
Computing and Informatics, Vol. 24, 2005, 87–108

COLLABORATIVE ENVIRONMENT FOR GRID-BASED
FLOOD PREDICTION

Ladislav Hluchý, Ondrej Habala, Viet Tran, Emil Gatial

Martin Malǐska, Branislav Šimo, Peter Sĺıžik

Institute of Informatics
Slovak Academy of Sciences
Dúbravská cesta 9
845 07 Bratislava, Slovakia
e-mail: {Emil.Gatial, Martin.Maliska, hluchy.ui,

Ondrej.Habala, viet.ui}@savba.sk

Manuscript received 9 December 2004

Abstract. This paper presents the design, architecture and main implementation
features of the flood prediction application of the Task 1.2 of the EU IST CROSS-
GRID1 project. The paper begins with the description of the virtual organization
of hydrometeorological experts, users, data providers and customers supported by
the application. Then the architecture of the application is described, followed by
used simulation models and modules of the collaborative environment. The paper
ends with vision of future development of the application.

Keywords: Collaborative Grid Environment, Grid computing, Workflow, Data
management, Portal, Flood prediction, Simulation

1 INTRODUCTION

Over the past few years, floods have caused considerable damages throughout Eu-
rope. They have affected most of the European population and they resulted in
heavy material losses. The need for better flood protection has become imminent.

1 This work is supported by EU 5FP CROSSGRID IST-2001-32243 RTD project and
the Slovak Scientific Grant Agency within Research Project No. 2/3132/23.



88 L. Hluchý, O. Habala, V. Tran, E. Gatial, M. Malǐska, B. Šimo, P. Sĺı̌zik

In this paper we present the Collaborative Grid Environment for Flood Fore-
casting, a system intended as a support tool for hydrometeorological experts. Grid
computing environments (GCEs) have increasingly gained attention in the past few
years. Advances in technological infrastructure as well as a better awareness of
the needs of application scientists and engineers have been the primary motivating
factors. In particular, the shift in emphasis from low-level application schedul-
ing and execution [2] to high-level problem solving signals that Grid computing is
becoming increasingly important as a way of doing science. A GCE is a Prob-
lem Solving Environment (PSE) [1] with specifically formed computation kernel,
using the power of Grid Computing. Good examples of some GCEs can be found
in [3].

The system described herein is composed of a cascade of three simulation mo-
dels – meteorological, hydrological and hydraulic model. The whole cascade is able
to predict water flow in a flooded area, but users may also reduce their questions to
simple weather prediction or to development of river level in a certain area (a hy-
drograph).

The interface of this GCE is a WWW-based portal, enabling users to run simu-
lations and evaluate results from anywhere in the world, using a simple computer
with web browser and Internet connection. The front-end is a collection of web pages
with options to run the desired simulations. Behind this, a sophisticated collection
of data, model codes, scripts and Grid middleware is hidden. The GCE uses public-
key based authentication mechanisms, enabling secure and private data transfer,
processing and storage. Furthermore, the system encompasses some collaboration
tools, enabling users to exchange files and to communicate with each other.

The basic data flow is going from the storage system, through a cascade of si-
mulations, postprocessing and visualization and then the results are displayed to
the user. The whole system is controlled by the central portal interface through
configuration files and/or commands to existing processes. Of course the GCE is
much more complicated and versatile than just a sum of the above-mentioned com-
ponents, the simulations can be run standalone, without the need for the complete
cascade to compute, partial results are stored into the storage system and users can
control various parameters of any of its components.

This software is developed as a part of the CrossGrid project [4]. The final
product will enable much more than the first software release described in the next
sections. It will include complex data management, probably a collection of con-
current models for each stage of the simulation cascade, much more sophisticated
and comfortable user interface with options for prediction and warning automation,
while retaining scalability and ease of use.

2 VIRTUAL ORGANIZATION FOR FLOOD FORECASTING

The scheme of the virtual organization as proposed in [5] was a general one. To
actually create a real product, we have had to specify real users, data providers,



Collaborative Environment for Grid-based Flood Prediction 89

storage providers, and cycle providers. In Fig. 1 we can see actual components of
the prototype (grey color).

Fig. 1. Virtual organization for flood forecasting – architecture

Data providers – currently the only data provider is the Slovak Hydrometeorolo-
gical Institute (SHMI). It is responsible for supplying initial boundary conditions
for the meteorological simulation (these come from an external source) and for
radar measurements.

Cycle providers – the system will be tested in the CrossGrid international testbed
environment which will consist of 11 institutions distributed across 8 European
countries. The testbed will provide applications with distributed computing and
storage resources connected by high-performance network (GEANT). One of the
main objectives of the CrossGrid testbed is to ensure interoperability with other
grid testbeds.

Storage providers – the storage space for computation output is provided by the
Institute of Informatics of the Slovak Academy of Sciences (II SAS). Temporary
storage space needed to locally store input and immediate ouput data for running
simulations will be provided by testbed contributors, whose processing facilities
will be used.

Users – there are several groups of users in the Virtual Organization (VO) includ-
ing meteorological and hydrological experts, developers and end users.

Experts – the system will be used solely by meteorological and hydrological ex-
perts from the SHMI and by trained staff from II SAS. These experts will provide
configuration parameters for the simulations and they will decide which simula-
tions need to be executed.



