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Abstract. The properties of the Radon transform are used to derive the trans-
formation invariant to translation, rotation and scaling. The invariant transfor-
mation involves translation compensation, angle representation and 1-D Fourier
transform. The new object recognition method is studied experimentally in two
domains, mammogram labels recognition and face recognition. For mammogram
labels, the recognition accuracy is 97%, while in case of faces it reaches 96%.
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1 INTRODUCTION

One of the problems in the field of object recognition is to develop a method, which
is invariant to certain variations in the input images. Such variations include trans-
lation, rotation-on-the-plane, scaling, as well as rotation-in-depth and illumination.
In this paper, first three of the above-mentioned variations are studied. A transfor-
mation, which gives identical results if applied to a pair of images that are in the
similarity relation with each other, is derived. The result of such a transformation
can be treated as a new set of features for recognition, the set that is invariant to

∗ This paper extends and modifies the ideas presented in a paper [1] at the ICCS ’04
Conference
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translation, rotation-on-the-plane and scaling of the input picture. The proposed
invariant is suitable for recognition of 2D images. For 3D objects, some constraints
on the variance of the input object have to be met, so that the object is pictured
from the same camera-angle.

The methods for invariant object recognition can be divided into two groups. In
the first, more straightforward approach, the value of the translation, scaling and
rotation is explicitly estimated, by e.g. estimating the centroid and then analysing
the shape of the object. Then, the object appearance in the image is normalised,
e.g. by moving the centroid to the centre of the image and by explicit rescaling and
rotating the object. This approach is carried out solely in the image domain. The
drawback is that the estimation procedures may be susceptible to noise. The second
group of methods does not involve estimation and normalisation steps. A transform
is formulated, which preserves only that part of the information contained in the ob-
ject appearance, which is invariant to the analysed variations. In such methods, the
drawback is the inherent loss of some information, which may impair the recognition
process.

In this paper, we focus on the second approach for achieving invariance. Several
examples of such methods have already been studied. For example, the approaches
based on geometric moments, such as Hu moments [5] and Zernike moments [16], are
used. The Fourier transform is a basis for a group of methods, utilizing log-polar or
Fourier-Mellin transforms [9, 13]. Other similar transforms include Hessian or Taylor
invariants [3]. Methods based on shape of the object, i.e., not using its interior, are
also employed for invariant recognition of objects. These include e.g. multi-vector
eigenvector shape descriptors [8] and wavelet-based method [7]. A different approach
using a set of random cross-sections through the object have also been proposed [15].
Finally, a method based on higher-order spectra and Radon transform has been
formulated in [10]. In this paper, the Radon transform is considered as a basis
for developing a new invariant transform. Similarly to [10], the proposed method
starts with calculation of the Radon transform of the input image. However, we use
translation compensation, angular representation and Fourier transform, whereas
in [10], a method based on bispectral analysis of the Radon transform followed by
centroid normalisation of the spectra is utilised.

The rest of the paper is arranged in the following way. Section 2 presents the
Radon transform and its properties. In Section 3, the invariant method based on
this transform is derived. Next, Section 4 describes the setup for experiments using
mammography labels taken from the mini-MIAS dataset [12], and Yale [2] and BioID
[6] faces datasets. Section 5 presents and discusses the results of the experiments.
Finally, Section 6 summarizes the conclusions of the paper.

2 RADON TRANSFORM AND ITS PROPERTIES

The Radon transform of the translated, rotated and scaled images exhibits interest-
ing properties, which can be employed to construct a method for invariant object
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recognition. Therefore, the behaviour of the transform for these three variations in
the input image should be defined.

For an image f : R×R → [0, 1] containing an object (i.e. not uniformly black),
the result g of the Radon transform RAD is a function g : R× [0, 2π) → R+ defined
as:

g (s, θ) = RAD (f (x, y)) =

∫ ∞

−∞

f (s cos θ − u sin θ, s sin θ + u cos θ) du (1)

[

s

u

]

=

[

cos θ sin θ
− sin θ cos θ

] [

x

y

]

(2)

Assuming that the images contain an object to be recognized, for each θ a non-
zero g (s, θ) can be found. As shown in [10], any translation in spatial domain
leads in the Radon domain to translation in the s direction. The amount of the
translation varies with the θ dimension. The scaling of the original image along
both axes results in the scaling along the s axis in the Radon domain. The value
of the transform is also scaled. The rotation in spatial domain leads to circular
translation along the θ axis in the Radon domain. The behaviour of the Radon
transform is summarized in Table 1 and depicted in Figure 1.

