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Abstract. In this paper a new parallel genetic algorithm for coloring graph vertices
is presented. In the algorithm we apply a migration model of parallelism and define
two new recombination operators SPPX and CEX. For comparison two problem-
oriented crossover operators UISX and GPX are selected. The performance of the
algorithm is verified by computer experiments on a set of standard graph coloring
instances.
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1 INTRODUCTION

Graph k-colorability problem (“chromatic number problem”) belongs to the class
of NP-hard combinatorial problems [13, 19]. This decision problem is defined for
an undirected graph G = (V, E) and positive integer k ≤ |V |: is there an assign-
ment of available k colors to graph vertices, providing that adjacent vertices receive
different colors? With additional assumptions many variants of the coloring prob-
lem can be defined such as equitable coloring, sum coloring, contrast coloring, har-
monious coloring, circular coloring, consecutive coloring, list coloring etc. [17, 25].
In optimization version of the basic problem called GCP, a conflict-free coloring
with minimum number of colors is searched. Intensive research conducted in this
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area resulted in a large number of exact and approximate algorithms, heuristics
and metaheuristics [24, 33, 34]. However, the reported results are often difficult to
compare due to specific assumptions, different algorithms and their implementation
details, tuning of parameters, computing platforms, test data sets, etc. GCP was
the subject of Second DIMACS Implementation Challenge held in 1993 [18] and
Computational Symposium on Graph Coloring and Generalizations in 2002. A col-
lection of graph coloring instances in DIMACS format and summary of results are
available at [35, 36, 37].

Genetic algorithm (GA) is a metaheuristic often used for GCP [8, 9, 10, 11,
12, 20, 29, 32]. Recently a number of parallel versions of genetic algorithms (PGA)
were studied. One popular model is master-slave in which a part of computations is
assigned by master processor to slave processors [4]. Another approach is based on
co-evolution of a number of populations that exchange genetic informations during
the evolutionary process according to a communication pattern [1, 2, 7]. PGA were
applied to many hard optimization problems (e.g. [27]) but, to our best knowledge,
they were not used so far to GCP.

In this paper some results of experiments with parallel genetic algorithms for
graph coloring problem are described. Some earlier results obtained by the authors
were published in [22, 26].

After several initial experiments with alternative parallel models the migration
model of parallelism was chosen. The main purpose of the master-slave model is
speeding up processing of one global population by parallelization of computations.
In the migration model of PGA we can expect that interaction between co-evolving
populations can affect also the quality of the solution. If speedup is not essential one
can simulate and test migration-based PGA with the help of a sequential program.

In the paper two new recombination operators for coloring chromosomes are pro-
posed: SPPX (Sum-Product Partition Crossover) in which simple set operations and
random mechanisms are implemented, and CEX (Conflict Elimination Crossover)
that reduces the number of color conflicts with the help of selective copy operations.
For reference we use two well known operators UISX (Uniform Independent Set
Crossover) [9] and GPX (Greedy Partition Crossover) [12]. They both are problem-
specific crossovers designed particularly for GCP and passed a series of experimental
verification in GA environment [14, 21, 23].

In experimental part of the paper widely accepted DIMACS benchmark graphs
were used. The obtained results are very promising and encourage future research
focused on PGA and new genetic operators for a large class of graph coloring prob-
lems.

2 GRAPH COLORING PROBLEM – DEFINITION AND NOTATIONS

Let us define formally the optimization problem GCP.

For given graph G(V, E), where: V – set of graph vertices, |V | = n, and E – set
of graph edges, |E| = m, the optimization problem GCP is formulated as follows:



Efficient Graph Coloring with Parallel Genetic Algorithms 125

10

7

6

1

2

5

3

9

8

4

Fig. 1. Exemplary graph G(V,E)

find the minimum positive integer k, k ≤ n, and a function c : V −→ {1, . . . , k},
such that c(u) 6= c(v) whenever (u, v) ∈ E. The obtained value of k is refered to as
graph chromatic number χ(G).

Similarly, graph edge coloring problem for given graph G(V, E) can be defined.
One can find solution to mimimum edge coloring by solving vertex coloring problem
for edge graph Ge(Ve, Ee) associated with the given graph G(V, E) [24, 17]. An
exemplary graph G(V, E) with ten vertices is shown in Figure 1.

In graph coloring problem k-colorings of graph vertices are encoded in chromo-
somes representing set partitions with exactly k blocks. There are two equivalent
notations for vertex colorings that are commonly used in algorithm design.

In assignment representation available colors are assigned to an ordered sequence
of graph vertices. Thus, the vector c = 〈c[1], c[2], . . . , c[n]〉 represents a vertex
coloring. For the graph in Figure 1, an optimal 3-coloring is denoted by vector
c = 〈1, 2, 3, 2, 3, 1, 2, 3, 2, 1〉.

In partition representation a vertex coloring is a unique sequence of partition
blocks in Hutchinson representation [15]. Each block of partition p does corre-
spond to a single color. Elements inside each block are ordered in increasing lexico-
graphic order, and all blocks are ordered increasingly according to the value of their
first element. For our graph the same optimal 3-coloring is denoted by partition
p = {1, 6, 10}{2, 4, 7, 9}{3, 5, 8}.

3 MODELS OF PARALLEL GENETIC ALGORITHMS

There are many models of parallelism in evolutionary algorithms: master-slave PGA,
migration based PGA, diffusion based PGA, PGA with overlaping subpopulations,
population learning algorithm, hybrid models etc. [3, 4, 5, 6, 16, 28, 30, 31].