90 L. Hluchý, O. Habala, V. Tran, E. Gatial, M. Malǐska, B. Šimo, P. Sĺı̌zik

Developers – all development is undertaken by II SAS, who are preparing the
portal, storage facilities and scripts for the simulations. They will also modify,
test and deploy simulation model codes.

End users – will be, once again, experts from SHMI, who will evaluate outputs of
the system. In this stage no other users will be involved.

3 CASCADE OF SIMULATIONS

The PSE is based on the cascade of three types of simulations: meteorological,
hydrological and hydraulic. Its structure, basic data flows and types of the data are
shown in Figure 2.

3.1 Meteorological Modelling

Forecasting of flood events requires quantitative precipitation forecasts as well as
forecasting of temperature (to determine snow accumulation/melting). The simu-
lation of atmospheric processes with the objective to predict future developments
is the objective of Numerical Weather Prediction (NWP). The meteorological mo-
dels are generally computationally intensive and they are usually running on the
supercomputer class systems. The output of mesoscale models is used by meteoro-
logists as a boundary condition for regional models. This nesting requires efficient
management and transfers of large (tens to hundreds of megabytes) datasets. The
prediction of flash floods will require the employment of high resolution storm-scale
models.

Our system uses primarily the ALADIN/SLOVAKIA [6] model currently opera-
ted by SHMI. ALADIN is a LAM (Limited Area Model) developed jointly by Meteo
France and cooperating countries. It can be viewed as an extension to ARPEGE,
a global NWP model operated in Meteo France. The main purpose is to provide
more detailed short range forecasts inside limited domain of interest. Currently the
ALADIN model is operated in 13 Euro-Mediterranean countries.

The ALADIN model consists of more than 1 million lines of (mainly) Fortran 90
code. Parallel version uses MPI communication library and was successfully ported
to our target platform. First tests showed that the model code has high demands
on communication network and thus is not very suitable for distributed running in
the Grid. The main benefit of using Grid environment could be in performing of
parameter studies.

We are currently incorporating another model, the MM5 meteorological model,
into the system. It will enable us to simulate weather with finer mesh (up to 2.5 km),
thus reaching increased accuracy over the 7.0 km mesh of ALADIN/SLOVAKIA
predictions.



Collaborative Environment for Grid-based Flood Prediction 91

Fig. 2. Scheme of the simulation cascade of the CROSSGRID Task 1.2 application

3.2 Hydrological Modelling

We are using several hydrological simulation models, it depends on conditions and
needs which will be applied model for which situation and territory; they can be
also used in a combined way.

HEC-1 model is single-event-based, designed to simulate the surface runoff re-
sponse of a river basin to precipitation by representing the basin as an inter-
connected system of hydrologic and hydraulic components [7]. The result of
the modeling process is the computation of streamflow hydrographs at desired
locations in the river basin.

HSPF is a program for continuous simulation of watershed hydrology and water
quality for both conventional and toxic organic pollutants [8]. The HSPF model
uses information such as the time history of rainfall, temperature and solar
radiation; land surface characteristics such as land use patterns; and land man-
agement practices to simulate the processes that occur in a watershed. The
result of this simulation is a time history of the quantity and quality of runoff
from an urban or agricultural watershed.

ERM (Empirical – Regressive Model) is suited for continuous simulation; it is
based on the principle of autoregressive model created by Box and Jenkins.
The simplest regressive model is relational with the forecasted discharge being
function of previous discharge and previous rainfalls. The function parameters
are determined by regressive analysis of time series of discharges and rainfalls in



92 L. Hluchý, O. Habala, V. Tran, E. Gatial, M. Malǐska, B. Šimo, P. Sĺı̌zik

selected time interval. In case of snow, also temperature time series are taken
into account and snow stage is computed.

These models are sequential programs written in FORTRAN and are not com-
putation demanding. Thus they need not be parallelized, but are data demanding,
and a lot of parameters need to be specified by model calibration. Parametric
run will be used in Grid environment through portal and automatically generated
scripts.

3.3 Hydraulic Modelling

One of the hydraulic models in the PSE is FESWMS (Finite Element Surface-
Water Modeling System) Flo2DHi [9] which is a 2D hydrodynamic, depth ave-
raged, free surface, finite element model. Flo2DH computes water surface ele-
vations and flow velocities for both super- and sub-critical flow at nodal points
in a finite element mesh representing a body of water (such as a river, harbor,
or estuary). Effects of bed friction, wind, turbulence, and the Earth’s rotation
can be taken into account. In addition, dynamic flow conditions caused by in-
flow hydrographs, tidal cycles, and storm surges can be accurately modeled. Since
Flo2DH was initially developed to analyze water flow at highway crossings, it can
model flow through bridges, culverts, gated openings, and drop inlet spillways,
as well as over dams, weirs, and highway embankments. Flow through bridges
and culverts, and over highway embankments can be modeled as either 1D or 2D
flow.

Simulation of floods is very computation-expensive. Several days of CPU-time
may be needed to simulate large areas. For critical situations, e.g. when a com-
ing flood is simulated in order to predict which areas will be threatened, and to
make necessary prevention, long computation times are unacceptable. Therefore,
FESWMS Flo2DH was parallelized in order to achieve better performance. In the
parallel version, iterative linear solvers based on Krylov subspace methods [11] are
used instead of the direct solver. These iterative solvers consist of matrix and vector
operations only; thus, they offer large potential parallelism. In comparison with the
direct solvers, iterative solvers are often faster and require less additional memory.
The only drawback of iterative solvers is that they do not guarantee convergence
to a solution. Therefore, preconditioning algorithms [10] are used to improve the
convergence of iterative algorithms.