Image Input image function f Resulting Radon transform g = RAD(f)

Original f (x, y) g (s, θ)

Translated f (x − x0, y − y0) g (s− x0 cos θ − y0 sin θ, θ)

Scaled f (αx, αy) 1
|α|g (αs, θ)

Rotated fpolar (r, φ+ θ0) g (s, (θ + θ0)mod2π)

Table 1. Behaviour of the Radon transform for translated, scaled and rotated images

The Radon transform of a continuous function is also continuous. The transform
of the function with bounded support, such as a real-world image, has bounded
support. Therefore, for a finite set of pictures, the coordinates can be adjusted, so
that for each picture f (x, y), supp (RAD (f)) ⊂ [0, 1)× [0, 2π).

3 RADON-BASED INVARIANT RECOGNITION

To derive the translation, rotation and scale invariance from the original Radon
transform, a set of simple steps is introduced. To simplify the notation, in places
where it will not lead to confusion, g (s) will denote the values of g (s, θ) for any
specified θ. Moreover, in places where the relation between original and translated
or scaled image is studied, the functions and variables associated with the latter
image will be capitalized. The subscripts T , S and R will signify that the function
is invariant to translation, scaling and rotation, respectively.
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Fig. 1. The Radon transform and its behaviour for translated, scaled and rotated input
images

3.1 Invariance to Translation

Direct translation of the Radon transform result along the s axis can lead to the
translation invariance, when the value of the translation, sg (θ), is chosen according
to the following formula:

sg = inf {s : g (s, θ) > 0} , (3)

for a given θ. For different θ, the values of sg may be different.
As the following theorem shows, the function gT (s) = g (s+ sg) is translation

invariant and preserves the scale variance.

Theorem 1. Let g (s) and G (αs+ s0) be two functions that are two versions of
each other, translated by s0 and scaled by α, i.e., αg (s) = G (αs+ s0). The fun-
ctions gT (s) and GT (αs) are scaled version of each other, thus gT (s) is translation
invariant and preserves the scaling.

Proof. For functions g (s) and G (αs+ s0), the values of the direct translation sg
and sG, defined by (3), are related by the equation sG = αsg + s0. Thus, the
function gT and GT are scaled version of each other, i.e., αgT (s) = GT (αs):

αgT (s) = αg (s+ sg) = G (α (s+ sg) + s0) = G (αs+ sG) = GT (αs) , (4)

and the transformation from g (s) to gT (s) is indeed translation invariant and has
a property of preserving the function scaling. �



Invariant Object Recognition Using Radon Transform 187

For gT (s), the relation: supp (gT) ⊂ [0, 1)× [0, 2π) holds. Moreover, gT (0) > 0.
The process of achieving translation invariance is depicted in Figure 2.

s10 s10
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gT

ss G s,( )èg s,( )è
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G s,( )è
0

g s,( )è
0

a) b)

c) d)

0 0

Fig. 2. The scheme demonstrating the translation invariance. (a–b) Two scaled and trans-
lated functions: g and G are considered. (c) Values of g and G for fixed θ0. (d) Trans-
lation invariant and scale preserving functions gT and GT. See text for details.

The translation invariant in this form results in an intermediate set of features,
which is invariant to translation. This step uses the estimation of the boundary of
the support of the image in the Radon domain. This boundary is related to the
boundary of the object in the original image. This makes the invariant dependent
on prior segmentation of the object from the image.

One should note that other well-defined points along the s axis could be used
instead of sg (θ), e.g. the value of s for which g is maximal for a given θ. More
advanced methods for achieving translation invariance could also be considered, e.g.
the modulus of the Fourier transform along the s axis. However, such an approach
does not preserve correctly the scale in discrete images. Another approach, using
the formula relating the translation along the s dimension to a given θ (see relations
in Table 1), would require the estimation of the translation values x0 and y0 in the
original image.
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3.2 Invariance to Scaling

Within this section, it is assumed that the translation has been removed. As in the
previous section, the result of the Radon transform is treated individually for each
value of θ. The derivation of scale invariance is based on the auxiliary function h (x)
having the following properties.