The above models are characterized by the following criteria:

• number of populations: one, many;

• population types: disjoint, overlaping;

• population topologies: various graph models;

• interaction model: isolation, migration, diffusion;
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• recombination, evaluation of individuals, selection: distributed/local, centrali-
zed/global;

• synchronization on iteration level: synchronous/asynchronous algorithm.

The most common models of PGA are:

• master-slave: one global population, global genetic operations, fitness functions
computed by slave processors;

• massively parallel (cellular): static overlapping subpopulations with a local
structure, local genetic operations and evaluation;

• migration (with island as a submodel): static disjoint subpopulations/islands,
local genetic operations and migration;

• hybrid: combination of one model on the upper level and other model on the
lower level (the speedup achieved in hybrid models is equal to product of level
speedups).

4 MIGRATION MODEL OF PARALLEL GENETIC ALGORITHM

Migration models of PGAs consist of a finite number of disjoint subpopulations
that evolve in parallel on their “islands” and only occasionally exchange genetic
information under control of a migration operator. Co-evolving subpopulations are
built of individuals of the same type and are ruled by one adaptation function. The
selection process is decentralized.

procedure: genetic algorithm for a subpopulation

begin

iteration counter t = 0;
initialization of subpopulation Pt;

evaluation of Pt;

while (not termination condition) do

begin

parental population Tt =selection from Pt;

offspring population Ot =crossover and mutation on Tt;

evaluation of {Pt ∪Ot};
Pt+1 =selection from {Pt ∪Ot};
if (migration condition) then

migration of representatives of Pt+1 to all other

subpopulations

t = t + 1;
end;

end;

Fig. 2. Genetic algorithm for a subpopulation in the migration model
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In our model the migration is performed on a regular basis. During the mi-
gration phase every island sends its representatives (emigrants) to all other is-
lands and receives the representatives (immigrants) from all co-evolving subpopu-
lations. This topology of migration reflects so called “pure” island model. The
migration process is fully characterized by migration size, distance betweeen po-
pulations and migration scheme. Migration size determines the emigrant fraction
of each population. This parameter is limited by capacity of islands to accept
immigrants. The distance between migrations determines how often the migra-
tion phase of the algorithm occurs. Three migration schemes are applied: no
migration, migration of randomly selected individuals and migration of best in-
dividuals of the subpopulation. Genetic algorithm performed in parallel for each
subpopulation is shown in Fig.2. In our algorithm a specific model of migration
is applied in which islands use two copies of genetic information: migrating in-
dividuals still remain members of their original subpopulation. In other words
they receive new “membership” without losing the former one. Incoming indi-
viduals replace the chromosomes of host subpopulation at random. Then, a se-
lection process is performed. The rationale behind such a model is as follows.
Even if the best chromosomes of host subpopulation are eliminated they shall
survive on other islands where their copies were sent. On the other hand, any
eliticist scheme or preselection applied to the replacement phase leads to prema-
ture elimination of worse individuals and lowers the overall diversity of subpopula-
tion.

5 GENETIC OPERATORS FOR GCP

In this section a collection of genetic crossover, mutation and selection operators is
introduced that is used in our PGA. Three recombination operators: CEX, UISX,
GPX and the mutation operator First Fit were designed especially for GCP. The ope-
rator SPPX and the mutation Transposition are more versatile. The cost function
and selection operator is adapted for this version of GCP.

All examples in this section refer to the graph instance shown in Figure 1.

5.1 Sum-Product Partition Crossover

The first recombination operator called Sum-Product Partition Crossover (SPPX)
employs for offspring generation simple set sum and set product operations on block
of partitions and a random mechanism of operand selection from randomly deter-
mined 2 parental chromosomes. As a result 0, 2 or 4 children are obtained. The pro-
cedure SPPX(p, r, s1, t1, s2, t2, sum, product) contains two procedures SUM(p, r, s, t)
and PRODUCT(p, r, s, t), which are applied to the pair of chromosomes
p = {V p

1 , . . . , V
p
k }, r = {V r

1 , . . . , V
r
l }. Each one may produce a pair of chromosomes

s = {V s
1 , . . . , V

s
m} and t = {V t

1 , . . . , V
t
n} with probabilities of elementary operations

satisfying 0 <product = Prob(PRODUCT) ≤ sum = Prob(SUM) ≤ 1. If new
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offspring is generated by the procedures SUM or PRODUCT, the variables sum or
product are set to 1, respectively. Otherwise they are set to 0.

procedure: SPPX(p, r, s1, t1, s2, t2, sum, product)
begin

s1 = t1 = s2 = t2 = ∅;
generate random numbers rand1, rand2 : 0 ≤ rand1, rand2 ≤ 1;
if rand1 ≤ sum then begin SUM(p, r, s1, t1); sum = 1; end

else sum = 0;
if rand2 ≤ product then begin PRODUCT(p, r, s2, t2); product = 1; end

else product = 0;
end SPPX;

procedure: SUM(p, r, s, t)
begin

select at random h (1 ≤ h ≤ k) and j (1 ≤ j ≤ l);
V s
1 = V t

1 = (V p
h ∪ V r

j );

for i = 1 to k do

if i 6= h do if (V p
i \ V r

j ) nonempty then

add next block V
p
i \ V r

j to s;

for i = 1 to l do

if i 6= j do if (V r
i \ V p

h ) nonempty then

add next block V r
i \ V p

h to t;

end SUM;

procedure: PRODUCT(p, r, s, t)
begin

select at random h (1 ≤ h ≤ k) and j (1 ≤ j ≤ l);
V s
1 = V t

1 = (V p
h ∩ V r

j );

for i = 1 to k do

if i 6= h do if (V p
i \ V s

1 ) nonempty then

add next block V
p
i \ V s

1 to s;

for i = 1 to l do

if i 6= j do if (V r
i \ V t

1 ) nonempty then

add next block V r
i \ V t

1 to t;

end PRODUCT;

Fig. 3. The crossover operator SPPX

A pseudocode of the procedure SPPX is presented in Figure 3. An application
of the operator SPPX is shown in Example 1.