4 WORKFLOW SERVICE IMPLEMENTATION

The FloodGrid application uses the workflows for representing a cascade of simu-
lation models. A module responsible for execution of a workflow in the FloodGrid
application is a workflow service based upon a grid service standard. The workflow
service is divided to four modules – interface, workflow execution and monitoring,
grid access, database access. Architecture of workflow service is shown in Figure 3.



Collaborative Environment for Grid-based Flood Prediction 93

The workflow description and information about the workflow instances are stored
in Mysql database.

Fig. 3. Workflow service architecture

4.1 Workflow Description

Each workflow consists of several jobs (activities). Jobs can be parameterized by
using output or input parameters. The parameters are bounded to the resources
(resource can be a file, a directory or a variable). One resource can be shared
between several parameters, but a restriction is that only one of those parameters
can be an output parameter. Dependency between the jobs is simply defined as
list of links between two job IDs (successor relationship). This simple definition
partially eliminates restrictions of a direct acyclic graph representation of workflow,
but need to be handled in job implementation to support for example conditional
loops. Our definition of workflow description allows to define more than one root
job, so the workflow can consist of more subworkflows. In Figure 4 a simple example
of workflow is shown; below it, you can see details how the workflow description is
defined in our implementation.

Fig. 4. Workflow example



94 L. Hluchý, O. Habala, V. Tran, E. Gatial, M. Malǐska, B. Šimo, P. Sĺı̌zik

List of root jobs: (1, 2).
List of job links ({1, 3}; {1, 4}; {2, 4}; {2, 5}).
Every job has to have its own class inherited from class AbstractTask, whose

name is stored in database for each job. The inherited class must implement methods
for determining two basic states of the job – isAborted(), isFinished() and of course
method run() that should contain implementation of the task. There is one default
implementation of AbstractTask used for executing the grid jobs – GridTask. This
implementation uses the job attribute param string to obtain name of script file of
the job that would be executed in grid.

4.2 The Workflow Service Interface

The workflow service provides interface which allows these types of operations:

• create, clone, run, remove workflow and workflow instance,

• modify job parameters,

• query list of workflows and workflow instances,

• determine current job status,

• basic operations for manipulating with grid proxy certificates.

4.3 Database Access

The class PersistenceLayer is responsible for storing all information about the work-
flow into the database. Instead of a direct access to database, O/R mapping tool
Torque was chosen. Because Torque objects have linkage to database, they cannot
be migrated. To fix this dependency on the database, a mapping mechanism is used
to map Torque database object onto the our objects.

4.4 Workflow Execution and Monitoring

Workflow service contains two main threads responsible for execution and monitor-
ing of the workflows – a JobMonitoringThread and a ExecutionThread. While there
are multiple instances of the ExecutionThread – each running workflow has its own
instance, there is only one instance of the JobMonitoringThread. The JobMonitor-
ingThread is used to monitor state of the grid jobs, other types of the job are not
monitored by it. It has its own queue of running jobs, periodically checks a state of
the all jobs from the queue and inform the appropriateGridTask object that belongs
to the monitored job. This job object has to decide if any change of a state occurs
and if this change is so relevant that the ExecutionThread (that owns the job) need
to be informed about it. Map of the iExecutionThreads searchable by workflow ID
is stored in the JobMonitoringThread.

An explanation about how the ExecutionThread works will be shown on detailed
description of the steps that are executed when the method runWorkflow() is called.



Collaborative Environment for Grid-based Flood Prediction 95

At the beginning, a tree of the jobs will be created, strictly speaking – a tree of the
objects that contains implementation of the jobs will be created. Every job object
will know all its successors and predecessors and can manipulate with information
about the job that belongs to this object stored in the database. The next step is
to prepare the root jobs objects to ‘ready to run’ state and enqueue them to the
ExecutionThread queue of the job objects with changed state. After the notification
about a queue size change, the ExecutionThread will wake up if it sleeps, and process
the objects from queue. A decision what to do with the job object will me made by
the ExecutionThread by determining the state of job. When the job is in the ‘ready
to run’ state, the job will be executed. Finished job causes that the job object will
be removed from the JobMonitoringThread queue and counter of unfinished jobs will
be decreased. Aborted job results in cancellation of all running jobs according to
the workflow. Life cycle of ExecutionThread will end when the counter of unfinished
jobs will drop to zero value.

5 DATA MANAGEMENT

A problem solving environment of such a scale as is the flood prediction application
of CROSSGRID Task 1.2 (FloodGrid) requires that its data be taken care of by
a specialised software suite. This data management suite has the following roles:

• To enable delivery and storage of input data from sources outside of the PSE.

• To store all the computed (output) data, which has to be stored.

• To catalog all existing data and provide effective search facilities.

• To enable quick and straightforward access to all available data.

The data management software of CROSSGRID Task 1.2 is equipped with facili-
ties that support all these goals. The rest of this chapter describes the facilities
for transport of input data, for data cataloguing and lookup, for data storage and
replication. The chapter ends with description of future development of data ma-
nagement software of CROSSGRID Task 1.2.

