
Computing and Informatics, Vol. 24, 2005, 263–279

COMPUTING EPISTASIS OF TEMPLATE FUNCTIONS
THROUGH WALSH TRANSFORMS∗

Maŕıa Teresa Iglesias, Concepción Vidal

Universidade da Coruña

Facultad de Informática

A Coruña, Spain

e-mail: totero@udc.es, conchi@dc.fi.udc.es

Alain Verschoren

University of Antwerp

Department of Mathematics and Computer Science

Antwerp, Belgium

e-mail: alain.verschoren@ua.ac.be

Manuscript received 21 May 2004; revised 2 May 2005

Abstract. Template functions have been introduced as a class of test functions,

allowing to study the convergence behaviour of genetic algorithms. In this note,
we show how to use Walsh transforms to calculate the normalized epistasis of these
functions.

Keywords: Genetic algorithm, GA hardness, epistasis, Walsh transform, Fourier
transform, template function

1 INTRODUCTION

It has long been accepted by the genetic algorithm community that there are many
factors, including deception and high epistasis, which may make a fitness function
acting on binary strings hard to optimize.

∗ Research supported by a research grant of Xunta de Galicia PGIDT03PXIA10502PR
and the GOA “Generic Optimization” at the University of Antwerp.

264 M.T. Iglesias, C. Vidal, A. Verschoren

The notion of epistasis measures, roughly speaking, the presence of links between
separate bits in the codified version of the data to be optimized, whereas deception
essentially deals with misleading data present in the underlying fitness landscape,
leading the optimization process away from the global optimum.

Both deception and epistasis are by no means sufficient to predict GA-hardness
(the difficulty of a fitness function to be optimized with a genetic algorithm). On
the other hand, it has experimentally been shown in [9], for example, that there is
a strong correlation between epistasis and GA-hardness for several classes of func-
tions, which may be described by a limited number of control parameters. The
Royal Road functions [4, 9] and the Template functions [7] studied in this note are
of this type.

Template functions are controlled by just two parameters, the length of the
strings we are dealing with and the length of the “template”, whose presence in
a chain increases the fitness value of the latter. These Template functions have been
used in [7] as a laboratory to experiment with, while studying GA-hardness. Let us
already point out here that increasing the length of the template also increases the
epistasis value of the function, as well as its GA-hardness.

On the other hand, Walsh transforms have been introduced in the framework
of genetic algorithms by Goldberg [6] and may be viewed as a binary analogue of
ordinary Fourier transforms. The associated Walsh coefficients include in a very
natural way the basic properties of the schemata and, in our context, they allow for
a very efficient calculation of the normalized epistasis of Template functions.

In the first section of this note, we present the background needed for the formal
study of the notion of epistasis and we introduce the Walsh coefficients of any fitness
function f . We show how these coefficients may be used to calculate the normalized
epistasis of f . In the second section, we introduce the Template functions we just
referred to and we show how the use of Walsh transforms allows to easily calculate
the normalized epistasis of these functions. In the last section, we show experimen-
tally that the epistasis and GA-hardness of Template functions are strongly related
providing extra evidence of the claims made before. Finally, in an appendix, we
briefly sketch how the alternative approach in [7] leads to similar results, albeit in
a much more complicated and technical way.

2 EPISTASIS AND WALSH TRANSFORMS

As pointed out in the introduction, epistasis essentially describes the dependency
or independency of bits in strings to which a fitness function is applied. As in [10],
one speaks of minimal epistasis, when every gene (bit) is independent of every other
gene, and of maximal epistasis, when no proper subset of genes is independent of
any other gene.

A quantitative approach to this concept is given in [3], where Davidor defines
the epistasis of a string s = sℓ−1 . . . s0 ∈ Ω = {0, 1}ℓ with respect to a fitness
function f as

Computing Epistasis of Template Functions Through Walsh Transforms 265

εℓ(s) = f(s)−
1

2ℓ−1

ℓ−1∑

i=0

∑

t∈Ω(si,i)

f(t) +
ℓ− 1

2ℓ

∑

t∈Ω

f(t),

with Ω(si, i) consisting of all strings in Ω which have value si at position i. When
no ambiguity arises, we will leave out the subscript ℓ. The global epistasis of f is
defined to be

ε(f) =

√∑

s∈Ω

ε2(s).