Example 1. Two parents represent different 5-colorings of a graph with 10 vertices
p = {1, 8}{2, 7}{3, 10}{4, 6}{5, 9} and r = {1}{2, 8}{3, 7, 10}{4, 9}{5, 6}. Let us
assume sum = Prob(SUM) = 0.8, product = Prob(PRODUCT) = 0.7.
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p={1,8}{2,7}{3,10}{4,6}{5,9} r={1}{2,8}{3,7,10}{4,9}{5,6}

s1={1,8}{2,7}{3,4,9,10}{5}{6} t1={1}{2,8}{3,4,9,10}{5,6}{7}

s2={1,8}{2}{3,10}{4,6}{5,9}{7}t2={1}{2,8}{3,10}{4,9}{5,6}{7}
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Fig. 4. An illustration of SPPX crossover (see Example 1)

The procedure SPPX(p, r, s1, t1, s2, t2, sum, product) is called.

Let rand1 = 0.3 and the procedure SUM(p, r, s1, t1) be called, where p, r are
parents and s1, t1 are offspring chromosomes. Let us assume h = 3, j = 4, where h,
j – randomly selected block indices of parental chromosomes p and r, respectively.
Thus, the corresponding partition blocks are V p

3 = {3, 10} and V r
4 = {4, 9}.

Their sum gives one common block V s
1 = V t

1 = {3, 4, 9, 10} in offspring chromo-
somes. Then the elements of the common block are removed from p and r and their
remaining blocks are copied to offspring chromosomes s1 and t1, respectively. After
lexicographic reordering of blocks the partitions s1 = {1, 8}{2, 7}{3, 4, 9, 10}{5}{6}
and t1 = {1}{2, 8}{3, 4, 9, 10}{5, 6}{7} are obtained, respectively. Next, the variable
sum is set to 1.

Let rand2 = 0.4 and the procedure PRODUCT(p, r, s2, t2) be called, where
p, r are parents and s2, t2 are offspring chromosomes. Let us assume h = 2,
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j = 3, where h, j – randomly selected block indices of parental chromosomes p
and r, respectively. Thus, the corresponding partition blocks are V p

2 = {2, 7} and
V r
3 = {3, 7, 10}. Their product gives one common block V s

1 = V t
1 = {7} in off-

spring chromosomes. Then the elements of the common block are removed from p
and r and their remaining blocks are copied to offspring chromosomes s2 and t2,
respectively. After lexicographic reordering of blocks the resulting partitions are
s2 = {1, 8}{2}{3, 10}{4, 6}{5, 9}{7} and t2 = {1}{2, 8}{3, 10}{4, 9}{5, 6}{7}, res-
pectively. Finally, the variable product is set to 1.

As a result of the SPPX crossover we obtain four children: s1, t1, s2 and t2 re-
presenting 5-colorings and 6-colorings of the given graph (see Figure 4).

It is observed that operation PRODUCT may increase the initial number of col-
ors while the operation SUM may reduce this number. The probability of PROD-
UCT should be lower than or equal to the probability of SUM. Since the recombi-
nation operator SPPX is oriented not only for coloring problems it can be used as
a versatile operator in evolutionary algorithms for many other partition problems.

5.2 Conflict Elimination Crossover

In conflict-based crossovers for GCP the assignement representation of colorings is
used and the offspring tries to copy conflict-free colors from the parents. The next
recombination operator called Conflict Elimination Crossover (CEX) reveals some
similarity to the classical crossover. Each parental chromosome p and r is partitioned
into two blocks. The first block consists of conflict-free nodes while the second block
is built of the remaining nodes that break the coloring rules.

procedure: CEX(p, r, s, t)
begin

s = r;

t = p;

copy block of conflict-free vertices V
p
cf from p to s;

copy block of conflict-free vertices V r
cf from r to t;

end

Fig. 5. The crossover operator CEX

The last block in both chromosomes is then replaced by corresponding colors
taken from the other parent. This recombination scheme provides inheritance of all
good properties of one parent and gives the second parent a chance to reduce the
number of existing conflicts. However, if a chomosome represents a feasible coloring
the recombination mechanism will not work properly. Therefore, the recombination
must be combined with an efficient mutation mechanism. As a result two chromo-
somes s and t are produced. The operator CEX is almost as simple and easy to
implement as the classical crossover (see Figure 5).
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An application of the operator CEX is shown in Example 2.

Example 2. Two parents represent different 5-colorings of a graph with 10 vertices
i.e. sequences p = 〈5, 2, 3, 4, 1, 4, 2, 5, 1, 3〉, and r = 〈1, 4, 5, 2, 3, 3, 5, 4, 2,5〉. Vertices
with color conficts are marked by bold fonts. Thus, the chomosome p has 6 vertices
with feasible colors and 4 vertices with color conflicts while the chomosome r has
7 vertices with feasible colors and 3 vertices with color conflicts.

Replacing the vertices with color conflicts by vertices taken from the other parent
we obtain the following two chromosomes: s = 〈5, 2, 5, 2, 1, 3, 2, 5, 1, 5〉 and t =
〈1, 4, 3, 2, 3, 3, 2, 4, 2, 3〉 (see Figure 6).