5.1 Data Management Tasks in CROSSGRID Task 1.2

General scheme of data management operations in FloodGrid is shown in Figure 5.
Only the most important operations are shown there.

As we can see, the Slovak Hydrometeorological Institute (SHMI) in Bratislava
provides the input data of FloodGrid – radar and satellite images, measurement sta-
tions data and input data for both ALADIN and MM5 (input data of hydrological
and hydraulic stages of flood prediction are computed inside the FloodGrid). Mea-
surement stations data is stored in a RDBMS; all other data is just flat files. The
measurement stations are graphically displayed in the FloodGrid portal, and also
the metadata interface of FloodGrid portal requires transfer of metadata to/from



96 L. Hluchý, O. Habala, V. Tran, E. Gatial, M. Malǐska, B. Šimo, P. Sĺı̌zik

Fig. 5. Scheme of data management tasks in FloodGrid

the storage. While the measurement stations data ends its journey in the portal,
the metadata is often used to find suitable data for a simulation job. Because of
this connection between metadata and job definition document, also the workflow
service and its connection to portal is displayed, although this part of the PSE is
not incorporated in the data management suite described in this chapter (therefore
it is grey in Figure 5).

The files with ALADIN and MM5 inputs are transferred (via a replica manage-
ment software described later) to computational node when a job requires them.
Files produced in the job are transferred back; their metadata descriptions are re-
gistered in the metadata service (also described later in this chapter).

5.2 Input Data Sources

The input data of our flood prediction problem solving environment is divided into
the following groups:

• Radar images,

• Satellite photos,

• Measurement stations data,

• ALADIN boundary conditions,

• MM5 input data.

All this data was, or is currently provided by SHMI. Transport of some of this data
was implemented, deployed and tested for some time and then disabled because of



Collaborative Environment for Grid-based Flood Prediction 97

SHMI Internet connection bandwidth considerations. Because all the transfers can
be enabled anytime when needed, we will formulate our description in present tense
to avoid confusion.

5.3 Transport of ALADIN Boundary Conditions and MM5 Input Data

The most important input data of our FloodGrid application is the ALADIN and
MM5 input data, which is needed for the simulation cascade. All other simulated
data is derived from one of these two sources. The data is computed at SHMI and
transferred daily – uploaded to a computer inside the FloodVO. At this computer it
is annotated with metadata and registered with both replication suite and metadata
service. Then it is ready to be used by a simulation job.

ALADIN and MM5 inputs are actually representation of the same physical va-
lues. MM5 inputs are currently computed at SHMI from ALADIN data (this may
change in the future and MM5 input data may become independent from ALADIN
input data; because of this the data is transferred separately, not computed in
the FloodGrid application). Both ALADIN and MM5 are meteorological models,
which can be used partly interchangeably. Anyway, we use them both because of
their different internal implementation and abilities. Meteorological expert may find
ALADIN more useful in some simulations, while in others the choice may be MM5.

5.4 Transport of Radar Images, Satellite Photos

and Measurement Stations Data

This data can be considered as ‘complementary’ to the ALADIN and MM5 input
datasets. While it is not necessary for the simulation cascade, it may be very
useful for hydrometeorological experts. The satellite and radar images provide both
short-term weather information, on different scale and resolution. The measurement
stations data is a source of real data, with which the computed ALADIN, MM5 and
other inputs can be compared. If an expert wants to review a past situation, it
is always better to have the real measured data than to rely just on simulations.
As shown in Figure 5, the measurement stations data are transferred to the portal,
where they are available in the form of a graph.

5.5 Replica Management

The actual storage and maintenance of a coherent dataset collection is performed
by a replica management software. It keeps track of the datasets, potentially stored
at multiple places duplicitly (replicated). The creation of replicas of a single dataset
may be well used for better security and protection against an unwanted loss of
the dataset because of a sudden storage device failure, as well as for better access
to the file by making it more local to the place which requires it. Altough the
term replica management may be pertinent to several areas of distributed comput-
ing research, we deal mainly with the Grid and Grid computing paradigm. For the



98 L. Hluchý, O. Habala, V. Tran, E. Gatial, M. Malǐska, B. Šimo, P. Sĺı̌zik

Grid, a replica management suite has been developed in the European DataGrid
Project [14]. The software developed in work package 2 of the DataGrid [15] covers
the registration, lookup, transfer and replication tasks of a mature replica manage-
ment suite, with sufficiently distributed control. Its last implementation is based on
the modern paradigm of web services and OGSA [13] architecture. Anyway, it is
lacking a modern and scalable metadata repository.

5.6 Metadata Production and Storage

The metadata production and storage tasks are handled by three different compo-
nents of the FloodGrid data management system. Metadata is produced by a set
of specialised programs and scripts, which extract important values from datasets
(both transferred from outside of FloodGrid and computed). The metadata is then
stored in the metadata database – a RDBMS, interfaced with the rest of the Flood-
Grid via the metadata service. While we find it useless to describe the metadata
extraction methods, which vary from one type of dataset to other and are not very
complicated in general, we focus our view on the two remaining components of
FloodGrid metadata system – the service and database.

