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Abstract. Heuristic search is a core area of artificial intelligence and the employ-

ment of an efficient search algorithm is critical to the performance of an intelli-
gent system. This paper addresses a production scheduling problem with complex
precedence constraints in an identical parallel machines environment. Although
this particular problem can be found in several production and other scheduling
applications; it is considered to be NP-hard due to its high computational com-
plexity. The solution approach we adopt is based on a comparison among several
dispatching rules combined with a diagram analysis methodology. Computational
results on large instances provide relatively high quality practical solutions in very
short computational times, indicating the applicability of the methodology in real
life production scheduling applications.
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1 INTRODUCTION

Parallel machine scheduling has been a source of challenging problems for researchers
in the area of computer and manufacturing engineering. The general problem of
parallel machine scheduling can be stated as scheduling a set of partially ordered
jobs (or computational tasks) onto a parallel machine (or multiprocessor) system so
that a set of performance criteria will be optimized. The difficulty of the problem
depends heavily on the topology of the job (task) graph representing the precedence
relations among the jobs, the topology and the number of parallel machines, the
uniformity of each job processing time, and the performance criteria chosen [1].

The parallel machine scheduling problem (PMSP) is computationally intractable
even under simplified assumptions [2]. In particular, the problem restricted to two
machines (P2||Cmax) was shown in the ordinary sense to be NP-hard by a bi-
partitioning problem, as stated by Karp [3]. With precedence constraints the PMSP
is as hard as the classical problem of scheduling precedence constraint Unit Execu-
tion Time tasks (UET) on parallel machines, as a task moldable to run with the
same execution time on any number of machines. Therefore, because of this compu-
tational complexity issue, heuristic algorithms have been proposed to obtain optimal
and sub-optimal solutions.

Recently, the parallel machine environment scheduling received a lot of attention
due to its practical use. In particular, Bilge et al. [4], Timkovsky [5], Lepere et al. [6]
and Hurink and Knust [7] considered the parallel machine scheduling problem as
Malleable Tasks (MT), allowing each task to be executed in separate processors.
Moreover, parallel task scheduling is one of the most important problems in parallel
computation. Bampis et al. [8] propose a (2− 2/(2m+ 1))-approximation heuristic
algorithm for the Pm|prec; cij = 1; pi > 1|Cmax using a directed acyclic graph
representation where the vertices represent the tasks to be executed and the arcs
correspond to the communication delays. The parallel architecture is composed by
a set of identical processors and the objective is to find a feasible schedule minimizing
the makespan, i.e. the time at which the last task of the graph finishes its execution.

Due to the importance of scheduling problems, there is a vast literature that
addresses modelling and solution aspects of several instances of PMPS problems,
including either exact (complete) or approximate algorithms. Exact algorithms
guarantee to find for every finite size instance an optimal solution, in bounded time.
Among various branch&bound and dynamic programming algorithms proposed for
PMPSs, the approach adopted by Belouadah and Potts [9] in which lower bounds
are obtained by a Lagrangian relaxation of machine capacity constraints appears
best; P ||

∑

wjCj problems with up to 20 jobs and 8 machines can be solved within
reasonable time. Contrary to exact approaches, approximate methodologies does
not guarantee of finding optimal solutions for the sake of getting good solutions in
significantly reduced amount of time. Among the basic approximate methods they
are usually distinguished between construction and local search heuristics. Con-
struction heuristics generate solutions from scratch by adding-to an initial empty
partial constructed solution-components, until a feasible solution is complete. Such
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heuristics typically produce mediocre-to-good solutions in relatively short computa-
tional times.

Local search heuristics start from some initial solution and iteratively try to
replace the current solution with a “better” solution in an approximately defined
neighborhood of the current solution. Based on this concept, another class of ite-
rative improvement algorithms, called metaheuristics, has emerged which basically
tries to combine basic heuristic in higher level frameworks, resulting a more efficient
and effective exploration of the search space. Metaheuristics are typically high-level
strategies which guide an underlying, more problem specific heuristic, to increase its
performance (higher quality solutions) but in relatively large computational times.
Their main goal is to avoid the disadvantages of iterative improvement and, in par-
ticular, through multiple descents by the local (neighborhood) search to escape from
local optima. Sophisticated metaheuristics, such as genetic algorithms, tabu search
and simulated annealing, are only some of the improvement methods proposed, able
to find near optimal solutions for several scheduling problems [1, 10, 11, 12].

However, there are certain instances of PMPS problems that constructive heuris-
tics may provide near-optimal solutions [13]. Recently, Dunstall and Wirth [14]
considered an identical parallel machine-scheduling problem, within which jobs ar-
ranged into families and sequence-independent setup time between jobs of different
families on these machines. They evaluate the performance of previously appeared
in literature heuristics, relative to lower bounds and solutions obtained using an ex-
act algorithm. Moreover, Gendreau et al. [15] propose a Divide and Merge heuristic
and several lower bounds for the P |sij |Cmax problem. In particular, they compare
their heuristic with a Tabu Search algorithm proposed earlier by França et al. [16]
and the results yield similar quality solutions but with significantly reduced amount
of running time.