It has been pointed out in [12, 14] that these definitions may be rewritten as follows.
Define the vectors

e =




ε(0 . . . 00)
ε(0 . . . 01)

...
ε(11 . . .1)


 resp. f =




f(0 . . .00)
f(0 . . .01)

...
f(11 . . .1)


 =




f0
...

f2ℓ−1




and for any 0 ≤ i, j < 2ℓ, put

eij =
1

2ℓ
(ℓ+ 1− 2dij),

where dij is the Hamming distance between i and j (the number of bits in which
the binary representations of i and j differ). Putting Eℓ = (eij) ∈ M2ℓ(Q), the set
of 2ℓ-dimensional square matrices with entries in Q, it is then easy to see that

e = f −Eℓf .

It thus follows that ε(f) = ‖e‖ and, sinceEℓ has been proved in [12] to be symmetric
and idempotent, we also have that

ε2(f) = tf(Iℓ −Eℓ)f ,

where Iℓ is the identity matrix of dimension 2ℓ, and where we denote for any ma-
trix A by tA its transpose.

It is obvious that for any α > 0 we have ε(αf) = αε(f), whereas intuitively αf
and f should have the same epistasis. In order to remedy this, the authors of [12]
introduce the notion of normalized epistasis of f . This is defined as

ε∗(f) = ε2
(

f

‖f‖

)
=
ε2(f)

‖f‖2
=

tf(Iℓ −Eℓ)f
tff

,

which implies that 0 ≤ ε∗(f) ≤ 1. Actually, one may show that ε∗(f) = 0 if, and only
if, f has minimal epistasis, in the sense of [10]. On the other hand, the theoretical
maximum ε∗(f) = 1 cannot be reached by (positive valued!) fitness functions f ;

266 M.T. Iglesias, C. Vidal, A. Verschoren

in fact, the maximal value 1 − 1
2ℓ−1 corresponds exactly to the so-called “Camel

functions”, i.e., functions f with fi = f2ℓ−i−1 6= 0 for some 0 ≤ i < 2ℓ and fj = 0
elsewhere.

In order to simplify the calculation of epistasis, it is usually easier to work with
the matrixGℓ = 2ℓEℓ ∈ M2ℓ(Z) with entries gij = ℓ+1−2dij for all 0 ≤ i, j ≤ 2ℓ−1,
and with the function

γℓ(f) = tfGℓf .

Clearly 0 ≤ γℓ(f) ≤ 2ℓ and

ε∗(f) = 1−
tfEℓf
tff

= 1−
1

2ℓ
γℓ(

f

‖f‖
) = 1−

γℓ(f)

2ℓ ‖f‖2
. (1)

We will need some results from [8]. As before, let Ω = {0, 1}ℓ denote the space
of binary strings of length ℓ. For any t ∈ Ω, we define the Walsh function ψt on Ω
by putting

ψt(s) =

ℓ∏

i=0

(1− 2si)
t = (−1)s·t =

ℓ−1∏

i=0

(−1)siti,

where s · t =
∑ℓ−1

i=0 siti is the scalar product of s, t ∈ Ω. for any sℓ−1 . . . s0 ∈ Ω.
It follows that ψt counts, for any string s, the number of ones situated at loci of s
where t has also value one. The result is 1 or −1, depending on whether this number
is even or odd. The Walsh functions may be represented by the matrix:

V ℓ = (ψt(s))s,t∈Ω ∈ M2ℓ(Z).

For small values of ℓ, we have V 0 = (1) and:

V 1 =

(
1 1
1 −1

)
resp. V 2 =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 .

Moreover, it is easy to see that V ℓ may inductively be constructed by

V ℓ =

(
V ℓ−1 V ℓ−1

V ℓ−1 −V ℓ−1

)
.

From this, one easily deduces that V 2
ℓ = 2ℓIℓ. Sometimes it is easier to work with

the matrix Wℓ = 2−ℓ/2V ℓ. It has the property that W 2
ℓ = Iℓ and it satisfies the

recursion relation

Wℓ = 2−1/2

(
W ℓ−1 W ℓ−1

W ℓ−1 −W ℓ−1

)
.

Computing Epistasis of Template Functions Through Walsh Transforms 267

The Walsh functions form a basis for the vector space of real valued functions
on Ω. In fact, if we represent any such function f by the associated vector f ∈ R2ℓ ,
then we define the Walsh transform w of f by w = Wℓf . The components wi =
wi(f) of w are called the Walsh coefficients of f and are (up to a factor 2−ℓ/2) the
coordinates of f with respect to the basis {ψt; t ∈ Ω}. The Walsh coefficients of f ,
of course, easily permit to recover f , since it follows from W 2

ℓ = Iℓ that

f = Wℓ(Wℓ f) = Wℓw.

In order to calculate the normalized epistasis of f in terms of Walsh coefficients,
let us define the diagonal matrix Dℓ, whose only non-zero diagonal entries dii have
value 1 and are situated at i = 0 and i = 2j, for 0 ≤ j ≤ ℓ − 1. The proof of the
following result can be found in [8].