5.7 Metadata Service

The metadata service (named org.crossgrid.wp12.metadata.service) is an OGSI-
compliant [12] web service. It enables its user to add, remove, edit metadata descrip-
tions of files (identified by a GUID) as well as to find registered files with certain
properties. The service interface exports these methods:

• AddObject,

• RemoveObject,

• ModifyObject,

• FindObject,

• ShowStructure.

The *Object methods allow the user to work with metadata description of a file –
he/she may add a description, remove or change it or find a file (a set of files) by
its (partial) description. The ShowStructure method is not connected to a file, but
rather to the whole database. Because the system is modular and the metadata
service can be used to access any database conforming to some rules (described
below), this method is necessary for the service user to properly display stored data.
This method shows all available metadata items, their types and allowed or available
values (in case of enumerations).

The service is accessible either by a client library, available in the Java 2 pro-
gramming language, or by a visual interface implemented in the FloodGrid portal.



Collaborative Environment for Grid-based Flood Prediction 99

5.8 Metadata Database

The metadata database is a structure, which supports:

• metadata items of types String, Integer, float, date (datetime) and geometry –
geometrical shape (point, line, rectangle, polygon),

• closed enumerated sets,

• open (midifiable) enumerated sets.

The structure of the database is not hardwired into the metadata system; it is defined
in a table and can be modified anytime. Simple restart of the metadata service is
then needed to access the new structure. Enumerated sets are implemented via
indirection and are very useful for example for string values, where frequent use of
identical values is expected (like names of users, for example). Instead of storing
multiple copies of the same string, only a reference to another table – holding all
the defined strings – is stored. In addition, such a set of values can be locked, so
the user is forced to choose only from predefined values.

5.9 Typical Data Management Usage Scenario

To better illustrate the use of the metadata suite, described in this chapter, we
wil present a usage scenario, which shows the coordination of single modules of the
suite.

Let us imagine a case, where the user wants to simulate a weather prediction
for certain time and area. He/she logs into the FloodGrid portal and starts the task
by locating the input data for his/her simulation. He/she accesses the metadata
lookup portlet, enters the file description (in this case type of file – ALADIN or
MM5 input data, date and geographical location of the data). The metadata lookup
gives him/her one or more files. He/she accesses the files’ descriptions and chooses
the right one. He/she clicks on its GUID and a set of physical location URLs
is displayed. He/she chooses one of these URLs for the job definition document.
Second option (currently under development) would be to just enter the GUID in
the job definition document. The job could then access the most convenient replica,
depending on where it would be started.

After providing the job definition document via the workflow portlet (described
elsewhere), the job can be submitted. Once the job is executed on a computational
node, all input data is downloaded (see Figure 5) and computation can begin. Pro-
duced output data is registered and uploaded to Grid storage (CopyAndRegister
function of the edg-rm replica management tool). Metadata is extracted (using the
metadata extraction scripts) and sent back to the workflow service for registration
into the metadata service. The upload of metadata to the workflow service is neces-
sary because the computational nodes are not equipped with the software necessary
for metadata service access. The cycle is now closed – new data is in the Grid,
annotated and ready to be found and used in another computational job.



100 L. Hluchý, O. Habala, V. Tran, E. Gatial, M. Malǐska, B. Šimo, P. Sĺı̌zik

5.10 Future Development of Data Management Software

in CrossGrid Task 1.2

We mentioned several ‘under development’ pieces of software in this paper. For
example, one such future enhancement not only of the data management suite, but
of the whole PSE will be better integration of replication software with simulation
jobs. The user will not have to find and select the physical file URL, the software
will do it automatically based on the chosen GUID.

Further modifications are expected in the metadata service. The current proto-
type is witout GSI security – this will change. Also a method of distribution of the
(potentially widely used) metadata service is considered. More metadata services
could cooperate in a transparent way – users would ‘write’ metadata to their local
service, but lookups will be done in all available networked services. Support for
more data types is also considered, altough to date such need has not arisen.

6 USER INTERFACES

There are two user interfaces that provide access to the grid for the flood application:

Application portal – flood application specific portlets in the Jetspeed [16] portal
framework

Migrating Desktop – a Java based fat client emulating desktop environment and
providing a user with various services making his life easier in the grid environ-
ment.

Both these interfaces access the flood workflow service (described above) in order
to provide a user the ability to run, monitor and view results of his jobs regardless
of the user interface he uses.

6.1 Application Portal

There is increasing need for easy to use, secure and customizable user interface from
the side of users of the portal. We use the Jetspeed portal framework [16], that
is open source implementation of an Enterprise Information Portal, based on Java
portlet server and XML. A portal makes network resources (applications, databases
and so forth) available to end-users. Jetspeed acts as the central hub where infor-
mation from multiple sources are made available in an easy to use manner. A new
unique session is created each time the user logs into the portal, so the portlets can
exchange information within the same session.

Portlets are small pieces of Java code that can be plugged to portal and they
make up the user interface. Currently there are portlets for proxy certificate retrieval
(MyProxy portlet), general job submission portlet, job status portlet, metadata
portlet and GridFTP portled made by other parties.



Collaborative Environment for Grid-based Flood Prediction 101

Our web portal for workflow management consists of following parts (portlets):

Workflow template portlet – shows list of defined workflow templates and it
allows the user to choose desired workflow template. Jobs of the template can
be examined by the button (located in the right from workflow template name,
indicated as down-arrow icon). Default parameters are loaded from configuration
files.