Lemma 1. For a function gT (s) with continuous first derivative in [0, 1], the fun-
ction h (x) defined as:

grev (s) = gT (1− s) , where s ∈ [0, 1] ; (5)

hrev (x) =
∫ x

0

∣

∣

dgrev
ds

∣

∣ds, where x ∈ [0, 1] ; (6)

h (x) = hrev (1− x) (7)

is well-defined, differentiable, nonincreasing and nonnegative in [0, 1]. Moreover,
h (1) = 0 and h (0) > 0.

Proof. From the assumptions on gT (s), the derivatives g′T and also g′rev are con-
tinuous. Thus, the integral in (6) is well-defined and hrev (x) is continuous and
differentiable. Since the integration is done for the absolute values, hrev (x) is non-
decreasing and nonnegative. Also, hrev (0) = 0. The properties of h (x) stem from
the properties of hrev (x), i.e., h (x) is also nonnegative and continuous. Since h (x)
is reversed version of hrev (x), it is nonincreasing and h (1) = 0. Furthermore, since
∃s ∈ [0, 1) : gT (s) > 0 and gT (s) is continuous in [0, 1], the integral over the whole
range [0, 1] is nonzero, i.e., hrev (1) > 0 and thus h (0) > 0. �

The function h (x) can be used to derive scale invariant transforms. First, let
hP (x) be a variant of the function h (x) restricted to the domain (0, P ], such that
h ([0, P )) > 0 and h ([P, 1]) = 0. Such a P can always be found in [0, 1], since
h(0) > 0, h(1) = 0 and h (x) is nonincreasing, according to Lemma 1.

Lemma 2. Let two mappings s1h and s2h be defined as:

s1h (γ) =
√

x2 + hP (x)2 γ = arctan

(

hP (x)

x

)

; (8)

s2h (γ) = |h′
P (x)| γ = arctan

(

hP (x)

x

)

. (9)

Both s1h (γ) and s2h (γ) are functions: s
1
h :

[

0, π
2

)

→ R+ and s2h :
[

0, π
2

)

→ R+.

Proof. As h (x) and hP (x) are nonincreasing and hP ((0, P )) > 0, the function
hP (x)

x
is nonnegative, decreasing and continuous in its domain. Also, hP (P ) = 0 and

limx→0
hP (x)

x
= ∞ since h (0) > 0. The arctan (y) is continuous and increasing in

[0,∞), with arctan ([0,∞)) →
[

0, π
2

)

. Therefore, the γ = arctan
(

hP (x)
x

)

is bounded
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to period
(

π
2
, 0
]

for x ∈ (0, P ] and is continuous and decreasing. That is, the left-
hand sides of the definitions (8) and (9) are well-defined.

As for the right-hand sides of the definitions (8) and (9), hP (x) is differentiable
for x ∈ (0, P ]. Both the derivative and square root in equations (8) and (9) are well
defined in this range. �
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Fig. 3. The scheme demonstrating scale invariance. (a) Scaled functions gT and GT.
(b) Auxiliary function h. (c) Scale invariant (after normalisation) functions s1h and s1H .
(d) Scale invariant functions s2h and s2H . See text for details.

It can be shown that the function s2h (γ) is scale-invariant. The function s1h (γ),
after normalization, is also scale-invariant.

Theorem 2. Let gT (s) and GT (S) be two functions with the translation removed
and meeting the constraints of Lemma 1, such that GT (S) = αgT (s) and S = αs,
i.e., two functions that are scaled versions of each other. The function s2h (γ) and
the function S1

h (γ) defined as

S1
h (γ) =

s1h (γ)
∫ π

2

0
s1h (ϕ) dϕ

(10)

are both scale invariant, i.e., s2H (γ) = s2h (γ) and S1
H (γ) = S1

h (γ), where the fun-
ctions h (x) and H (y) are defined on the basis of gT (s) and GT (S), respectively,
according to (7).
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Proof. Since the function hP (x) is derived from gT (s) with only integration, dif-
ferentiation, reorientation of the axis and restriction of the domain, the functions
hP (x) and HP (y) are also scaled versions of each other, i.e., HP (y) = αhP (x) and
y = αx. Thus:

