
Computing and Informatics, Vol. 24, 2005, 53–66

APPLYING THE GWO MODEL TO RELAXED
COLLABORATIVE SYSTEMS

Constanza Prieto, Yadran Eterovic

Department of Computer Science

Pontificia Universidad Católica de Chile

Casilla 306, Santiago 22, Chile Casilla

e-mail: cprietoy@puc.cl, yadran@ing.puc.cl

Manuscript received 16 December 2004

Abstract. Building collaborative applications is still a challenging task. A colla-
borative application can be viewed as a class of distributed shared memory system.
A distinctive property of these systems is their memory consistency model. In this
paper, we argue that there is a relationship between different collaboration styles, on
the one hand, and different memory consistency models, on the other. In particular,
we propose a practical collaboration style, exemplified by a collaborative electronic
organizer, that can be supported by the GWO memory consistency model, a rather
relaxed model stricter only than local consistency. The advantage of the proposed
style is that it reduces the amount of information that must be exchanged among
the processors. Because there have been no propositions of the specific rules—
i.e., the protocol—that the processors in a system must follow to implement the
GWO model, we also propose a protocol that exactly matches the properties of the
model.

Keywords: Memory consistency models; Memory consistency protocols; Collabo-
rative applications; Distributed shared memory systems

1 INTRODUCTION

Computer supported collaborative work involves using computers to help a group
of users achieve a goal; in particular, the computers facilitate the communication
and sharing of data among the users of a collaborative application [3]. Developing
a collaborative application is a challenging task, especially if it has to run on a widely

54 C. Prieto, Y. Eterovic

distributed system or support many users. In these cases, communication costs can
be significant in terms of system performance, and therefore special care must be
paid to network traffic issues [6]. We face the worst situation in terms of performance
when the application requires that all users learn immediately about any changes
made to shared data by the other users. On the other hand, at the opposite extreme
each user works independently and does not care about the changes made by other
users. This situation is not desirable either: communication costs are low and
system performance is high, but there is no collaboration among users. We call
the degree of collaboration offered by an application to its users a collaboration
style.

One way to look at collaborative applications is as distributed shared memory
systems. A distributed shared memory (DSM) system is a program that runs on
top of a collection of interconnected workstations, communicating only by message
passing; that offers programmers the illusion of a shared address space. One key
property of DSM systems is the underlying memory consistency model: a specifica-
tion of the allowable behavior of memory. More precisely, if the input to memory
is a set of read and write operations and the output of memory is the collection
of values returned by all read operations, the consistency model is a function that
maps each input to a set of allowable outputs. The memory implementation guar-
antees that for any input it will produce some output from this set. The program
utilizing the DSM must be written to work correctly for any output allowed by the
consistency model [12].

If we look at a collaborative application as a DSM system, then its collaboration
style is defined and supported by the underlying memory consistency model. For
example, in a chat room it is desirable that all users see the sentences submitted
by all other users in the same temporal order [11]; this can be achieved through
a sequential model [7]. But in a widely distributed system, using this model is very
costly. The more relaxed causal model could be used instead: this model requires
that the sentences submitted by each user be seen in the order in which they are
submitted and that replies be seen after seeing the sentences to which they reply [5].
If we use the even more relaxed PRAM model, then the only guarantee to users is
that the sentences submitted by each user will be seen in the order in which they
are submitted; there is no constraint on the perceived relative order of sentences
submitted by different users [8].

In this paper we propose the use of a new memory consistency model to support
a relaxed collaboration style, and we describe a protocol to implement the model in
relaxed collaborative applications. The model is due to Steinke and is called Global
Write-read-write Order (GWO) [11]. The relevance of the GWO model is that it is
more relaxed than causal consistency, but stricter than pure local consistency (the
PRAM model is also more relaxed than causal consistency and stricter than local
consistency, but it cannot be compared to the GWO model). In the GWO model,
users are only guaranteed to see the replies to a sentence after the sentence itself;
therefore, each user’s sentences are not necessarily seen in the order in which they
were submitted.