Workflow portlet – This portlet shows list of workflows of the current Jetspeed
user. Each workflow and job is colored according to its current state. This
portlet behaves similarly like workflow template portlet (so enables to explore
jobs and parameters in the same way), except that the user is able to explore
and change parameters for particular job and submit the workflow. The names
of jobs are indented according to their order of execution, so it is intuitive to
find out which jobs are executed in sequence or in a parallel way. The output of
the job can be simply viewed by pressing the ‘Output’ button.

Visualization portlet – The user can browse the output directory of the job and
view the content of files and pictures created by visualization postprocessing
in the visualization portlet. Visualization portlet also enables to play image
sequences to simulate video playback.

Metadata portlet – The user can query the metadata or add new one to metadata
catalog (described above). The seaching and retrieving of replicas is realized by
restrictive conditions that are sent to the metadata service. The obtained records
are transparently divided into the directories, in the main panel, where they can
be looked over. The user can manage directories and metadata records from
main panel as well.

6.2 Migrating Desktop

Migrating Desktop (MD) is a Java based client application enabling the user to
work with grid applications in desktop environment. MD enables the user to submit
general application jobs, track their execution and view results, manage files locally
and on the grid storage elements.

We have created a specialized plugin as an interface for the flood workflow
system. Results can be viewed using MD’s built-in file viewer, which can display
text files and pictures.

MD contains the plugin that manages metadata records in a very similar way
as in Aplication Portal. This plugin is located next to the Workflow plugin on the
tabbed pane. The user can add, delete and search for the metadata records. The
user can enter the restrictive conditions for metadata search in the query dialog.
After some records are retrieved the user can preview the records and select any
desired record. Selected records can be further processed, removed from main panel
or deleted from metadata storage.



102 L. Hluchý, O. Habala, V. Tran, E. Gatial, M. Malǐska, B. Šimo, P. Sĺı̌zik

7 COLLABORATIVE TOOLS OF THE USER INTERFACE

The need of cooperation between scientists and users from many organizations in
Grid projects requires sophisticated tools for collaborations in portals. The scientists
need to access and share data, analyze them, and discuss with other scientists via
the collaborative tools. Therefore, collaborative tools are one of the key elements of
virtual organizations.

The collaboration in FloodGrid portal is based on the OGCE (Open Grid Com-
puting Environments Collaboratory) [17] framework, which offers a grid-oriented, in-
tegrated and extensible collaborative environment via portals. Furthermore, OGCE
is based on Jetspeed portal framework, which is chosen as the main platform for
portals in the CrossGrid project.

OGCE collaboration portal is organized as a set of sites. Each site is a place for
users to visit, work with tools and resources, be aware of who else is visiting, and
work together. Each site is a collection of pages, particular configurations of tools.
Each tool in OGCE portal is a portlet, an individual web component that is made
accessible to users via the portal interface. Each portlet generates only a fragment
of the markup that a user sees from his or her browser. Users navigate within a site
by invoking the different pages and tools of the site and switching focus between
these tools. Users can customize the sites (if they have permissions to do so) to
control the set of tools, the tool configurations, the tools organization, and the tools
layout in the sites.

One of the most important tool sets of OGCE portal are CHEF [18] teamlets
that allow users to communicate with each others. There are several communication
teamlets: announcements, discussion, mailing list, chat; so users can choose the
suitable communication mode. The teamlets can be also customized according to
the users need. Another CHEF teamlet is file hosting that allows users to share
documents and data with others in the site. Users can upload files from their
computers, create them online or copy them from other sites.

CHEF teamlets also offer other means of collaboration between users. There
is calendar tool, where users can schedule events involving other users, times and
locations. Event arrivals, event reminders and new or modified events are significant
usage events and can trigger notifications. Assignment tool allow users to create
tasks, describe them, and assign them to other users and user groups. Tasks may
have a deadline and a set of portal resources. Task results are a set of portal resources
that are created or modified by the users performing the task. A task may have
a number of milestones, each of which is described as a subtask. Users can enter
progress reports as they are working on a task. A presence tool shows the users who
are visiting the sites.

OGCE portal also imports a large collection of grid tools from other Grid portal
projects such as NPACI GridPort [19] or NCSA Alliance Portal [20]. These tools al-
low users to do Grid operations such as user certificate management (proxy manager
portlet), accessing remote files (GridFTP portlet), browsing OGSA services (OGSA



Collaborative Environment for Grid-based Flood Prediction 103

browser), monitoring Grid resources (GPIR portlet), submitting a job to Grid (Job
submission portlet).

The access to the OGCE sites is protected by membership and access right.
Sites can be open to user community (i.e. everyone can visit them) or closed, that
only users who have memberships of the sites, can enter the site. When a user goes
to OGCE portal, he/she must provide user IDs and passwords for authentication.
After that, the list of sites of which he/she has membership is displayed and he/she
can visit them. Inside a site, he/she can perform only operations that are permitted
according to his/her access right. The administrators of sites can give/take users’
memberships and change their access rights dynamically. They can also set up new
sites, add/remove tools or pages to sites, change default setting of tools, change site
layouts.