It is observed that obtained chromosomes represent now two different 4-colorings
of the given graph (reduction by 1 with respect to initial colorings) and the number
of color conflicts is now reduced to 2 in each chromosome.

p=<5,2,3,4,1,4,2,5,1,3> r=<1,4,5,2,3,3,5,4,2,5>

s=<5,2,5,2,1,3,2,5,1,5> t=<1,4,3,2,3,3,2,4,2,3,>
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Fig. 6. An illustration of CEX crossover (see Example 2)

5.3 Union Independent Set Crossover

The greedy operator proposed by Dorne and Hao [9] and called Union Independent
Sets (UISX) works on pairs of independent sets taken from two parent colorings.
In any feasible graph coloring all graph vertices are partitioned into blocks that are
disjoint independent sets (ISs). A coloring is not feasible if it contains at least one
block which is a non-independent set. Each block of a partition is assigned one
color. The authors mentioned that “if we try to maximize the size of each IS by
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a combination mechanism, we will reduce the sizes of non-independent sets, which
in turn helps to push these sets into independent sets” [9].

In the initial step disjoint ISs in both parents are determined. Let us compute
coloring for the first child. At first, the maximum IS is selected from the first parent
and computed set intersections with ISs from the second parent. The union of a pair
of ISs with maximum intersection is colored in the offspring with the IS color from
the first parent. In the case of a tie a random IS is always chosen. Then the colored
vertices are removed from the both parents and the coloring procedure is repeated
as long as posible. The vertices without any color are assigned the original color
from the first parent. The coloring for the second child is computed with reversed
roles of both parents.

Application of the operator UISX is shown in Example 3.

Example 3. For the given graph with 10 vertices two parents—p = {1, 8}{2, 7}
{5, 9} and r = {1}{2, 8}{4, 9}{5, 6}—represent a partial 3-coloring and a partial
4-coloring, respectively.

The first child is computed as follows. Maximum ISs in p are {1, 8}, {2, 7} and
{5, 9}. Let {1, 8} be selected. There are two maximum intersections of {1, 8} and
ISs in r, and let {2, 8} be selected for the union. Thus, {1, 2, 8} is obtained as the
first block of s and now p = {7}{5, 9}, while r = {4, 9}{5, 6}. The single maximum
IS in p is {5, 9} and it is selected. There are two maximum intersections of {5, 9}
and ISs in r, and let {4, 9} be selected for the union. Thus, {4, 5, 9} is obtained
as the second block of s and now p = {7} and r = {6}. Repeating the procedure
s = {1, 2, 8}{4, 5, 9}{7} is received, which is a partial 3-coloring of the given graph.

Similarly the second child is constructed. Maximum ISs in r are {2, 8}, {4, 9}
and {5, 6}. Let {2, 8} be selected. There exist two maximum intersections of {2, 8}
and ISs in p and let {2, 7} be selected for the union. Thus, {2, 7, 8} is obtained
as the first block of t and now p = {1}{5, 9} and r = {1}{4, 9}{5, 6}. There are
two maximum ISs in r: {4, 9} and {5, 6} and let {5, 6} be selected. There is one
maximum intersection of {5, 6} and ISs in r and let {5, 9} be selected for the union.
Thus, {5, 6, 9} is obtained as the second block of t and now p = {1} and r = {1}{4}.
Repeating the procedure t = {1}{2, 7, 8}{4}{5, 6, 9} is received, which is a partial
4-coloring of the given graph.

The UISX crossover is depicted in Figure 7. It is observed that obtained partial
colorings cover more vertices of the given graph than initial partial colorings and
the union operation can lead to bigger ISs.

5.4 Greedy Partition Crossover

The method called Greedy Partition Crossover (GPX) was designed by Galinier
and Hao for recombination of colorings or partial colorings in partition represen-
tation [12]. It is assumed that both parents are randomly selected partitions with
exactly k blocks that are independent sets. The result is a single offspring (a co-
loring or partial coloring) that is built successively in a greedy way. In each odd
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r={1}{2,8}{4,9}{5,6}

t={1}{2,7,8}{4}{5,6,9}

p={1,8}{2,7}{5,9}

s={1,2,8}{4,5,9}{7}

10

7

6

1

2

5

3

9

8

4

10

7

6

1

2

5

3

9

8

4

10

7

6

1

2

5

3

9

8

4

10

7

6

1

2

5

3

9

8

4

Fig. 7. An illustration of UISX crossover (see Example 3)

step select the maximum block from the first parent is selected. Then the block is
added to the result and all its nodes from the both parents are removed. In each
even step the maximum block is selected from the second parent. Then the block
is added to the result and all its nodes from the both parents are removed. The
procedure is repeated at most k times since in some cases the offspring has less
blocks than the parents. This possibility is not considered in the original paper [12].
Finally, unassigned vertices (if they exist) are assigned at random to existing blocks
of partition. A corrected version of GPX is shown in Figure 8. The first parent
is replaced by the offspring while the second parent is returned to population and
can be recombined again in the same generation. GPX crossover is performed with
a constant probability.

An application of the operator GPX to partition chromosomes is shown in Exam-
ple 4.

Example 4. Two parents represent different 5-colorings of a graph with 10 vertices,
i.e. partitions p0 = {1, 8}{2, 7}{3, 10}{4, 6}{5, 9}, p1 = {1}{2, 8}{3, 7, 10}{4, 9}
{5, 6}.