Applying the GWO Model to Relaxed Collaborative Systems 55

In a related work, Roberts and Sharkey [9] describe the use of a sufficient causal
ordering for an arena-like distributed virtual reality system named PaRADE [9].
They verified through implementation experiences the performance benefits of using
a relaxed mechanism to provide memory consistency over a network. The mechanism
is based on using time stamps for causally relating events in the system. Our
approach is different in that it does not use timestamps. In another work, Shen and
Sun [10] describe a flexible notification mechanism for collaborative applications.
The mechanism is used to exchange messages, to provide group awareness and/or
to maintain consistency of shared artifacts. They also propose a framework to
describe and compare a range of notification strategies used in existing collaborative
applications.

The rest of the paper is organized as follows. In Section 2, we sketch the behavior
of a collaborative application as it is supported by different memory consistency
models. In Section 3, we provide the protocol that implements the GWO model. In
Section 4, we describe in detail the behavior of a collaborative application supported
by the GWO protocol; and in Section 5, we present some conclusions and suggest
future work.

2 COLLABORATION UNDER DIFFERENT

MEMORY CONSISTENCY MODELS

A memory consistency model for a DSM system is a contract between the software
and the memory, establishing that if the software follows certain rules, then the
memory will work in a certain manner considered correct [1]. For a collaborative
application, the underlying model establishes which consistency checks the users
are willing to give up, for example, in exchange for better system performance.
In general, the stricter the consistency model the worse the system performance,
and vice versa. And essentially, under less strict models users are not guaranteed
to all have the same view of the memory at all times during system execution.
Figure 1 illustrates the relative strictness of several known memory consistency
models: the higher up in the figure, the stricter the model. Strict consistency, at
the top, is the strictest model, while local consistency, at the bottom, is the most
relaxed.

As we discussed in the introduction, different collaboration styles require me-
mory consistency models of different degrees of strictness. Therefore, each colla-
boration style requires the exchange of different amounts of information, and with
different periodicity. Table 1 exemplifies the collaboration styles supported by dif-
ferent memory consistency models, by describing the behavior of a collaborative
canvas application.

An important concept to understand the canvas behavior under both causal
consistency and GWO consistency in Table 1 is potential causality. Assume user U
writes a value to shared variable x; then, user V reads x’s value and writes a value
to shared variable y. The write operations on x by U and on y by V are potentially

56 C. Prieto, Y. Eterovic

causally related, because the value written to y may depend on the value read
from x. On the other hand, if two users write values to two different variables
simultaneously and spontaneously, these operations are not causally related; they
are called concurrent.

Strict

consistency

Sequential

consistency

PRAM

consistency

Local

consistency

Processor

consistency

Causal

consistency

Cache

consistency

GWO

consistency

Fig. 1. Relative strictness of known memory consistency models: The strict model, at the
top, is the strictest; the local model, at the bottom, is the least strict

3 AN IMPLEMENTATION PROTOCOL FOR THE GWO MODEL

Suppose we have the following collaboration style:

• Each user works most of the time individually on her own data area.

• Each user, at some point in time, needs to know some updates made by other
users to the data in her own data area.

• No disjoint collaborative data areas are formed among users.

We propose using the GWO memory consistency model as the underlying model
for this collaboration style. The GWO model rule is the following: potentially
causally related write operations to variables must be seen in the same order by
all users. This means that concurrent write operations—which are not potentially
causally related—may be seen in different orders by different users, and that write
operations made by one user may be seen by other users in an order different than
the order in which the operations were made.

Applying the GWO Model to Relaxed Collaborative Systems 57

Memory

consistency

model

Collaborative canvas behavior

Strict consistency
All users see all changes made to the canvas as soon as the
changes are made.

Sequential
consistency [7]

All users agree on the global time ordering of all the changes
made to the canvas, but they do not necessarily see the changes
as soon as the changes are made; local changes made by each
user appear on this global ordering in the order in which they
are made.