Lemma 1. With notations as before, we have:

WℓEℓWℓ = Dℓ.

Taking into account the above result and also (1), it can be easily proved that:

Proposition 1. If w0, . . . , w2ℓ−1 are the Walsh coefficients of the fitness function f ,
then the normalized epistasis ε∗(f) of f is given by

ε∗(f) = 1−
w2

0 +
∑ℓ−1

i=0 w
2
2i∑2ℓ−1

j=0 w2
j

.

3 COMPUTING EPISTASIS THROUGH WALSH TRANFORMS

In this section, we show how the use of Walsh transforms permits an easy calculation
of the epistasis of the Template functions. We invite the reader to compare it with
the set-up in [7], which will briefly be sketched in an Appendix.

The “Template functions” we are about to consider calculate the fitness of
a string of length ℓ, by sliding a fixed string t of length n ≤ ℓ (the “template”)
over it. Each time an occurrence of t in s is found, a fixed amount a is added to the
fitness of s. For convenience’s sake, we will assume throughout that a = 1 and that
t is the length n string 1n = 11 . . .11. So, the Template functions we will study in
this note depend only on the parameters ℓ and n and will be denoted by T n

ℓ . For
example,

T 2
ℓ (1

ℓ) = T 2
ℓ (11 . . .11) = ℓ− 1.

It seems reasonable to expect that increasing the length n of the template will
also increase the epistasis of T n

ℓ , in view of the strong linkage between the different
loci.

268 M.T. Iglesias, C. Vidal, A. Verschoren

The first step of this consists in evaluating ‖T n
ℓ ‖ where T n

ℓ ∈ R2ℓ denotes the
vector corresponding to T n

ℓ , i.e.,

T n
ℓ =




T n
ℓ (00 . . .0)

...
T n
ℓ (11 . . .1)


 .

To simplify this calculation, let us first note that, if ℓ < n, then T n
ℓ ∈ R2ℓ is the

zero vector whereas, for any ℓ ≥ n, we have

T n
ℓ =

(
T n

ℓ−1

T n
ℓ−1 +Dn

ℓ−1

)

with

Dn
ℓ−1 =




0ℓ−2
...

0ℓ−n

eℓ−n


 ∈ R2ℓ−1

.

Here, for any positive integer m, we denote by 0m the zero vector in R2m and by em

the vector in R2m all of whose entries have value 1.
We need to know more about the structure of T n

ℓ . An easy induction argument
yields:

Lemma 2. For any 1 ≤ i ≤ n, we have

T n
n+i =




T n
n+i−1

T n
n+i−2
...
T n

n

0̃
i

n

ei−1

2ei−2
...
ie0

i + 1




,

where 0̃
i

n = t(0, . . . , 0) ∈ R2n−2i.

From this, one easily deduces:

Lemma 3. For any 0 ≤ i ≤ n,

∥∥T n
n+i

∥∥2 = 2i(3i− 1) + 2.

Computing Epistasis of Template Functions Through Walsh Transforms 269

Proposition 2. For any pair of integers ℓ ≥ n,

‖T n
ℓ ‖

2 =





2ℓ−n(3(ℓ− n)− 1) + 2 if n ≤ ℓ ≤ 2n

2ℓ−n(3(ℓ− n)− 1) + 2ℓ−2n(2 + (ℓ− 2n)(ℓ− 2n− 1)) if ℓ ≥ 2n.

Proof. The first case (n ≤ ℓ ≤ 2n) is just the previous lemma. In the second case
(ℓ ≥ 2n), we again apply induction on ℓ and use that tT n

n+iD
n
n+i = 2i+1 − 1 and the

fact that the trace of tT n
ℓ is given by Tr(tT n

ℓ) = 2ℓ−n(ℓ− n+ 1), for any ℓ ≥ n. �

In order to apply Proposition 1 and taking into account the previous result, it
only remains to calculate

w2
0 +

ℓ−1∑

i=0

w2
2i.

First of all, let us note that it will be easier to work with

vn
ℓ = V ℓT

n
ℓ and vnℓ,j = (vn

ℓ)j, for j = 0, . . . , 2ℓ − 1.

so it is clear that W n
ℓ = 2−ℓ/2vn

ℓ . Let us first consider the case ℓ = n. To simplify,
let us write vℓ = vℓ

ℓ. We have

vℓ = V ℓT
ℓ
ℓ = V ℓ




0
...
1


 =




(−1)uℓ(0)

...