For i = 1 the maximum block {3, 7, 10} is selected from p1 and is added to s.
After removing the block vertices from the parents we obtain p0 = {1, 8}{2}{4, 6}
{5, 9}, p1 = {1}{2, 8}{4, 9}{5, 6}. For i = 2 the maximum block {1, 8} is selected
from p0 and added to s. After removing the block vertices from the parents we
obtain p0 = {2}{4, 6}{5, 9}, p1 = {2}{4, 9}{5, 6}. For i = 3 the maximum block
{4, 9} is selected from p1 and added to s. After removing the block vertices from
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procedure: GPX(p0, p1, s, k)
begin

s = ∅;
i = 1;
repeat

select block V with maximum cardinality from the partition p(i mod 2);
s = s ∪ V -- add the block V to partition s;

remove all vertices of V from p0 and p1;

i = i+ 1;
until (i > k) or (all blocks of p1 and p2 empty);

assign randomly all unassigned vertices to existing blocks of s;

end

Fig. 8. The modified crossover operator GPX

p0={1,8}{2,7}{3,10}{4,6}{5,9} p1={1}{2,8}{3,7,10}{4,9}{5,6}

s={1,8}{2}{3,7,10}{4,9}{5,6}
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Fig. 9. An illustration of GPX crossover (see Example 4)

the parents we obtain p0 = {2}{6}{5}, p1 = {2}{5, 6}. Repeating this procedure
subsequent block partitions are added to the result. When termination condition is
satisfied the partition s = {1, 8}{2}{3, 7, 10}{4, 9}{5, 6} is the resulting 5-coloring
(see Figure 9).
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5.5 Mutation Operators

Two types of mutation operators described in literature are used. Transposition (T)
is a classical type of mutation that exchanges colors of two randomly selected vertices
in the assignment representation. The second mutation operation called First Fit
(FF) is designed for colorings in partition representation and is well suited for GCP.
In First Fit mutation one block of the partition is selected at random and we try to
make a conflict-free assignment of its vertices to other blocks using the heuristic First
Fit. Vertices with no conflict-free assignment remain in the original block. Thus, as
a result of the mutation First Fit the color assignment is partially rearranged and
the number of partition blocks is often reduced by one.

Example 5. In chromosome p = 〈5, 2, 3, 4, 1, 4, 2, 5, 1, 3〉 that represents a 5-co-
loring of a graph with 10 vertices, Transposition mutation exchanges colors of 2 ran-
domly selected vertices 3 and 8. The resulting chromosome is s = 〈5, 2, 5, 4, 1, 4, 2, 3,
1, 3〉 which is another 5-coloring of the given graph in assignment representation.
The number of color conflicts has changed from 2 to 1.

In chromosome r = {1}{2, 8}{3, 7, 10}{4, 9}{5, 6} that represents a 5-coloring of
a graph with 10 vertices, the mutation First Fit performs a conflict-free assignment
of vertices from the maximum partition block, i.e. {3, 7, 10} to all remaining blocks.
The resulting chromosome is t = {1, 3}{2, 7, 8}{4, 9, 10}{5, 6} which is a conflict-
free 4-coloring of the given graph in partition representation. The number of color
conflicts has been reduced by 3.

Both mutations operators are shown in Figure 10.

5.6 Selection Operator

Selection process maintains constant size of population selected by means of a fitness
function.

The quality of a solution is measured by the following cost function:

f(p) =
∑

(u,v)∈E
q(u, v) + d+ k, where:

p – is a graph coloring,
q – is a penalty function for pairs of vertices connected by an edge (u, v) ∈ E:

q(u, v) =

{

2, when c(u) = c(v)
0, otherwise

d – is a general penalty function applied to graph colorings:

d =

{

1, when
∑

(u,v)∈Eq(u, v) > 0
0, when

∑

(u,v)∈Eq(u, v) = 0
,

k – is the number of colors used.
In many cases less colors cause more conflicts. Modeling the cost function we

can favour conflict-free colorings by setting values of q(u, v) and d. On the other
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s=<5,2,5,4,1,4,2,3,1,3>

r={1}{2,8}{3,7,10}{4,9}{5,6}p=<5,2,3,4,1,4,2,5,1,3>

Transposition First  Fit

t={1,3}{2,7,8}{4,9,10}{5,6}
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Fig. 10. An illustration of mutation Transposition and First Fit (see Example 5)

hand conflict colorings with less colors can also be useful. Therefore, we decided
to set relatively low values of q(u, v) and d. Thus, with the cost function given
above, all k′-colorings with i conflicts, k′ ≤ (k− 2i− 2), are better than conflict-free
k-colorings.

The proportional (roulette) selection is performed in two phases of the algorithm
(see Figure 2) with the fitness function 1/f(p).

6 EXPERIMENTAL VERIFICATION

For computer experiments nine graph instances were used that are available in the
web archives [35, 36]. They are collections of graphs in DIMACS format with known
parameters m, n and usually χ(G). One random graph r.50 with density 50% was
used from authors’ test set.

In our program PGA for GCP two basic models of PGA—migration and master-
slave—can be simulated. It is possible to set up most parameters of evolution,
monitor evolution process on each island and measure both the number of gener-
ations and time of computations. In order to avoid misunderstanding we always
report throughout the paper the total execution time of the sequential simulation
of the PGA.

In the preprocessing phase we converted list of edges representation into ad-
jacency matrix representation. The program generates detailed reports and basic
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statistics [22]. All computer experiments were performed on a computer with Pen-
tium 4 processor (3GHz, 1GB RAM).

The research was focused on the migration model of PGA. In the experiments
the following aspects of this model were taken into consideration:

1. comparison of PGA versus GA,

2. cost of best individuals in concurrent evolutions on isolated islands,

3. cost of optimal solution versus distance between migrations,

4. influence of migration scheme on PGA efficiency, measured by number of itera-
tions required for finding the first conflict-free and optimal solution,

5. comparison of four selected crossover operators.