Processor
consistency [4]

Changes made to the canvas by a single user are seen by all other
users in the order in which they are made; changes made by
different users can be seen in different relative order. Changes
made to a single pixel are seen in the same order by all users;
changes made to different pixels can be seen in different relative
order by different users.

Causal
consistency [5]

All users see potentially causally related changes in the same
order; besides, all users see the changes made by each user in
the order in which they are made.

Cache
consistency [4]

All changes to a specific canvas pixel are executed in a sequential
order that respects each user’s order; all users agree on the order
in which operations on a particular pixel are made, and they
may see changes to different pixels in different relative order.

PRAM
consistency [8]

Changes made by a single user are seen by all other users in
the order in which they are made; different users can see the
changes made by different users in different relative order.

GWO
consistency [11]

All users see potentially causally related changes in the same
order; they see any other changes in any order.

Local
consistency [2]

Each user sees his/her own changes in the order in which they
are made; there is no constraint on the order in which changes
made by other users have to be seen.

Table 1. Meaning of each memory consistency model for users of a collaborative canvas

3.1 Protocol Overview

In general terms, our protocol for implementing the GWO model behaves as follows:

• Each processor has a list of messages to be sent and a list of messages received.
The messages are transmitted by copying them.

• Each time processor P writes a value to a shared variable x, and it has not
performed any read operation before, it produces and stores a message in its
send list. The message is not sent to other processors in the system, until
another processor wants to read the value written in x by P .

58 C. Prieto, Y. Eterovic

• Each time processor P writes a value to a shared variable x, and it has per-
formed a read operation before, it updates the messages stored in its receive list
according to the write operation being executed. The messages are moved from
the receive list to the send list, to inform the other processors about the order
of the potentially causally related write operations.

• Each time processor P reads the value of a shared variable x, it can read its local
value or it can read the value from any processor Q. In the first case, P makes
a copy of the corresponding message from its own send list and stores this copy
in its receive list. In the second case, P marks in Q one of the messages related
to x, stores a copy of this message in its receive list and stores the received value
as its local value. The message copied from Q may be any of the (possibly)
several messages regarding x, not necessarily the last one generated.

We distinguish two kinds of write operations:

• Potentially causally related write operations. These will be seen in the right
order by all processors in the system.

• Concurrent write operations. These may be seen by each processor in a different
order.

3.2 Protocol Specification: Notation

We consider a system with n processors, P , Q, . . . , and a set of shared variables x,
y, . . . Each processor P has a local value for each shared variable x; this value is
stored in a repository xp.

Our protocol is based on the exchange of messages by the processors. A message
is stored locally by the processor that generated it; it may be sent to another pro-
cessor; and it may be marked by any of the other processors. There are two kinds
of messages:

• Simple messages: Each message generated by processor P is represented by
a n+ 2 tuple (x, v, iP ,MQ,MR, . . .), where x is a shared variable, v is the va-
riable’s value in P , iP is P ’s identification number, and MQ,MR, . . . are n − 1
fields used by each of the other processors to mark the message. Initially, these
fields are set to ∅. For example, a message from processor P regarding variable x
with value v in a system with 3 processors initially has the form (x, v, iP , ∅, ∅).

• Double messages: These are composed of two simple messages plus an order
relation, <, representing the potentially causality relation between the two
simple messages. Thus, double messages look like (x, v, iP ,MQ,MR, . . .) <

(y, w, iQ,MP ,MR, . . .), where the second message is posterior to the first one.

Each processor P manages a list of messages to be sent to other processors, called
P ’s message pool and denoted by Pool(P); initially, this looks like [(x, v, iP , ∅, . . . , ∅),
(y, z, iP , ∅, . . . , ∅), . . .]. The messages in the pool are not sorted and they can be sent

Applying the GWO Model to Relaxed Collaborative Systems 59

in any order. This is the main difference between this protocol and any protocol that
implements causal consistency. Our protocol relaxes the constraint that the write
operations of each processor must be seen respecting the processor’s local order in
which they were executed.