(−1)uℓ(2
ℓ
−1)


 ,

where uℓ(i) denotes the number of ones in the binary representation of i. So (vℓ)0 = 1
and (vℓ)2i = −1, for all i = 0, . . . , ℓ− 1. As ||T ℓ

ℓ||
2 = 1, we find that

ε∗(T ℓ
ℓ) = 1−

1 + ℓ

2ℓ
.

More generally, let us now assume ℓ ≥ n+ 1. Note that

T n
ℓ =

(
T n

ℓ−1

T n
ℓ−1 +Dn

ℓ−1

)
=

(
T n

ℓ−1

T n
ℓ−1

)
+Dn+1

ℓ ,

with

Dn+1
ℓ =

(
0ℓ−1

Dn
ℓ−1

)
.

270 M.T. Iglesias, C. Vidal, A. Verschoren

Using this, we obtain

vn
ℓ = V ℓ

((
T n

ℓ−1

T n
ℓ−1

)
+Dn+1

ℓ

)

=

(
V ℓ−1 V ℓ−1

V ℓ−1 −V ℓ−1

)((
T n

ℓ−1

T n
ℓ−1

)
+Dn+1

ℓ

)

= 2

(
vn
ℓ−1

0ℓ−1

)
+ dn+1

ℓ .

where dn
ℓ = V ℓD

n
ℓ .

So,

vn
ℓ = 2



 2

(
vn
ℓ−2

0ℓ−2

)
+ dn+1

ℓ−1

0ℓ−1



+ dn+1
ℓ

= 4




vn
ℓ−2

0ℓ−2

0ℓ−1


+ 2

(
dn+1
ℓ−1

0ℓ−1

)
+ dn+1

ℓ

= 8




vn
ℓ−3

0ℓ−3

0ℓ−2

0ℓ−1


+ 4




dn+1
ℓ−2

0ℓ−2

0ℓ−1


+ 2

(
dn+1
ℓ−1

0ℓ−1

)
+ dn+1

ℓ

= · · ·

= 2ℓ−n




vn
n

0n
...

0ℓ−1


+ 2ℓ−n−1




dn+1
n+1

0n+1
...

0ℓ−1


+ · · ·+ 2

(
dn+1
ℓ−1

0ℓ−1

)
+ dn+1

ℓ .

We may write the above formula in a more elegant way, by using the so-called
Kronecker or tensor product. For any two matrices A = (aij) ∈ Rn×m and B =
(bij) ∈ Rp×q, this is defined as

A⊗B = (aijBij) =




a11B . . . a1mB
...

. . .
...

an1B · · · anmB


 ∈ Rnp×mq.

Computing Epistasis of Template Functions Through Walsh Transforms 271

To calculate dn+1
i for i = n+ 1, . . . , ℓ, first note that

dn
ℓ = V ℓD

n
ℓ =

(
V ℓ−1 V ℓ−1

V ℓ−1 −V ℓ−1

)




0ℓ−1

0ℓ−2
...

0ℓ−n+1

eℓ−n+1




=

(
V ℓ−1D

n−1
ℓ−1

−V ℓ−1D
n−1
ℓ−1

)
=

(
dn−1
ℓ−1

−dn−1
ℓ−1

)

=

(
1
−1

)
⊗ dn−1

ℓ−1 = v1 ⊗ dn−1
ℓ−1 .

Similarly, if we write vi = v⊗i
1 , for any i we have

dn
ℓ = vi ⊗ dn−i

ℓ−i .

Taking i = n− 1, we can write

dn
ℓ = vn−1 ⊗ d1

ℓ−n+1 = vn−1 ⊗ V ℓ−n+1

(
0ℓ−n

eℓ−n

)

= vn−1 ⊗

(
V ℓ−neℓ−n

−V ℓ−neℓ−n

)
= V n−1 ⊗ v1 ⊗ V ℓ−neℓ−n

= vn ⊗ 2ℓ−nhℓ−n,

where

hk =




1
0
...
0


 ∈ R2k ,

for all k ∈ N. In a similar way,

dn+1
i = 2i−nvn ⊗ hi−n,

272 M.T. Iglesias, C. Vidal, A. Verschoren

for i = n+ 1, . . . , ℓ. We thus obtain

vn
ℓ = 2ℓ−n




vn

0n
...

0ℓ−1


+

ℓ∑

i=n+1

2ℓ−i




dn+1
i

0i
...

0ℓ−1




= 2ℓ−n







vn

0n
...

0ℓ−1


+

ℓ∑

i=n+1




vn ⊗ hi−n

0i
...

0ℓ−1







= 2ℓ−n

(
hℓ−n ⊗ vn +

ℓ∑

i=n+1

hℓ−i ⊗ vn ⊗ hi−n

)

= 2ℓ−n

ℓ−n∑

i=0

h⊗i

1 ⊗ vn ⊗ h
⊗ℓ−n−i

1 .