8 VISUALIZATION OF SIMULATION RESULTS

The final stage of simulation processes is presentation of their results in an appro-
priate form. As the outputs from simulation applications usually comprise large
amounts of numeric data, sophisticated ways of converting the data into easy com-
prehensible forms are necessary. Among these, graphical presentation takes an out-
standing place, mainly for its ability to present multiple data and complex relation-
ships, that would be very hard to express otherwise.

The aim of flood animations in the CrossGrid project was to predicate, which
parts of the modeled area would be endangered in case of a natural disaster. The
most straightforward way of presenting such data is a map. Though an expert in
the field of meteorology would be most satisfied with data presented in classical two-
dimensional form, in order to make the simulations more interesting for the general
public, we created a 3D-visualization system.

8.1 Inputs and Outputs

Although we created three different visualization systems, their input and output
data were nearly the same. The following data were used as inputs:

• A LIDAR terrain model. Those are terrain height data taken from a plane using
the laser technology. The resolution of such data is usually very high, in our
case the samples were taken in a 1× 1m grid.

• An orthophotomap, a photograph of the terrain surface taken from a plane. The
resolution of the map is very high, matching the precision of the LIDAR data.

• Terrain mesh, created from the LIDAR data for the purposes of simulations.
The mesh consists of triangular and polygonal shapes. The precision of the
mesh was set to match the criteria of the simulation algorithm. All outputs
from the simulations used this mesh as a referential structure.



104 L. Hluchý, O. Habala, V. Tran, E. Gatial, M. Malǐska, B. Šimo, P. Sĺı̌zik

• The actual results of the simulations. Though the simulation internally com-
puted the water flow in tiny time steps, the final data were produced in 15-mi-
nutes intervals. Each time step comprised an array of numerical values, telling
whether the given terrain element had been flooded or not, and what is the level
of water within that element.

• Most of the input data required some kind of filtering and preprocessing, in order
to get rid of small errors that have occurred in the process of their preparation,
and also to make them more visually appealing. The corrections were done
manually.

The VRML world files are ordinary text files, usually with the wrl extension.
According to the VRML specification, they contain text (i.e., human-readable) de-
finitions of objects to display. In order to view the VRML files, the user must have
installed a VRML browser. There are plenty of free VRML browsers available for
virtually all mainstream computing platforms. A VRML browser could be delivered
as a self-standing application, or, more often, as a HTML-browser plugin.

As already said, we have created three different visualization systems. The first
system produced simple and pertinent two-dimensional pictures, targeted mainly
for experts. The output pictures were in commonly-used, platform-independent
PNG or JPEG formats. The second, Blender-based system, produced visually-
appealing, 3-dimensional data. The system also produced pictures in arbitrary image
formats. The third, VRML-based system, produced as its output a set of VRML-
world definition files.

8.2 Applied Technologies

All systems were programmed in the Python programming language. Python is
a high-level programming language, providing a considerably rich standard library.
It allowed the systems to be created with minimum of other additional software.

The first solution was based on the GRASS GIS system. GRASS is a free,
professional geographical information system, developed and supported by an in-
ternational team of experts. It offers a rich set of commands for work with raster,
vector and site-oriented data. GRASS provides an environment that makes easy
both the interactive use, and the creation of scripts. In our project, GRASS was
used to read and convert the input terrain data, overlay them with the referential
mesh and draw the flooded elements with chosen colors. The GRASS visualization
system was later integrated with Migrating Desktop and Jetspeed portal.

The second solution used the Blender to create 3D pictures of the flooded area.
Blender is a free, open-source 3D modeling program with support for creation of
finely-rendered images, tools for creation of animations and also experimental sup-
port for creation of games. We used Blender to input the LIDAR terrain data,
applying a texture onto them and overlaying the 3D world with the water mesh.
Blender exposes a programming API. This made it possible to do all the necessary
work with our customary Python scripts running from the inside of Blender. As



Collaborative Environment for Grid-based Flood Prediction 105

Blender is an inherently interactive application, it always needs assistance from the
user, thus making the automatic workflow-driven processing impossible. The user
has to choose a view, adjust the camera and a few other settings every time he or she
wants to make a picture. It is significant disadvantage that made us move towards
the VRML-based solution.

The third, VRML-based solution, transformed the input data into so-called
VRML worlds. The VRML modeling language contains a set of primitives for de-
scribing the basic geometric object, together with the tools for creating arbitrary
customary object designs. Because it is an industrial standard for describing 3D
scenes, this solution is platform-independent. Although we have called the third
solution VRML-based, it means only that the program produced VRML files as its
output. In fact, the whole process of transforming the data from input to internal
formats, processing them and transforming them to the VRML format is done purely
with Python scripts. No other software is necessary, which is the biggest advantage
over the previous two solutions. It makes the integration with other parts of the
CrossGrid project seamless. The only requirement is a VRML browser, which has
to be installed into the user’s web browser.

9 CONCLUSION

We have presented a collaborative grid computing environment for flood forecasting,
called FloodGrid. This environment is an application of the CROSSGRID project.
It consists of a computation core with several meteorological, hydrological and hy-
draulic simulation models, a workflow service which steers these models, a data and
metadata management suite, a user interface in two versions, including collabora-
tion and visualization tools. The FloodGrid application is still evolving and future
version will include more models and feature better usability for its end users. A two-
dimensional visualization system has been incorporated into the Migrating Desktop
and Jetspeed Portal user interfaces. Pictures made with this system were also pre-
sented at the regular CROSSGRID meetings. A VRML-based visualization system
has been even adopted by our colleagues from the Johannes Kepler University in
Linz. It was successfully modified and adjusted for usage in the CAVE system.