γH = arctan

(

HP (y)

y

)

= arctan

(

αhP (x)

αx

)

= arctan

(

hP (x)

x

)

= γh. (11)

Also,

s2H (γ) =
dH

dy
=

dH (αx)

dαx
=

1

α

dαh (x)

dx
=

dh

dx
= s2h (γ) , (12)

that is, the first of the functions is indeed scale invariant. Furthermore,

s1H (γ) =

√

y2 +HP (y)2 =

√

(αx)2 + (αhP (x))2 = α

√

x2 + hP (x)2 = αs1h (γ) ,

(13)
and thus

∫ π

2

0

s1H (γ) dγ = α

∫ π

2

0

s1h (γ) dγ. (14)

Therefore, S1
h (γ) = S1

H (γ), i.e., the normalized version of the second of the functions
is also scale invariant. �

To simplify the notation, the functions s2h (γ) and S1
h (γ) have been derived

using one-dimensional function gT (s) for fixed θ, but, in fact, the functions are
defined in two dimensions: s2h (γ, θ) and S1

h (γ, θ) as gT (s, θ) is. In the following
sections, the translation and scale invariant function gTS (γ, θ) will represent any
of the above-defined two functions, S1

h (γ, θ) or s2h (γ, θ). The process of achieving
scale invariance is depicted in Figure 3. While a more straightforward method for
achieving invariance could be used, e.g. by estimating the value of the scaling from
the length of the support of gT for given θ and then applying normalisation, our
goal in this study is to minimize the steps relying on explicit variance estimation.

3.3 Invariance to Rotation

The rotation in the image is reduced to the circular translation in the θ direction
by the Radon transform and is preserved in this form by translation and scale
variance elimination, both operating along the s axis. For a discrete approximation
of gTS (γ, θ), the magnitude of the 1-D Fourier transform along the θ dimension

gTSR (γ,Θ) = |DFT (gTS (γ, θ))| (15)

is rotation invariant, since the magnitude of the Fourier transform is invariant [16]
with respect to circular translation of any function f (x) in [0, X]:

|DFT (f (x))| = |DFT (f ((x+ x0)modX))| . (16)
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While using only the magnitude discards information contained in the phase coeffi-
cients, the amount of information is still suitable for successful recognition. Indeed,
such an approach is used in other methods for deriving e.g. translation invariance [9].
As the function gTS (γ, θ) is already translation and scale invariant, gTSR (γ,Θ) pos-
sesses the property of full invariance to similarity-preserving variations in the input
image.

4 EXPERIMENTAL SETUP

The developed invariant recognition method has been tested for two different types
of objects: mammogram labels and faces. Mammogram labels (see Figure 5) are
human-made, regular and homogenous within a given class. On the other hand,
faces (see Figure 6) are natural, contain fine details and differ significantly even for
the same person.

To test the method, the resulting transform gTSR (γ,Θ) of input image has to
be compared with a set of labelled, transformed sample images. This has been done
using the k-nearest neighbour method (for k = 3). The leave-one-out technique [14]
has been applied to obtain the classification accuracy. In turns, each of the images
was recognised based on distances to the rest of the images for the given class and
all images for other classes. The total number of turns thus equalled to the total
number of images in the dataset. The number of correct classifications was divided
by the total number of images to obtain the recognition accuracy. For choosing the
nearest neighbours, three metrics for transformed images have been evaluated:

Euclidean distance dE (x, y) =

√

(x− y)T (x− y),

Manhattan distance dM (x, y) =
∑

i |xi − yi|,
Tanimoto[14] dissimilarity measure dT (x, y) = 1 + (x−y)T (x−y)

xT y
.