Note that hi = h⊗i

1 with h⊗0

1 = 1. As we have mentioned before, we are only
interested in the value of vnℓ,0 and vnℓ,2i for i = 0, . . . , ℓ − 1. For the first one, it is
clear that

vnℓ,0 = 2ℓ−n(ℓ− n+ 1)

since (hj ⊗ vn ⊗ hℓ−n−j)0 = 1 for all j.
In order to deduce a general formula for the second case, let us first consider

two examples, one for the case n < ℓ ≤ 2n (we take ℓ = 6 and n = 4) and another
one for the case ℓ ≥ 2n (we take ℓ = 6 and n = 2). First, note that

v4
6 = 22

2∑

j=0

hj ⊗ v4 ⊗ h2−j = −4{h0 ⊗ v4 ⊗ h2 + h1 ⊗ v4 ⊗ h1 + h2 ⊗ v4 ⊗ h0}.

Since h0 ⊗ v4 ⊗h2 =
t(a,−a,−a,a) with a = t(h2,−h2,−h2,h2), h1 ⊗ v4 ⊗h1 =

t(b,−b,−b, b, 05) with b = t(h1,−h1,−h1,h1) and h2 ⊗ v4 ⊗ h0 =
t(v4, 04, 04, 04),

it should be clear that
v46,1 = v46,32 = −22

v46,2 = v46,16 = −222

v46,4 = v46,8 = −223.

We need to distinguish three cases.

1. If 0 ≤ i < ℓ − n, the non-zero summands are hj ⊗ vn ⊗ hℓ−n−j with j =
ℓ− n− i, . . . , ℓ− n.

2. If ℓ−n ≤ i < n, the non-zero summands are hj⊗vn⊗hℓ−n−j with j = 0, . . . , ℓ−n.

Computing Epistasis of Template Functions Through Walsh Transforms 273

3. If n ≤ i ≤ ℓ−1, the non-zero summands are hj⊗vn⊗hℓ−n−j with n+ℓ−n−j > i,
so j = 0, . . . , ℓ− i− 1.

In the second case, we have, in a similar way,

v2
6 = 24

∑4
j=0 hj ⊗ v2 ⊗ h4−j = 16{h0 ⊗ v2 ⊗ h4 + h1 ⊗ v2 ⊗ h3+

h2 ⊗ v2 ⊗ h2 + h3 ⊗ v2 ⊗ h1 + h4 ⊗ v2 ⊗ h0},

so,
v26,1 = v26,32 = −24

v26,2 = v26,4 = v26,8 = v26,16 = −242.

Again, we can distinguish three cases:

1. If 0 ≤ i ≤ n − 1, the non-zero summands are hj ⊗ vn ⊗ hℓ−n−j with j =
ℓ− n− i, . . . , ℓ− n.

2. If n ≤ i ≤ ℓ − n, the non-zero summands are hj ⊗ vn ⊗ hℓ−n−j with j =
ℓ− i− n, . . . , ℓ− i− 1.

3. If ℓ−n ≤ i ≤ ℓ−1, the non-zero summands are hj⊗vn⊗hℓ−n−j with n+ℓ−n−j >
i, so j = 0, . . . , ℓ− i− 1.

The general case works similarly, so we obtain:

1. if n < ℓ ≤ 2n and i = 0, . . . , ℓ− 1

vnℓ,2i =





−2ℓ−n(i+ 1) if 0 ≤ i < ℓ− n

−2ℓ−n(ℓ− n+ 1) if ℓ− n ≤ i < n

−2ℓ−n(ℓ− i) if n ≤ i ≤ ℓ− 1

2. if ℓ ≥ 2n and i = 0, . . . , ℓ− 1

vnℓ,2i =





−2ℓ−n(i+ 1) if 0 ≤ i ≤ n− 1

−2ℓ−nn if n ≤ i ≤ ℓ− n

−2ℓ−n(ℓ− i) if ℓ− n ≤ i < ℓ

In the first case, we have

(vnℓ,0)
2 +

ℓ−1∑

i=0

(vnℓ,2i)
2 = 4ℓ−n{(ℓ− n+ 1)2 + 2

ℓ−n∑

i=0

i2 + (2n− ℓ)(ℓ− n+ 1)2} =

= 4ℓ−n{(ℓ− n+ 1)2(2n− ℓ + 1) + 1
3
(ℓ− n)(ℓ− n+ 1)(2ℓ− 2n+ 1)}

= 4ℓ−n{1 + n(ℓ− n− 1)2 + ℓ−n
3
(4− (ℓ− n)2)}.