In all experiments and for all crossover operators we used constant crossover

probability = 0.8 and mutation probability = 0.1. In SPPX crossover
prob(PRODUCT) = prob(SUM) = 0.8.

In the first experiment the migration PGA was tested against traditional GA.
GA was obtained as a special case in the program PGA for GCP with parame-
ters number of islands = 1, migration size = 0 and population size = 100. In
migration-based PGA three islands with subpopulation size = 33 and migration of
best individuals with migration distance = 10 and migration size = 5 were selected.
Both algorithms terminated after constant number of iterations = 5000 or after
finding an optimum coloring. Initial population was generated at random. Very
efficient operators GPX crossover and First Fit mutation were applied for recombi-
nation. For testing a popular graph queen8.8 (n = 64, m = 728, χ(G) = 9) was
used. All tests were repeated 30 times. The results of comparison are presented in
Table 1.

graph algo- colo- cost/number of iterations/time

G(V,E) rithm rings min max avg. std. dev.

queen8.8 GA 30/30 cost 9 11 10.3 0.6
|V | = 64 conflict- it 2 190 5 000 4 838 626
|E| = 728 free t[s] 44 102 90.4 11.7
χ(G) = 9 2/30 cost 9 9 9 0

optimal it 2 190 2 936 2 563 528
(7%) t[s] 44 57 50.5 9.2

PGA 30/30 cost 9 11 10.1 0.7
conflict- it 340 5 000 4 516 1 178
free t[s] 9 132 108.5 28.3
6/30 cost 9 9 9 0

optimal it 340 4 290 2 580 1 559
(20%) t[s] 9 103 61.3 35.1

Table 1. Comparison of GA and PGA
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Both algorithms produced only conflict-free colorings but the number of optimal
solutions was 3 times greater with PGA (6 out of 30). Although the total population
size and the number of iterations it were equivalent in the algorithms, the sequential
simulation of PGA consumed in average 20% of execution time more than GA. With
respect to other data, GA and PGA revealed similar features. Therefore, the main
adventage of PGA is better quality of the solution.

The second experiment concluded with observation that best individuals on iso-
lated islands reveal significant differences of their cost functions. Experiments were
conducted on two graphs: randomly generated graph r.50 with density 50% (n =
100, m = 2 474, χ(G) ≤ 17) and graph le450.15b (n = 450, m = 8169, χ(G) = 15).
Cost of best solutions was measured after constant number of iterations = 150 on
each island with the following PGA parameters: number of islands = 3, subpopu-
lation size = 60, migration of best individuals with migration distance = 10 and
migration size = 5, crossover = GPX, CEX, mutation = FF, random initial popu-
lations with initial number of colors = 4.

graph cross- itera- Best cost on island itera- Best cost on island
G(V,E) over tions 1 2 3 tions 1 2 3

r.50 GPX 0 1 171 1 169 1 161 80 31 20 + 25
|V | = 100 10 79 69 96 90 31 20 25
|E| = 2 474 20 57 45 79 100 31 20 25
χ(G) ≤ 17 30 43 35 48 110 29 20 25

40 31 34 28 120 25 20 20 +
50 31 34 25 130 23 20 20
60 31 32 25 140 23 20 20

time = 31 s 70 31 32 25 150 23 19 20
CEX 0 1 171 1 145 1 175 80 21 19 20

10 195 20 + 21 + 90 21 19 20
20 195 20 21 100 20 19 20
30 21 + 19 21 110 20 19 20
40 21 19 20 120 20 19 20
50 21 19 20 130 20 19 20
60 21 19 20 140 20 19 20

time = 3.2 s 70 21 19 20 150 20 19 20
le450.15b GPX 0 3939 3 911 3 901 80 25 20 + 23
|V | = 450 10 645 512 297 90 25 19 22
|E| = 8 169 20 408 332 159 100 25 19 22
χ(G) = 15 30 230 218 37 110 25 19 22

40 128 158 26 120 25 19 22
50 84 105 23 130 25 19 22
60 58 74 23 140 25 19 22

time = 325 s 70 32 51 23 150 25 19 19 +
CEX 0 3885 3 949 3 917 80 19 19 19

10 799 1 013 880 90 19 19 19
20 20 + 20 + 20 + 100 19 19 19
30 20 20 20 110 19 19 19
40 20 19 20 120 19 19 19
50 19 19 20 130 19 19 19
60 19 19 20 140 19 19 19

time= 32 s 70 19 19 20 150 19 19 19

Table 2. Concurrent evolution on isolated islands

The obtained results are shown in Table 2. “+” denotes the first conflict-free
coloring received on the given island.
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Evolutions on isolated islands do not influence each other and run with different
speed. It is observed that for the two test graphs equivalent optimization results
are obtained faster with CEX crossover than with GPX, both in terms of the re-
quired number of iterations and the computation time. One run of PGA with GPX
crossover takes approximately as much time as 10 runs of PGA with CEX.

By introducing migration between islands the subpopulations become more ho-
mogenous, since more “advanced” islands pass their representatives to “backward”
islands. At a later stage, with similar results on all islands, sufficient diversity for
further improvement can be provided by rare migrations.