The invariant method has been implemented in the following way. The pre-
processed images of size S × S pixels were transformed using the Radon trans-
form to obtain S

√
2 × S images. Thus, the sampling in the Radon transform

along the θ axis was set to 2π
S
. Then, translation invariance is achieved, followed

by scale invariance. Both of the presented scale-invariance methods were tested.
After the application of scale-invariance transform, the data points are spaced
irregularly along the γ axis. This is due to the transformation from the x to the γ di-
mension involved in obtaining the scale invariance (8), (9). Therefore, piecewise cu-
bic Hermite interpolation was used to obtain regular mesh of the size S × S pixels.
This type of interpolation preserves the shape and reproduces the monotonicity of
the data. After interpolation, the rotation invariance is achieved, i.e., the magnitude
of the FFT, of size S × S, was calculated. Finally, it has been reshaped into a vec-
tor of S2 dimensions, which was treated as input to the nearest-neighbour scheme.
The proposed methods were implemented in MATLAB, with values of S depending
on the size of the input images, as specified in Section 4.1 and Section 4.2. The
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result of the invariant for two rotated, scaled and translated images is presented in
Figure 4.

Fig. 4. Two original images (left) and logarithms of their representations after the appli-
cation of the invariant transform (right)

4.1 Invariant Mammogram Labels Recognition Experiments

The mammogram labels have been extracted from breast images from the mini-
MIAS dataset [12]. They represent the information on the setup of the mam-
mography (see Figure 5, left), i.e., depicted breast and exposition direction. In
the dataset, two classes have been identified: representing the left breast (L) and
the right breast (R). Both classes are captured in the medio-lateral (ML) projec-
tion (i.e., view from the centre of the chest outwards). Thus, the two classes will
be further referred to as (L, ML) and (R, ML) for left and right breast, respec-
tively.

Often, the label does not fit entirely in the image, and some of the labels are
partially cropped (see Figure 5, right). Thus, two experiments were conducted, one
taking into account only the whole labels (Figure 5, centre), and second using all
labels. The dataset contains 66 labels, 17 whole and 22 cropped in class (L, ML),
and 8 whole and 19 cropped in class (R, ML). Each label has been extracted from
the mammogram and put at a random position within a 256× 256 pixel image with
a uniform black background.

4.2 Invariant Face Recognition Experiments

The data for the face experiments were taken from Yale faces dataset [2], consisting of
11 pictures for each of 15 individuals. These images are of relatively high resolution
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Fig. 5. Typical mammogram(left), mammogram labels (centre) and cropped mammogram
labels (right) from mini-MIAS dataset [12]

(256 × 256 pixels) and consist of the head and neck of a person. Additionally,
in order to evaluate the performance of the method on images that contain only
tightly cropped face region of lower resolution (32×32 pixels), the BioID dataset [6]
consisting of 1520 images of 23 individuals was used. The images from both of the
sets are depicted in Figure 6.

Fig. 6. Faces from the Yale[2] dataset (above) and BioID [6] dataset (below)



194 T. Arodź

For the Yale dataset two pictures for each person, containing faces with left- and
right-side illumination have been eliminated from the test sets. The original images
have faced some pre-processing in order to be suitable for the tests. In original Yale
images, the faces are pictured in a uniform white background. To be suitable for
the proposed method the faces have been extracted from the original Yale images
and put into images with uniform black background. Then all the images have
been randomly rotated in the range of

[

−π
2
, π
2

]

and randomly scaled in the range
of [66%, 100%]. Thus, the largest image may be 1.5 larger than the smallest one.
Finally, the objects were randomly translated within the 256× 256 picture.

In face recognition, the problem of the small number of available photos for each
person is often encountered. To model this problem, a method alternative to the
leave-one-out scheme was employed. For every person, the available images were
split into the sample set and the testing set. Then, the nearest-neighbour method
was used on the sample set for each image in the test set. For the Yale dataset, the
sample set contained, for each individual, a single image labelled “normal”.

For the BioID dataset, 5 images for each of the 23 persons were chosen as a sam-
ple set. In several cases when the database did not contain 5 images of a particular
person, the available number of images was used. As a test set, 200 images were
randomly selected from the whole dataset. Since the images in the dataset consist
of faces with some background, each face was extracted from the images using the
position of the eyes. As a result, a cropped face image of size 32 × 32 pixels was
created for each image.