Each processor P also manages a reception list, Rcv(P), to store the messages
received from other processors or from itself. The reception list can be represented as
a set of messages Rcv(P) = [(x, v, iQ, ∅, . . . , ∅), (y, w, iR, ∅, . . . , ∅), . . .]. The messages
in Rcv(P) are not sorted either.

3.3 Protocol Execution: An Example

Consider a system with two processors, P and Q, and two shared variables x and y;
the processors execute and interact as seen in Figure 2:

P Q

w(x)1 . . .

. . . r(x)2

.

w(x)2 w(y)1
.

. . . r(x)1

.

. . . r(y)1

Fig. 2. An example execution of the GWO protocol: w(x)v represents a write operation
of the value v to shared variable x; r(y)u represents a read operation on the shared
variable y obtaining value u

1. P writes the value 1 in x, stores this value in its repository xP , generates the
message (x, 1, iP , ∅) and stores this message in Pool(P).

2. P writes the value 2 in x, stores this value in its repository xP , generates the
message (x, 2, iP , ∅), and adds this message to Pool(P), that now looks like
[(x, 1, iP , ∅), (x, 2, iP , ∅)].

3. Q reads variable x from P ; in particular it reads the value 2 by looking at message
(x, 2, iP , ∅) in Pool(P). Q updates this message in Pool(P) by marking it with
its processor’s identification number; the message now looks like (x, 2, iP , iQ).
Q also stores a copy of this updated message in its reception list Rcv(Q) =
[(x, 2, iP , 2)]. Finally, Q stores the value 2 in its repository xQ.

4. Q writes the value 1 in y, stores this value in its repository yQ and generates
the message (y, 1, iQ, ∅). It then removes all the messages in Rcv(Q) and relates
these messages to the message just created, storing the result in Pool(Q) =
[(x, 2, iP , 2) < (y, 1, iQ, ∅)]. The original message (y, 1, iQ, ∅) is not stored as
a simple message.

60 C. Prieto, Y. Eterovic

5. Q reads again variable x from P ; in particular, it reads a value from Pool(P),
but this time it reads the value 1 by looking at the message (x, 1, iP , ∅). Q then
marks the message with its identification number, (x, 1, iP , iQ), stores a copy of
this message in its reception list Rcv(Q) = [(x, 1, iP , iQ)], and stores the value 1
in its repository xQ.

6. Finally, Q reads variable y from its repository yQ, takes from its Pool(Q) a copy
of the tail of the message [(x, 2, iP , 2) < (y, 1, yQ, ∅)] (generated in step 4), and
adds it to its list Rcv(Q), resulting in Rcv(Q) = [(x, 1, iP , 2), (y, 1, iQ, ∅)].

3.4 Protocol Specification: Rules

The protocol is defined by five rules (rules 0 to 4). These rules apply according to
the operations that take place in the system. Rules 0 and 1 are set-up rules: Rule 0
establishes that each processor executes its operations in the usual sequential order;
and rule 1 specifies the initialization of the system. Rules 2, 3 and 4 are operational
rules: Rule 2 specifies the actions that must be performed when a write operation is
executed; rule 3 specifies the actions that must be performed when a read operation
is executed; and rule 4 specifies the steps to follow for the communication between
processors.

Rule 0. All operations executed by the same processor are executed in the order
specified by the processor’s program: if operation op1 precedes operation op2 in
the processor’s program, then op2 cannot start its execution if op1 has not yet
finished its execution according to the processor.

Rule 1. Initially, all shared variables are set to the value ε; thus, initially, all repo-
sitories in all processors store only this value: xP = ε, for every processor P and
every shared variable x. Also, every message pool and reception list are initially
empty: Pool(P) = ∅ and Rcv(P) = ∅, for every processor P .