The distance between migrations is an important factor in PGA. Experiments
were conducted on the same test graphs, i.e. r.50 and le450.15b. Cost of optimal
solutions was measured on each island after constant number of iterations = 200.
All combinations of four crossover and two mutation operators were tested with the
following parameters: number of islands = 3, subpopulation size = 60, migrations
of best individuals migration size = 5, mutation = FF, initial number of colors = 5.
All experiments were repeated 10 times. The obtained results are shown in Table 3.

graph cross- muta- distance between migrations
G(V,E) over tion 2 5 10 20 50 100

r.50 UISX T 731 744 753 759 778 791
|V | = 100 FF 18.5 18.7 18.4 18.7 19.0 18.8
|E| = 2 474 GPX T 804 799 797 803 811 812

χ(G) ≤ 17 FF 19.1 19.0 18.4 19.0 19.0 18.8
SPPX T 148 149 158 145 151 143

FF 23.2 26.6 28.3 32.5 28.1 24.6
CEX T 856 854 856 856 866 863

FF 18.9 18.9 19.0 19.0 18.6 19.0

le450.15b UISX T 2 705 2 678 2 775 2 760 2 813 2 798
|V | = 450 FF 18.8 19.6 19.2 19.0 19.0 18.8
|E| = 8 169 GPX T 2 557 2 595 2 639 2 631 2 622 2 606
χ(G) = 15 FF 19.1 19.0 18.8 19.2 19.0 18.8

SPPX T 632 574 551 560 565 584
FF 36.5 41.6 37.4 37.0 41.2 34.6

CEX T 2 761 2 796 2 834 2 857 2 887 2 907
FF 18.8 19.0 18.9 19.1 18.9 18.9

Table 3. Average cost of best solution versus distance between migrations

One can expect that too frequent migrations reduce diversity of populations
while too rare migration influences the convergence of PGA. It is observed that in
some cases for the given graph instance and some combinations of operators there
exists a single optimal value of the distance between migrations. Below and above
this optimum the same number of iterations it gives worse results. The examples
are as follows: opt{r.50, UISX, T} = 2, opt{r.50, GPX, T} = 10, opt{r.50, GPX,
FF} = 10, opt{r.50, CEX, T} = 5, opt{le450.15b, UISX, T} = 2, opt{le450.15b,
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SPPX, T} = 10, opt{le450.15b, CEX, T} = 2. More such cases appear for Trans-
position mutation. For the First Fit mutation such regularities are very rare. In
conclusion, Table 2 provides a strong evidence that First Fit mutation is always bet-
ter than Transposition but no direct hint about the optimum distance of migrations
can be derived.

The influence of migration scheme on the PGA efficiency was tested and mea-
sured by the number of iterations it needed to obtain an optimal coloring (graph
chromatic numbers χ(G) are known). Since we must not expect that the optimum
coloring could always be obtained, even if extremally long time of computations
is allowed, the termination condition was either 500 iterations (5000 iterations for
SPPX) or conflict-free coloring. Only the optimal colorings were selected.

The experiments were performed on graphs games120, myciel7 and mulsol.i.4
for all four crossover operators with the following parameters: number of islands = 5,
subpopulation size = 60, migration rate = 5, mutation = FF. All experiments were
repeated 30 times and average number of iterations was computed.

The obtained results are shown in Table 4.

For most crossover operators migration of best individuals usually gives the best
results. One exception is CEX crossover. Migration of random individuals is often
a very good choice for CEX operator. No migration gives the worst results.

In the main experiment the efficiency of all four crossover operators was tested.
The number of iterations it and the computation time were measured (t = 0 de-
notes the computation time less then 1 [s]). The termination condition was the first
conflict-free coloring generated by the algorithm or number of iterations = 500. The
percentage of optimal colorings was determined.

Simulations were performed on five graphs anna, david, miles500, myciel7 and
mulsol.i.1 with the following parameters: number of islands = 3, subpopulation
size = 60, migration of best individuals with migration rate = 5, migration size= 5,
mutation = First Fit, initial number of colors = 4. All experiments were repeated
30 times. The results are presented in Table 5.

It is observed that the proposed crossover operators differ in terms of computa-
tion time and efficiency. Under the first criterion we receive ordering CEX, GPX,
SPPX and UIXX. Under the second criterion we receive another ordering {GPX,
CEX}, UISX and SPPX. The only operator that wins both classifications for two
graphs is CEX. For the remaining three graphs CEX takes the second place in effi-
ciency and the first one in speed. GPX two times takes the first place in efficiency
and the second in speed. UISX shows such result in one case.

For the selected graphs simple SPPX crossover requires more than 500 iterations.
Hence, the number of optimal colorings is 0% for this operator. SPPX never wins
any of the above classifications.

The most efficient operator in the experiment is CEX which dominates all other
operators under the time criterion and is approximately as good as GPX in terms
of efficiency. Generalization of this statement requires further research with much
more graphs.
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graph cross- migra- number of iterations
G(V,E) over tion min max avg. std. dev.

games120 UISX best 1 10 4.2 2.0
|V | =120 random 1 10 4.2 2.3
|E| =638 none 1 37 6.2 7.9

χ(G) = 9 GPX best 5 10 6.2 1.9
random 5 15 10.2 3.9
none 5 68 27.9 16.0

SPPX best 5 50 20.1 13.2
random 5 65 34.7 22.5
none 9 274 111 72.8

CEX best 4 165 25.1 39.3
random 5 135 17.2 25.4
none 5 501 81.4 138.1

myciel7 UISX best 2 5 4.4 0.9
|V | = 191 random 2 10 4.9 2.0
|E| = 2360 none 2 28 6.2 6.0
χ(G) = 8 GPX best 4 11 6.6 2.3

random 5 35 8.8 5.7
none 5 119 29.8 23.6

SPPX best 5 80 39.8 21.0
random 10 115 61.0 37.6
none 27 371 158 79.2

CEX best 5 45 10.2 10.0
random 4 46 10.7 11.8
none 5 101 20.3 26.0

mulsol.i.4 UISX best 2 177 26.0 38.0
|V | = 185 random 2 196 28.6 41.5
|E| = 3 946 none 2 500 105.4 146.9
χ(G) = 31 GPX best 15 180 68.8 45.0

random 5 285 121.4 66.9
none 83 440 232.3 89.3

SPPX best 73 1 532 533.1 330.1
random 280 1 770 817.1 382.9
none 171 5 000 2 591.5 1 433.6