The images contain also other types of variances than spatial ones, e.g. illu-
mination. Thus, in tests, simple 64-level histogram equalization is performed to
compensate for minor lighting variances. Another variant of lighting compensation
is applied for the test scenario with full Yale set, with side-illuminated images in-
cluded. This scenario is used to ease the comparison with other face recognition
methods. In this compensation method, first, the image is histogram equalized.
Then, bior3.7 wavelet decomposition is performed [4]. Image reconstructed from
the sixth-level wavelet approximation is subtracted from histogram equalized origi-
nal image. Finally, the resulting image is normalized into [0, 1] pixel intensity range.

5 EXPERIMENTAL RESULTS AND DISCUSSION

For mammogram labels, the results are presented in Table 2. The results for two
experiments are given, one using only the whole labels and the second one using
also cropped labels.

Scale inv. func.: S1 Scale inv. func.: s2

Tanimoto Eucldn Manhttn Tanimoto Eucldn Manhttn

No cropped labels 0.96 0.96 0.96 0.96 0.88 0.88

All labels 0.89 0.97 0.89 0.71 0.70 0.73

Table 2. Results for 3-Nearest Neighbour and leave-one-out scheme, mammogram labels
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In face recognition domain, the results of the tests for the Yale dataset in the
leave-one-out scheme are summarized in Table 3. Table 4 presents the results for
the second scenario, with 1 sample and 8 testing images per person. Since the
calculation of the Radon transform of the 256×256 pixels image is time consuming,
the method has also been applied to images downsized to 64×64 and 32×32 pixels.

Scale inv. func.: S1 Scale inv. func.: s2

Tanimoto Eucldn Manhttn Tanimoto Eucldn Manhttn

256× 256 0.882 0.882 0.911 0.941 0.933 0.919

64× 64 0.896 0.896 0.896 0.963 0.956 0.963

32× 32 0.874 0.874 0.874 0.919 0.933 0.933

Table 3. Results for 3-Nearest Neighbour and leave-one-out scheme, 9 images per person,
Yale faces dataset

Scale inv. func.: S1 Scale inv. func.: s2

Tanimoto Eucldn Manhttn Tanimoto Eucldn Manhttn

256× 256 0.808 0.808 0.858 0.909 0.892 0.892

64× 64 0.775 0.775 0.817 0.900 0.867 0.850

32× 32 0.733 0.733 0.708 0.775 0.758 0.775

Table 4. Results for 1-Nearest-Neighbour, 8 test and 1 sample image per person, Yale faces
dataset

For the test scenario with single sample image per person, the recognition accu-
racy significantly decreases for 32×32 images. This is caused by problems with scale
invariance in such small images. In additional tests for 32×32 images, with random
translation and rotation, but without random scaling, the accuracy degradation is
not observed (Table 5).

Scale inv. func.: S1 Scale inv. func.: s2

Tanimoto Eucldn Manhttn Tanimoto Eucldn Manhttn

0.867 0.867 0.858 0.891 0.883 0.900

Table 5. Results for 32 × 32 images without scale variance, 1-Nearest-Neighbour, 8 test
and 1 sample image per person, Yale faces dataset

In very small images the problems with discretization of the method arise. First,
the accuracy of the Radon transform deteriorates, affecting both scale and rotation
invariance. Moreover, the part of the scale invariant method involving transition
to angle domain from Radon spatial domain becomes instable. The accuracy of
the γ coordinate in (8) and (9) decreases. Finally, small image size results in loss of
the quality of interpolation, when changing the irregular points along the γ axis into
a regular mesh. For small images in the same scale, as in Table 5, these inaccuracies
become systematic, and thus do not result in a significant loss in accuracy.
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The results for all 11 images from the Yale dataset, including the left- and right-
side illuminated, are summarized in Table 6. These results are used to compare the
method with other face recognition methods, which used the full Yale dataset.