274 M.T. Iglesias, C. Vidal, A. Verschoren

Similarly, in the second case,

(vnℓ,0)
2 +

ℓ−1∑

i=0

(vnℓ,2i)
2 = 4ℓ−n{(ℓ− n+ 1)2 + 2

n∑

i=0

i2 + (ℓ− 2n)n2}

= 4ℓ−n{(ℓ− n+ 1)2 + 1
3
n(n+ 1)(2n+ 1) + (ℓ− 2n)n2}

= 4ℓ−n{(ℓ− 2n)(n2 + ℓ + 2) + n
3
(2n2 + 7) + 2n2 + 1}.

Finally, the combination of all of the previous results with Proposition 1 yields

Proposition 3. For any pair of integers ℓ ≥ n, we have

γ(T n
ℓ) =

{
4ℓ−n

(
1 + n(ℓ− n+ 1)2 + ℓ−n

3
(4− (ℓ− n)2)

)
if n ≤ ℓ ≤ 2n

4ℓ−n
(
(ℓ− 2n)(n2 + ℓ + 2) + n

3
(2n2 + 7) + 2n2 + 1

)
if ℓ ≥ 2n.

Proof. Note that

γ(T n
ℓ) =

tT n
ℓGℓT

n
ℓ = 2ℓ tW n

ℓ
tW ℓEℓW ℓw

n
ℓ = tvn

ℓDℓv
n
ℓ = (vnℓ,0)

2 +
ℓ−1∑

i=0

(vnℓ,2i)
2.

�

Theorem 1. The epistasis of the Template function T n
ℓ is:

ε∗(T n
ℓ) =





1 −
1 + n(ℓ− n+ 1)2 + (ℓ−n)

3
(4− (ℓ− n)2)

2n (3(ℓ− n)− 1 + 2n−ℓ+1)
if n ≤ ℓ ≤ 2n

1 −
(ℓ− 2n)(n2 + ℓ+ 2) + n

3
(2n2 + 7) + 2n2 + 1

2n (3(ℓ− n)− 1) + (ℓ− 2n)2 + 2(n+ 1)− ℓ
if ℓ ≥ 2n.

In the case n = ℓ, we recover for large values of ℓ, the high epistatic value

ε∗(T ℓ
ℓ) = 1−

1 + ℓ

2ℓ
.

because T ℓ
ℓ is just the Dirac function at 1ℓ. On the other hand, for general values

of ℓ, the minimal epistatic value is easily seen to be reached by the case n = 1,

ε∗(T 1
ℓ) = 1−

(ℓ− 2)(ℓ+ 3) + 6

2(3(ℓ− 1)− 1) + (ℓ− 2)2 + 4− ℓ
= 0.

Indeed, in this case, T 1
ℓ just counts the number of 1′s in a string and T 1

ℓ =
∑ℓ−1

i=0 gi,
where gi(s) = δ1,si is the Kronecker function with value 1 when si = 1 and zero
elsewhere.

Computing Epistasis of Template Functions Through Walsh Transforms 275

4 SOME EXPERIMENTAL RESULTS

In this final section, we show, with some explicit runs, that, for Template functions,
the epistasis is a nice indicator of GA-hardness. As a measure of this GA-hardness,
we use the average N of the number of generations needed to reach a population,
half of whose members are equal to the maximum 1ℓ = 1 . . .1.

We used an SGA (simple genetic algorithm [1]) over a population of size 100, with
binary tournament as selection operator, single point crossover with probability 0.7
and mutation with probability 0.02.

In the first case, we consider strings with length ℓ = 16 and we calculate both
epistasis and GA-hardness for all template functions T n

ℓ , with 2 ≤ n ≤ 15. The
results are given in Table 1. As expected, the epistasis strongly correlates with
GA-hardness.

Note: We did not include the values n = 1 and n = 16. Actually, for n = 1, the
problem is linear (one just counts the number of 1’s in a string). We found
N = 16.64, which is slightly higher than the corresponding value for T 2

16. This
is essentially due to the non-disruptive character of single point crossover in this
case.

On the other hand, for n = 16, the value of N is unstable (and high), as T 16
16

is just the Dirac function at 1(16) and the optimum has to be found through ran-
dom search, since the associated fitness landscape does not contain any information
allowing for directed search.

ℓ = 16

n ε∗(T n
16) N

2 0.05034 16.28

3 0.20707 16.70

4 0.42233 17.73

5 0.61742 18.51

6 0.76096 20.03

7 0.85654 22.44

8 0.91698 26.47

9 0.95394 32.33

10 0.97552 43.35

11 0.98743 69.49

12 0.99375 149.12

13 0.99698 417.33

14 0.99859 1755.69

15 0.99937 11197.98

Table 1

We also fixed the size of the template (n) and calculated epistasis for different
values of ℓ ≥ n. There again appears a clear link between the (decreasing) values of
epistasis and GA-hardness. In Table 2 we show the results for n = 3 and 3 ≤ ℓ ≤ 7.