REFERENCES

[1] Gallopoulos, S.—Houstis, E.—Rice, J.: Computer as Thinker/Doer: Problem-
Solving Environments for Computational Science. IEEE Computational Science and
Engineering Magazine, Vol. 2, 1994, pp. 11–23.

[2] Foster, I.—Kesselman, C.: The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers, Inc., 1999.

[3] Ramakrishnan, N.—Watson, L. T.—Kafura, D. G.— Ribbens, C. J., Shaf-

fer, C. A.: Programming Environments for Multidisciplinary Grid Communities.
Available on: http://citeseer.nj.nec.com/ramakrishnan01programming.html.



106 L. Hluchý, O. Habala, V. Tran, E. Gatial, M. Malǐska, B. Šimo, P. Sĺı̌zik

[4] EU 5FP project CROSSGRID. Available on: http://www.eu-crossgrid.org.

[5] Hluchý, L.—Astaloš, J.—Habala, O.—Tran, V. D.—Šimo, B.: Concept of
a Problem Solving Environment for Flood Forecasting. Recent Advances in Parallel
Virtual Machine and Message Passing Interface. LNCS 2474, Springer Verlag, 2002.

[6] The International ALADIN Project. Available on: http://www.cnrm.meteo.fr/

aladin/.

[7] HEC-1. Available on: http://www.bossintl.com/html/hec-1.html.

[8] Hydrological Simulation Program-Fortran. Available on: http://water.usgs.gov/
software/hspf.html.

[9] FESWMS – Finite Element Surface Water Modeling System. Available on:
http://www.bossintl.com/html/feswms.html.

[10] Ajmani, K.—Ng, W. F.—Liou, M. S.: Preconditioned Conjugate Gradient Me-
thods for the Navier-Stokes Equations. Journal of Computational Physics, Vol. 110,
1994, pp. 68–81.

[11] Saad, Y.—Vorst, H.: Iterative Solution of Linear Systems in the 20th Century.
Journal of Computational and Applied Mathematics, Vol. 123, 2000, pp. 1–33.

[12] Tuecke, S.—Czajkowski, K.—Foster, I.: Open Grid Services Infrastruc-
ture 1.0. Available on: http://www.ggf.org/ogsi-wg.

[13] Foster, I.—Kesselman, C.—Nick, J. M.—Tuecke, S.: The Physiology of the
Grid. An Open Grid Services Architecture for Distributed Systems Integration.

[14] The DataGrid Project web site. Available on: http://www.eu-datagrid.org.

[15] Kunszt, P.—Laure, E.—Stockinger, H.—Stockinger, K: Advanced Replica
Management with Reptor. In 5th International Conference on Parallel Processing and
Applied Mathematics, Czestochowa, Poland, September 7-10. Springer Verlag, 2003.

[16] Apache Jetspeed Portal Framework. Available on: http://portals.apache.org/
jetspeed-1/index.html.

[17] OGCE home page. Available on: http://www.ogce.org.

[18] CHEF home page. Available on: http://www.chefproject.org.

[19] NPACI GridPort home page. Available on: https://gridport.npaci.edu/.

[20] NCSA Alliance Portal. Available on: http://www.extreme.indiana.edu/

xportlets/.

Ladislav Hluh�y received his Dipl. Ing. (M.Sc.) degree from
the Slovak Technical University Bratislava in 1975, and the C.Sc.
(Ph.D.) degree in computer science from the Slovak Academy of
Sciences in 1986. He is the member of IEEE Computer society,
and IEEE Communication Society. His research interests include
algorithms and methods for high performance computing and
grid computing.



Collaborative Environment for Grid-based Flood Prediction 107

Ondrej Habala is a researcher and Ph.D. student at the In-

stitute of Informatics of the Slovak Academy of Sciences. His
primary interests are data management in grids, metadata ma-
nagement and DHT networks.

Viet Tran is scientist at the Institute of Informatics, Slovak

Academy of Sciences. His research concentrates on numerical
modeling, high performance computing, grid computing and por-
tal technologies including collaborative environments.

Emil Gatial is researcher at the Institute of Informatics at the

Slovak Academy of Sciences, Slovakia. His research is focused
on applying semantic techniques and automated reasoning in
knowledge management.

Martin Mali�ska is a Ph.D. student at the Institute of Infor-
matics of the Slovak Academy of Sciences. His studies are con-
cerned with the problem of workflow management in large-scale
grid appication and networks of web services.



108 L. Hluchý, O. Habala, V. Tran, E. Gatial, M. Malǐska, B. Šimo, P. Sĺı̌zik

Branislav �Simo is a reasearcher and Ph.D. student at the In-

stitute of Informatics of the Slovak Academy of Sciences. He
studies mainly the usage of collaborative tools and portals in
grid computing.

Peter Sl���zik is a Ph.D. student at the Institute of Informatics,
Slovak Academy of Sciences. He is interested in visualisation
of scientific data, computational peer-to-peer networks and grid
computing. He works under the leadership of Dr. L. Hluchý.