Rule 2. When processor P writes the value v to shared variable x, the following
three actions take place:

a) P stores in its repository for x the value v, which becomes the valid value
for x in P ; xP = v.

b) P generates a simple message about this operation: (x, v, iP , ∅, . . . , ∅); see
Section 3.1.

c) P checks to see if its list of received messages Rcv(P) contains any mes-
sages. If Rcv(P) is empty, then P simply appends to Pool(P) the message
(x, v, iP , ∅, . . . , ∅). Otherwise, each simple message (y, w, ∗, . . . , ∗) is removed
from Rcv(P). P creates a double message, by appending the message just
produced (step b) to the message removed, and appends it to its message
pool, Pool(P), which has the form (y, w, ∗, . . . , ∗) < (x, v, iP , ∅, . . . , ∅). Each
double message m1 < m2 is moved from Rcv(P) to Pool(P). In this case,

Applying the GWO Model to Relaxed Collaborative Systems 61

P creates a new double message by replicating the tail m2 and append-
ing to m2 the message (x, v, iP , ∅, . . . , ∅). Both double messages are ap-
pended to Pool(P): first, the copy of the message m1 < m2, and then,
the new message. Thus, the messages appended to Pool(P) have the form
m1 < m2, m2 < (x, v, iP , ∅, . . . , ∅).

Rule 3. When processor P reads a shared variable x, it stores x’s value v in xP ;
this value has one of two possible origins:

a) The value v was written by processor P itself (by applying rule 2 above);
then P takes the following actions: First, P searches Pool(P) for the unique
message that involves the variable x and the value v. The message can be
simple, (x, v, iP , ∗, . . . , ∗), or double, m < (x, v, iP , ∗, . . . , ∗). Then, P copies
the message found to the receive list Rcv(i). If the message was found within
a double message, only the portion of the message that contains the value v
is copied. The message copied is (x, v, i, ∗, . . . , ∗).

b) The value v is taken from a processor QP , in particular, from a message
(x, v, iQ, ∗, . . . , ∗) taken from Pool(Q). This operation stores the value v

in the repository xQ. The message is obtained following rule 4.

Rule 4. When processor P receives a message from processor Q’s Pool(Q), P 6= Q,
the following two possibilities have to be considered:

a) P receives a simple message from Pool(Q). In this case, P searches Pool(Q)
for messages of the form (x, v, iQ, ∗, . . . , ∗), i.e., involving the variable x and
not marked by P . If P finds no such messages, it performs the read operation
explained above. Otherwise, P selects any of the messages, updates the
selected message in Pool(Q) by appending its identification number, iP , to
it, copies the message to its receive list Rcv(P) = [∗, (x, v, iQ, iP , ∗, . . . , ∗)],
and updates its local repository with the new value v for x; xP = v.

b) P receives a double message from Pool(Q). In this case, actions are similar
to Case 1, but take into account the fact that they are dealing now with
double messages. P searches Pool(Q) for messages with tails involving va-
riable x and not marked by P , i.e., messages of the form (∗, ∗, ∗, ∗, . . . , ∗) <
(x, v, iQ, ∗, . . . , ∗). If P finds no such messages, then it performs the read ope-
ration explained above. Otherwise, P selects any of the messages, updates
the selected message in Pool(Q) by appending its identification number, iP ,
to it in the portion regarding variable x (in other words, in the message’s tail
(∗, ∗, ∗, ∗, . . . , ∗) < (x, v, iQ, ∗, . . . , ∗), copies the double message to its receive
list Rcv(P), and updates its repository with the new value v for x taken from
the message just marked; xP = v.

62 C. Prieto, Y. Eterovic

A B C

9:00 am See the doctor

10:00
Meeting with
customer

11:00
Take car to
workshop

1:30 pm Lunch outside the
office

4:00 Meeting with
operations

5:00 Present commercial
plan

7:30 Parents meeting at
school

10:00 Mom’s birthday

Table 2. Individual appointments entered to a collaborative electronic organizer:
An example

4 BEHAVIOR OF A COLLABORATIVE APPLICATION

USING THE GWO PROTOCOL

To illustrate the usage of the GWO protocol in collaborative applications, consider
a collaborative electronic organizer that allows users to schedule appointments in
their own local copies and also to schedule group meetings. Each user schedules the
appointments not involving other users in the system in her local copy. When user
A wants to meet with one or more of the other users at a particular time slot, s/he
checks the availability of each user for that slot by querying her own schedule. If
all users are available, A books the time slot in the local copy of each of the other
users, thus actually scheduling the meeting.