276 M.T. Iglesias, C. Vidal, A. Verschoren

n = 3

ℓ Epistasis Number of runs

3 0.5 53.5

4 0.41667 32.6

5 0.36364 26.8

6 0.33333 13.3

7 0.31111 9.7

Table 2

5 CONCLUSION

In this note, we introduced some general machinery relating the epistasis of a fit-
ness function to its Walsh coefficients. We then applied this to explicitly calculate
the epistasis of Template functions. Experimental evidence indicates that the GA-
hardness of individual Template functions is strongly related to their epistasis.

6 APPENDIX

The main purpose of this section is to sketch the alternative (tedious) calculation of
the normalized epistasis of the Template functions given in [7]. As we have already
calculated ||T n

ℓ ||, let us reconsider γ(T
n
ℓ) =

tT n
ℓGℓT

n
ℓ . Note that, for all ℓ ≥ n,

γ(T n
ℓ) = tT n

ℓGℓT
n
ℓ

=
(
tT n

ℓ−1,
tT n

ℓ−1 +
tDn

ℓ−1

)(Gℓ−1 +Uℓ−1 Gℓ−1 −Uℓ−1

Gℓ−1 −Uℓ−1 Gℓ−1 +Uℓ−1

)

(
T n

ℓ−1

T n
ℓ−1 +Dn

ℓ−1

)

= 4tT n
ℓ−1Gℓ−1T

n
ℓ−1 + 4tT n

ℓ−1Gℓ−1D
n
ℓ−1 +

tDn
ℓ−1Gℓ−1D

n
ℓ−1

+tDn
ℓ−1Uℓ−1D

n
ℓ−1,

where the last terms are:

tDn
ℓ−1Uℓ−1D

n
ℓ−1 = 2ℓ−n ‖eℓ−n‖

2 = 4ℓ−n

and

tDn
ℓ−1Gℓ−1D

n
ℓ−1 =

2ℓ−n
−1∑

i,j=0

gij + (n− 1) · 4ℓ−n = n · 4ℓ−n.

In order to determine tT n
ℓ−1Gℓ−1D

n
ℓ−1, let us denote by

βk = (t0ℓ−k−1, . . . ,
t0ℓ−n,

teℓ−n),

Computing Epistasis of Template Functions Through Walsh Transforms 277

for any 1 ≤ k ≤ n. Using a recursive argument, it can be proved that

βk = 2βk+1 + (n− k + 1)2k4ℓ−n−k.

Using this and the symmetry of Gℓ, we obtain:

tT n
ℓ−1Gℓ−1D

n
ℓ−1 = β1 = 2β2 + 4ℓ−n−12n = · · · = 2iβi+1 + 4ℓ−n−1i(2n+ 1− i).

In particular, if i = n− 2, then

tT n
ℓ−1Gℓ−1D

n
ℓ−1 = 2n−2βn−1 + 4ℓ−n−1(n− 2)(n+ 3)

= 2n−2
(
t0ℓ−n,

teℓ−n

)
Gℓ−n+1T

n
ℓ−n+1 + 4ℓ−n−1(n− 2)(n+ 3)

= 2n−2
(
2teℓ−nGℓ−nT

n
ℓ−n +

teℓ−nGℓ−nD
n
ℓ−n

+ teℓ−nUℓ−nD
n
ℓ−n

)
+ 4ℓ−n−1(n− 2)(n+ 3).

As teℓ−nGℓ−n = teℓ−nUℓ−n = 2ℓ−n teℓ−n and tT n
n+iD

n
n+i = 2i+1 − 1, we have

tT n
ℓ−1Gℓ−1D

n
ℓ−1 = 2ℓ−1

(
Tr(T n

ℓ−n) + Tr(Dn
ℓ−n)

)
+ 4ℓ−n−1(n− 2)(n+ 3)

= 2ℓ−1
(
2ℓ−2n(ℓ− 2n+ 1) + 2ℓ−2n+1

)
+ 4ℓ−n−1(n− 2)(n+ 3)

= 4ℓ−n−1(n2 − 3n+ 2ℓ).

