] Anthes, C.—Heinzlreiter, P.—Haffegee, A.—Volkert, J.: Message Traffic
in a Distributed Virtual Environment for Close-Coupled Collaboration. In: Proceed-
ings of the 17th International Conference on Parallel and Distributed Computing
Systems, PDCS ’04, San Francisco, CA, USA, September 2004, pp. 484–490.

[2] Anthes, C.—Heinzlreiter, P.—Kurka, G.—Volkert, J.: Navigation Mo-
dels for a Flexible, Multi-Mode VR Navigation Framework. In: Proceedings of the
ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its
Applications in Industry, VRCAI ’04, Singapore, June 2004, pp. 476–479.

[3] Greenhalgh, C.—Benford, S.: MASSIVE: A Distributed Virtual Reality System
Incorporating Spatial Trading. In: Proceedings of IEEE 15th International Confe-
rence on Distributed Computing Systems, Vancouver, Canada, May 1995, pp. 27–35.

[4] Barrus, J.— Waters, R.C.— Anderson D.: Locales and Beacons: Efficient
and Precise Support for Large Multi-User Virtual Environments. In: Proceedings of
the IEEE Virtual Reality Annual International Symposium, Santa Clara, USA, 1996,
pp. 204–213.

[5] Broll, W.: Interacting in Distributed Collaborative Virtual Environments. In:
PIn: Proceedings of the IEEE Virtual Reality Annual International Symposium, Los
Alamitos, March 1995, pp. 148–155.

[6] Broll, W.: DWTP – An Internet Protocol For Shared Virtual Environments. In:
Proceedings of the Third Symposium on the Virtual Reality Modeling Language,
Monterey 1998.

[7] Brutzman, D.—Zyda, M.—Watsen, K.—Macedonia, M.: Virtual Reality
Transfer Protocol (VRTP) Design Rationale. In: Procedings of Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WET-ICE): Sharing
A Distributed Virtual Reality, June 1997, pp. 179–186.

[8] Calvin, J.—Dickens, A.—Gaines, B.—Metzger, P.—Miller, D.—

Owen, D.: The SIMNET Virtual World Architecture. In: Proceedings of the IEEE
Virtual Reality Annual International Symposium, September 1993, pp. 450–455.

[9] Childers, L.—Disz, T.—Olson, R.—Papka, M. E.—Stevens, R.—

Udeshi, T.: Access Grid: Immersive Group-to-Group Collaborative Visualization.
In: Proceedings of the 4th International Immersive Projection Technology Workshop,
2000.

[10] Cruz-Neira, C.—Sandin, D. J.—DeFanti, T. A.—Kenyon, R. V.—

Hart, J. C.: The CAVE: Audio Visual Experience Automatic Virtual Environment.
Communications of the ACM, Vol. 35, 1992, No. 6, pp. 64–72.

[11] Protocols for Distributed Interactive Simulation. ANSI/IEEE Standard 1278-1993,
March 1993.

[12] Everquest, Sony Computer Entertainment America Inc.,
http://www.everquest.com, 1999.

[13] Carlsson, C.–Hagsand, O.: DIVE – A Platform for Multi-User Virtual Environ-
ments. Computers&Graphics, Vol. 17, Issue 6, 1993, pp. 663–669.

50 C. Anthes, A. Haffegee, P. Heinzlreiter, J. Volkert

[14] Funkhouser, T. A.: RING: A Client-Server System for Multi-User Virtual En-

vironments. In: Proceedings of the Symposium on Interactive 3D Graphics, 1995,
pp. 85–92.

[15] High Level Architecture, Defense Modeling and Simulation Office. US Department of
Defence, https://www.dmso.mil/public/transition/hla.

[16] Joslin, C.—Pandzic, I. S.—Magnenat-Thalmann, N: Trends in Networked
Collaborative Virtual Environments. Computer Communications, Vol. 26, 2003,
No. 5, pp. 430–437.

[17] Kawahara, Y.—Morikawa, H.—Aoyama,T.: A Peer-to-Peer Message Ex-
change Scheme for Large Scale Networked Virtual Environments. In: Proceedings
of the 8th IEEE International Conference on Communications Systems, 2002.