However, if user B has already booked the time slot, then A has to look for
another time slot to schedule the meeting. This resulting meeting (if any) is po-
tentially causally related with the meeting already in place in B’s schedule. The
local copies of the schedules of all the users involved record that the new meeting is
scheduled at the new time slot because there was a meeting already scheduled for
the originally proposed time slot by user B.

The purpose of using GWO in this case is to allow each user to schedule his/her
appointments without having to tell everybody else about them, thus informing
other users only if and when they request the information. Users who do not want
to schedule meetings with a particular user do not need to know about that user’s
appointments. User’s appointments that are not potentially causally related to other
appointments do not need to be known by other users at all, thus reducing network
traffic.

For example, suppose users A, B and C have scheduled their appointments for
today as shown in Table 2. Now suppose user A wants to schedule a meeting with

Applying the GWO Model to Relaxed Collaborative Systems 63

Collaborative

organizer
GWO protocol Description

Action: System
initialization

Operation: Protocol
initialization

System initialization with
an “empty” organizer

Item: Each

time slot in
each user’s
local view

Variable: Each processor’s

local variables

Each user has his/her own time

slots to schedule personal
appointments

Item: Each
time slot of
organizer

Variable: Shared variables
among all processors; each
processor has its own view of
the organizer

The organizer displays the time
slots booked by the users

Action:

Schedule
a private
appointment at
time slot x

Operation: Write a value to

local variable x and record this
information

The user schedules her own

appointment and triggers
a message reporting that the
corresponding time slot is no
longer available; the message will
only be sent upon request from
other users

Action: Delete
private
appointment at
time slot x

Operation: Overwrite
initialization value to local
variable x and record this
information

Deleting an appointment is
equivalent to overwriting the
initialization value to the
variable representing the
corresponding time slot

Action:
Attempt to
schedule
meeting with
user j at time
slot x

Operation: Read the value of
local variable x of user j

The organizer corresponding to
the user j sends the appointment
scheduled in slot x (recorded
information) to the requesting
user

Item: Online
view of each
user’s organizer

Variable: Each processor’s set
of received messages, with
information about other
processor’s unavailable time

slots

Messages from user i are received
according to an user’s interest in
scheduling meetings with user i

Action: View
final state of
the organizer

Operation: All messages are
sent to all processors in the
system, or they are discarded

Final state at the end of the day,
when all unsent messages are
sent to all processors (or they are
simply deleted)

Action: Learn
about
potentially
causally related
meetings

Operation: All potentially
causally related messages are
sent to all processors

Each user sees, in his/her local
view of the organizer, potentially
causally related meetings in the
order in which they were
scheduled

Table 3. Equivalence between the collaborative electronic organizer’s items and actions,
and GWO protocol’s variables and operations

64 C. Prieto, Y. Eterovic

user B at 4 pm. When A checks B’s appointments, she realizes that B already has an
appointment at 4 pm, so she schedules the meeting at 5 pm: B’s 4 pm appointment
becomes potentially causally related to A and B’s 5 pm meeting. Thus, if later on C

learns about A and B’s 5 pm meeting, he must also learn (and must learn first) about
B’s 4 pm appointment. Causality in this case is due to the fact that a particular
meeting time was set taking into account a previously scheduled meeting.

5 CONCLUSIONS

In the realm of collaborative applications, we have shown that there is a mapping
between different collaboration styles, on the one hand, and different memory con-
sistency models, on the other. Specifically, collaboration styles that require that
all users see the same data at the same time must be supported by strict memo-
ry consistency models, while relaxed memory consistency models can be used to
support collaboration styles in which users only exchange information on a need to
know basis. Therefore, neither all collaboration styles require the exchange of the
same large amount of information, nor do they have to exchange the information
at the same times. This fact can be used to improve the performance of certain
collaborative applications.