CEX best 5 210 59.1 58.9
random 5 195 38.6 61.6
none 6 498 134.7 162.0

Table 4. Influence of migration schemes on performance of migration based PGAs
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graph cross- opt. colorings time/number of iterations time
G(V,E) over [%] rank min max avg. std. dev. rank

anna UISX 60 3 t[s] 0 34 4.3 7.2 4
|V | = 138 it 2 59 9.9 11.8
|E| = 494 GPX 80 2 t[s] 0 7 1.8 1.8 3
χ(G) = 11 it 5 37 11.1 7.4

SPPX 20 4 t[s] 0 4 1.2 1.0 2
it 5 99 35.4 24.4

CEX 100 1 t[s] 0 4 0.6 1.1 1
it 4 190 27.8 51.1

david UISX 35 3 t[s] 0 10 2.8 2.8 4
|V | = 87 it 1 35 11.3 9.0
|E| = 406 GPX 75 1 t[s] 0 2 0.8 0.7 2
χ(G) = 11 it 5 45 11.6 8.1

SPPX 5 4 t[s] 0 10 1.1 1.8 3
it 5 115 38.7 24.1

CEX 63 2 t[s] 0 3 0.5 0.8 1
it 4 205 29.9 51.1

miles500 UISX 4.4 4 t[s] 1 42 15.3 23.1 4
|V | = 128 it 2 31 12.7 16.0
|E| = 1 170 GPX 15 1 t[s] 2 12 6.3 3.8 2
χ(G) = 20 it 8 50 25.8 14.5

SPPX 10 3 t[s] 5 19 13.2 5.3 3
it 110 405 279 109

CEX 11 2 t[s] 0 19 2.8 3.8 1
it 5 376 100 106

myciel7 UISX 93 1 t[s] 0 4 1.6 1.2 2
|V | = 191 it 2 6 4.0 1.2
|E| = 2 360 GPX 67 3 t[s] 0 8 2.4 1.4 3
χ(G) = 8 it 4 25 8.8 2.8

SPPX 17 4 t[s] 0 7 3.5 1.9 4
it 5 100 55.7 27.0

CEX 80 2 t[s] 0 2 0.5 0.8 1
it 4 58 10.6 15.0

mulsol.1 UISX 57 3 t[s] 1 53 18.8 18.9 2
|V | = 197 it 1 10 6.0 3.5
|E| = 3 925 GPX 100 1 t[s] 5 354 95.6 19.7 4
χ(G) = 49 it 20 302 142 23.0

SPPX 0 4 t[s] 46 52 48.9 1.8 3
it 500 500 500 0.0

CEX 100 1 t[s] 0 21 3.6 5.2 1
it 5 490 80.7 120.8

Table 5. Performance of the migration based PGAs with various crossover operators
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7 CONCLUSIONS

Simulation experiments reported in the paper provide an evidence that parallel
genetic algorithms can be efficiently used for a class of graph coloring problems. In
island model of PGA the migration between co–evolving subpopulations can improve
the overall convergence of the algorithm.

The presented results justify several conclusions:

1. In island model migration is always better then isolation. In some cases, mostly
for Transposition mutation, there exists an optimal migration rate with best
algorithm efficiency measured in iterations required for finding an optimal solu-
tion. In most cases, in particular for First Fit mutation, no optimal migration
rate was found.

2. For almost all tested graphs migration of best individuals is always the most
efficient. Migration of random individuals is efficient in some cases with CEX
crossover.

3. Mutation First Fit in coloring problems always outperforms Transposition and
it is best combined with CEX or GPX operator. The Transposition mutation
works relatively well with SPPX crossover.

4. The best crossover operators under efficiency criterion are CEX and GPX with
the First Fit mutation. The third place is occupied by UISX. SPPX is very fast
but requires much more iterations to be efficient. It is the worst crossover in our
experiments.

5. For all tested graphs the fastest crossover operator under the time criterion is
CEX with the First Fit mutation. In most cases the slowest operator is UISX.
GPX and SPPX occupy places in the middle.

6. In migration model the solution space is searched efficiently due to co-evolution
in subpopulations and periodic migration. Theoretical basis for this model is
given in [6].

7. In migration model efficient convergence towards optimal solution is observed
and PGA better escapes local maxima than GA.

8. The role of migration during algorithm execution is changing from a mechanism
for fast improvement of “late” islands in the initial phase, to intensive explo-
ration of the most attractive regions of the search space at a later stage of the
co–evolutionary process.

9. Advantages of the migration model are present also in simulated co-evolution
performed by a sequential algorithm.

Migration model of PGA is shown to be efficient for hard problems like GCP. The
results presented in this paper encourage further research in this area. One obvious
direction is to extend the experiments on other DIMACS benchmarks including
a class of random graphs. It is also worth to consider some variants of SPPX
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operator that will make it more “intensive” and problem-oriented. The search for
new efficient genetic operators and development of better evolutionary techniques
for solving GCP still remain open questions.
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from the Gdańsk University of Technology, Gdańsk, Poland. In
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