[18] Li, F. W. B.—Lau, R. W. H. —Ng, F. F. C.: Collaborative Distributed Vir-
tual Sculpting. In: Proceedings of the IEEE Virtual Reality 2001 Conference, 2001,
pp. 217–224.

[19] Macedonia, M. R.—Zyda, M. J.: A Taxonomy for Networked Virtual Enviro-
ments. IEEE Multimedia, Vol. 4, 1997, No. 1, pp. 48–56.

[20] Macedonia, M. R.—Zyda, M. J.—Pratt, D. R.—Barham, P. T.—

Zestwitz, P. T.: NPSNET: A Network Software Architecture for Large-Scale Vir-
tual Environments. Presence: Teleoperators and Virtual Environments, Vol. 3, 1994,
No. 4.

[21] Margery, D. M.—Arnaldi, B.—Plouzeau, N: A General Framework for Coope-

rative Manipulation in Virtual Environments. In: Proceedings of the Eurographics
Workshop on Virtual Environments, 1999, pp. 169–178.

[22] Matijasevic, M.: A Review of Networked Multi-User Virtual Environments. Tech-
nical Report TR97-8-1, Center for Advanced Computer Studies, Virtual Reality and
Multimedia Laboratory. University of Southwestern Lousiana, USA, 1997.

[23] Park, K. S.—Kenyon, R. V.: Effects of Network Characteristics on Human Perfor-
mance in a Collaborative Virtual Environment. In: Proceedings of the IEEE Virtual
Reality Conference, 1999, pp. 104–111.

[24] Pandzic, I. S.—Chapin, T. K.—Magnenat-Thalmann, N.—Thalmann, D.:
A Flexible Architecture for Virtual Humans in Networked Virtual Environments. In:
Proceedings Eurographics ’97, 1997.

[25] Roberts, D. J.—Wolff, R.—Otto, O.: Constructing a Gazebo: Supporting
Team Work in a Tightly Coupled, Distributed Task in Virtual Reality. Presence:
Teleoperators&Virtual Environments, Vol. 12, 2003, No. 6.

[26] Ruddle, R. A.—Savage, J. D. C.—Jones, D. M.: Symmetric and Asymmet-
ric Action Integration During Cooperative Object Manipulation in Virtual Environ-
ments. ACM Transactions on Computer-Human Interaction, Vol. 9, 2002, No. 4,
pp. 285–308.

[27] Singhal, S.—Zyda, M.: Networked Virtual Environments. ACM Press, New York,

1999.

[28] Watsen, K.—Zyda M.: Bamboo – A Portable System for Dynamically Extensible,
Real-Time, Networked, Virtual Environments. In: Proceedings of the IEEE Virtual
Reality Annual International Symposium, Atlanta, 1998, pp. 252–259.

Scalable Network Architecture for CCC 51

Christoph Anthes graduated as Dipl. Ing. (FH) at the Uni-

versity of Applied Sciences, Trier in 2002. Afterwards he went
to Britain to successfully complete an MSc Course in network
centered computing at the University of Reading. In 2003 he
moved to Austria to work on his Ph.D. Currently he is working
as a research assistant, lecturer and administrator in the field of
VR at the Johannes Kepler University, Linz.

Adrian Haffegee is a Ph.D. student from the centre for Ad-

vanced Computing and Emerging Technologies (ACET) at the
University of Reading. Prior to returning to university he spent
11 years in research and software development within the tele-
communications industry. His current research interest involves
virtual reality, specialising in collaborative virtual environments.

Paul Heinzlreiter received his masters degree in computer

science from the Johannes Kepler University Linz in 2001. Since
then he has been working as a scientific assistant and lecturer
at the Institute of Graphics and Parallel Processing at the same
university. His research interests include computer graphics, grid
computing, virtual reality, networking as well as the interconnec-
tions between these areas.

Jens Volkert is Professor and Head of the Institute of Gra-

phics and Parallel Processing (GUP) at the Johannes Kepler
University Linz, Austria. His scientific interests combine ad-
vanced computer graphics (including virtual reality and collabo-
rative virtual environments) and high-performance computing
(with special attention to cluster and grid computing systems).