Combining all of these facts with another recursive argument, we find for ℓ ≥ 2n,

γ(T n
ℓ) = tT n

ℓGℓT
n
ℓ = 4tT n

ℓ−1Gℓ−1T
n
ℓ−1 + 4ℓ−n(n2 − 3n+ 2ℓ) + n4ℓ−n + 4ℓ−n

= 4ℓ−n
(
(ℓ− 2n)(n2 + ℓ + 2) + n

3
(2n2 + 7) + 2n2 + 1

)
,

which coincides with the results in 3.
One proves in a similar way that

γ(T n
n+i) = 4i

(
n(i+ 1)2 + 1 +

i

3
(4− i2)

)
,

when 0 ≤ i ≤ n, which again coincides with the corresponding case in 3.

REFERENCES

[1] Bäck, T.—Hoffmeister, F.: Extended Selection Mechanisms in Genetic Algo-
rithms. In: Proceedings of the Fourth International Conference on Genetic Algo-
rithms, ed. R.K. Belew and L. B. Booker, Morgan Kaufmann Publishers, San Mateo,
1991.

[2] Corcoran, A. L.—Wainwright, R. L.: LibGA: A User-Friendly Workbench for
Order-Based Genetic Algorithm Research. Proceedings of the 1993 ACM/SIGAPP
Symposium on Applied Computing, 1993.

278 M.T. Iglesias, C. Vidal, A. Verschoren

[3] Davidor, Y.: Epistasis Variance: A Viewpoint on GA-hardness. In: Foundations

of Genetic Algorithms 1, ed. G. J. E. Rawlins, Morgan Kaufmann Publishers, San
Mateo, 1991.

[4] Forrest, S.—Mitchell, M.: Relative Building-Block Fitness and the Building-

Block Hypothesis. In: Foundations of Genetic Algorithms 2, ed. L.D. Withley, Mor-
gan Kaufmann Publishers, San Mateo, 1993.

[5] Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley, 1989.

[6] Goldberg, D.E.: Genetic Algorithms and Walsh Functions: Part I, A Gentle In-
troduction. Complex Systems 3, pp. 129–152, 1989.

[7] Iglesias, M.T.—Verschoren, A.—Vidal, C.: Template Functions and Their
Epistasis. Proceedings of the International Conference On Modelling and Simula-
tion MS-2000, Las Palmas de Gran Canaria, pp. 539–546, 2000.

[8] Naudts, B.—Suys, D.—Verschoren, A.: Epistasis, Deceptivity and Walsh
Transforms. Proceedings of the International ICSC Symposium on Engineering of In-
telligent Systems (EIS ’98) Volume 1: Fuzzy Logic/Genetic Algorithms, pp. 210–216,
ICSC Academic Press, 1998.

[9] Naudts, B.—Suys, D.—Verschoren, A.: Generalized Royal Road Functions.
Bull. Soc. Math. Belg., Simon Stevin, 6, pp. 147–154, 1999.

[10] Rawlins, G. J. E.: Foundations of Genetic Algorithms. Morgan Kaufmann Publi-
shers, San Mateo, 1991.

[11] Stickberger, M.M.: Genetics. Collier-McMillan Ltd., London, 1968.

[12] Suys, D.—Verschoren, A.: Extreme Epistasis. International Conference on In-
telligent Technologies in Human-Related Sciences (ITHURS ’96) Vol. II, pp. 251–258,
León, 1996.

[13] Van Hove, H.: Representational Issues in Genetic Algorithms. Ph.D. thesis, Uni-
versity of Antwerp 1995.

[14] Van Hove, H.—Verschoren, A.: On Epistasis. Computers and AI, Vol. 14,
pp. 271–277, 1994.

[15] Van Hove, H.—Verschoren, A.: What Is Epistasis? Bull. Soc. Math. Belg., 5,
pp. 69–77, 1998.

Maŕıa Teresa Iglesias is full professor at the Universidade
da Coruña. After she finished her studies in mathematics, she
started research in differential geometry with a grant of the
Spanish Ministry of Education and Science. Currently she works
in artificial intelligence. She is the co-author of several papers in
differential geometry and computer science and also a book on
generic optimization.

Computing Epistasis of Template Functions Through Walsh Transforms 279

Concepción Vidal is full professor at the Department of Com-

puter Science of the University of A Coruña. She received the
Ph.D. degree in mathematics from the University of Santiago
de Compostela in 1993 with a work on ring theory and noncom-
mutative algebraic geometry. After receiving her habilitation at
the Faculty of Computer Science of the University of A Coruña,
she started her research in artificial intelligence. She is the au-
thor or co-author of more than 10 papers and books on pure
mathematics and computer science.

Alain Vers
horen was born in 1954 and is full professor at

the University of Antwerp. He is the author of some 200 papers
and 40 books or conference proceedings, mainly on ring theory,
noncommutative algebraic geometry and artificial intelligence.
He was the advisor of more than 20 Ph.D.’s in these topics and
gave numerous talks at universities and conferences.