We have also described a particular collaboration style – exemplified by a col-
laborative electronic organizer – which we mapped to a very relaxed memory consis-
tency model: GWO. Because in GWO information is exchanged only between pairs
of users and only when a user requests it, the existence of this mapping means that
it is possible to collaborate effectively without having to exchange large amounts of
information all the time.

Finally, we have introduced a protocol that implements GWO and that can
in practice be used to support the collaboration style illustrated by the electronic
organizer. We have described the protocol in detail, and we provided a summary
of the meaning of the most relevant collaborative actions in terms of the protocol
operations.

As future work, we are planning to implement the GWO protocol in a distributed
system to support a collaborative environment and test its impact on performance
and network load.

REFERENCES

[1] Adve, S.—Hill, M.: Weak Ordering – A New Definition. Proc. 17 Annual Intl.
Symp. on Computer Architecture, 1990, pp. 2–14.

[2] Bataller, J.—Bernabeu, J.: Synchronized DSM Models. In C. Lengauer,
M. Griebl, and S. Gorlatch, editors, Proc. Third Intl. Euro-Par Conf., Berlin, 1997,
pp. 468–475.

[3] Ellis, A.—Gibbs, J.—Rein, L.: Groupware, Some Issues and Experiences. Com-
munications of the ACM, Vol. 34, 1991, No. 1, pp. 38–58.

Applying the GWO Model to Relaxed Collaborative Systems 65

[4] Goodman, J.: Cache Consistency and Sequential Consistency. Technical Report 61.

IEEE Scalable Coherent Interface Working Group, 1989.

[5] Hutto, P.—Ahamad, M.: Causal Memory. Lecture Notes on Computer Science.
Vol. 579 (Proc. Fifth International Workshop on Distributed Algorithms), Springer-

Verlag, 1991, pp. 9–30.

[6] Kuroda, M.—Ono, R.—Shimotsuma, Y.—Watanabe, T.—Mizuno, T.: Data
Transfer Evaluation of Nomadic Data Consistency Model for Large Scale Mobile

Systems. IEICE Transactions on Information and Systems, 1999, E82-D(4): 822.

[7] Lamport, L.: How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers. Vol. 28, 1979, No. 9,
pp. 690–691.

[8] Lipton, R.—Sandberg, J.: PRAM: A scalable shared memory. Technical Re-
port 180–88, Department of Computer Science, Princeton University, 1988.

[9] Roberts, D.—Sharkey, P.: Maximising Concurrency and Scalability in a Con-
sistent, Causal, Distributed Virtual Reality System, Whilst Minimising the Effect
of Network Delays. Proc. 6th Intl. Workshop on Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WET-ICE), IEEE Computer Society, 1997,

pp. 161–166.

[10] Shen, H.—Sun, C.: Flexible Notification for Collaborative Systems. Proc. ACM
Conference on Computer Supported Cooperative Work, CSCW 2002. New Orleans,

2002, pp. 77–86.

[11] Steinke, R.: Consistency Model Transitions in Shared Memory. Ph.D. Thesis, De-
partment of Computer Science, University of Colorado, 2001.

[12] Steinke, R.—Nutt, G.: A Unified Theory of Shared Memory Consistency. Journal
of the ACM, Vol. 51, No. 5, Sept. 2004, pp. 800–849.

Constanza Prieto is Quality Manager at Netred, a software

development organization in Santiago, Chile. She focused her
research on protocols for memory consistency over distributed
shared memory systems.

66 C. Prieto, Y. Eterovic

Yadran Eterovi teaches and does research at the Depart-

ment of Computer Science, Pontificia Universidad Catolica de
Chile. His research concentrates on software design, includ-
ing concurrent/distributed programming,and object-oriented
and aspect-oriented design.