Scale inv. func.: S1 Scale inv. func.: s2

Tanimoto Eucldn Manhttn Tanimoto Eucldn Manhttn

256× 256 0.800 0.800 0.873 0.891 0.885 0.879

Table 6. Results for 3-Nearest Neighbour and leave-one-out scheme, 11 images per person,
Yale faces dataset

The objects in the above-described tests have boundaries different for each class
but similar within each class. Thus, a proof that the invariant methods did not
use the shape of the object as the discrimination criterion is needed. To show that
the interior of the image is used for discrimination, tests for the BioID dataset have
been carried out. The results are presented in Table 7. It should be noted that
the images in this set are not translated, rotated or scaled. On the other hand, the
images do not contain the same amount of information as Yale images, since the
face in the image is closely cropped. Moreover, the shape of the object, i.e. the head,
is different for each individual in the Yale dataset. The results for BioID dataset
show that the method gives good results even when the boundaries of all objects in
all classes are the same. This proves that the proposed invariants discriminate the
objects using the information contained within its interior and not by their shapes.
It also proves that enough information for recognition is preserved from the image
interior throughout the invariant transform.

Scale inv. func.: S1 Scale inv. func.: s2

Tanimoto Eucldn Manhttn Tanimoto Eucldn Manhttn

0.800 0.860 0.800 0.890 0.880 0.885

Table 7. Results for 1-Nearest-Neighbour, 5 sample per person and 200 images test set,
BioID faces dataset

5.1 Optimal Configuration of the Method

On the basis of the conducted tests, guidelines concerning the optimal variants of the
method can be specified. For problems with smooth objects, such as face recognition,
the s2 scale invariant is significantly better than the S1 invariant. On the other hand,
for objects with sharp edges, such as mammogram labels, the opposite is true. This
is due to the difference in the function proposed for scale invariance – the derivative
used in s2 is not accurately approximated in digital images with sharp edges.

In the s2 scale invariant, usually the Tanimoto metric yields better recognition
accuracy than the Manhattan and Euclidean metrics. However, the differences are
not significant. In case the method is used with a large set of sample images, as in the
leave-one-out scheme, the optimal input image size is 64×64. If only a limited set of
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sample images is available, larger input images yield better results. In S1 invariant,
the Euclidean metric outperforms both the Tanimoto and Manhattan metrics in
cases, where large sets of non-distorted sample images are present. In cases of
distortions, e.g. cropped mammogram labels test, or small sample sets, e.g. in some
test for faces, the Manhattan metric is superior.

5.2 Comparison with Other Methods

The proposed invariant transformation has been compared with several methods for
object recognition. The face recognition problem was used as a model problem, as
it is one of the most widely studied object recognition tasks.

The method has been compared with two established face recognition methods,
Eigenfaces and Fisherface [2]. The nearest-neighbour method with leave-one-out
technique has been applied to measure the recognition accuracy on the Yale dataset.
In the tests, the proposed method operated on randomly translated, rotated and
scaled Yale faces. The results for benchmark methods, which operated on original
Yale faces, are cited after [9]. There are two differences in our testing scenario and
the one used for the benchmark methods. First, in the benchmark methods the face
was pictured on a uniform white background. In the proposed method, the faces have
been extracted and placed in a uniform black background. Second, the benchmark
methods are not invariant methods. Thus, the faces used for benchmark methods
were of constant scale, rotation and position. The purpose of this comparison is to
show that the proposed method achieves similar accuracy as existing method, while
offering additional benefit of being invariant. Since the Radon-based method does
not claim to be illumination invariant, two results for the proposed transformation
are presented, for tests with and without the two side-illuminated faces per person,
respectively. The results, using the best performing variants of the proposed method,
are summarized in Table 8.

Method Recognition accuracy

Proposed method (no side-illuminated images) 96%

Proposed method 89%

Eigenface [9] 81%

Eigenface w/o 1st three [9] 89%

Fisherface [9] 94%

Table 8. Comparison with other face recognition methods, Yale dataset

6 CONCLUSIONS

The paper extends the new Radon-based invariant recognition method, proposed
by the author in [1]. The method has been presented in more detail and tested for
two object recognition problems. The method is proven to be invariant to image
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translation, on-the-plane rotation and scaling. The proposed transformation can
be used as a preliminary step providing an invariant feature set for some other
non-invariant methods, or as a stand-alone method for object recognition. In the
latter case, the method deals successfully with recognition of mammogram labels
and faces. In the face domain, the method gives results comparable or even better
that some established non-invariant methods, while allowing for recognition of faces
pictured in different positions, head rotations and distances from the camera.
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