Evidently, there are certain instances of PMPS problems and practical appli-
cations where hundreds of jobs/operations have to be determined in minutes, in
which low-level heuristic methods have been shown to yield high-quality practi-
cal solutions in much shorter development time than that of other approaches. It
is precisely in this context that hyperheuristic approaches have been proposed as
heuristics that operate at a higher level of abstraction than current metaheuristic
approaches [17]. A hyperheuristic is a high-level heuristic that adaptively chooses
between several low-level knowledge-poor heuristics so that while using only cheap,
easy-to-implement low-level heuristics, it may achieve to produce solution quality
approaching that of expensive knowledge-rich approaches (tabu search and genetic
algorithms), in a reasonable amount of CPU time. At each decision point the hy-
perheuristic must choose which low-level heuristic to apply, without recourse to any
domain knowledge. Such hyperheuristics have been successfully applied by Cowl-
ing et al. [17] to a real-world problem of personnel scheduling problem.

In this paper we present an efficient heuristic method to address a parallel ma-
chine production scheduling problem, with multiple product types, each with com-
plex precedence constraints, large number of jobs/production phases and non uni-
form processing times. It is worth mentioning that parallel machine scheduling with
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multiple product types and complex precedence constraints has not, to our know-
ledge, been addressed before. Our solution procedure is “intuitively intelligent” since
it examines the performance of several dispatching rule applications combined with
a diagram analysis methodology. In particular, the solution approach is divided into
two phases as follows:

a) Loading the required jobs and developing a sequence between them through the
application of heuristic nature dispatching rules, and

b) Timing the jobs in the machines by utilizing the Critical Path Method [18].

The usage of dispatching rules plays a two-fold role. Firstly, several different dis-
patching rules are used to allocate the jobs to machines and to create the sequence
with respect to the precedence constraints. Secondly, the initial scheduling is “im-
proved” by selecting the dispatching rule performed best in each case.

The proposed methodology, in contrary to classical metaheuristic, has the ad-
vantage of solving real-life production scheduling problems, with relatively large
number of jobs and machines, in adequately short computational time. Further-
more, low level heuristic search is a major component of several intelligent systems,
and central research subject of applied artificial intelligence. As the field of artificial
intelligence moves toward building complex intelligent systems to tackle real world
problems in various domains [19, 20, 21], the need of employing efficient and effective
heuristic algorithms becomes increasingly important.

The remainder of the paper is organized as follows: First we present a com-
prehensive description and formulation of the parallel machine scheduling problem
with complex precedence constraints, as applied to the production of several diffe-
rent types of products. Then, we describe the attributes and the mechanisms of the
proposed methodology. Subsequently, we provide a thorough analysis of the compu-
tational results obtained by applying our methodology on three different large-scale
problems. In particular, we seek to study the behavior of several dispatching rules
and uncover relevant properties of the scheduling problem considered. Finally, we
conclude the paper and offer pointers for future research.

2 PROBLEM DESCRIPTION AND FORMULATION

The parallel machine scheduling problem considered in this paper is based on the
deterministic model; that is, the execution time and the relationship between jobs
are known. The precedence relationship among the jobs is represented by an acyclic
directed graph, and job execution time can be nonuniform. We assume that the
parallel machine system is uniform and nonpreemptive; that is, the machines are
identical and complete the current job before executing a new one.

Using the three field notation of [13] this instance of production scheduling with
complex precedence constraints in parallel machines can be formulated as a de-
terministic Pm|prec|Cmax problem which in our case is stated as follows: Find
the scheduling operations of m identical parallel machines M = {1, 2, . . . , m} pro-



Production Scheduling with Complex Precedence Constraints in Parallel Machines 301

cessing K = {1, 2, . . . , k} types of products P = {P1, P2, . . . , PK}. In particular,
GK items of each product type is produced in ΦK phases with specific precedence
constraints, for each product type k produced, respectively. Thus, the total num-
ber of produced products pp is equal to the sum of products produced of each
type k, pp =

∑k
K=1GK . Similarly, the total number of jobs n to be scheduled

is equal to the sum of products, the number of phases ΦK times the number of
products GK , to be produced for each type k, n =

∑k
K=1(GKΦK). Each phase

of production is considered as a job denoted as Jg
φK, where g = 1, 2, . . . , GK,

φ = 1, 2, . . . ,ΦK, and K = 1, 2, . . . , k. Therefore, a set N of n independent
jobs N = {J1

11, J
1
21, . . . , J

1
Φ11

, J2
11, J

2
21, . . . , J

2
Φ11

, . . . , JG1

Φ11
, . . . , JG2

Φ22
, . . . , JGK

ΦKk} must be
scheduled on m identical parallel machines. Each job i ∈ N has m processing
times pij, where j ∈ M , a weight wi, a due date di and other problem dependent
parameters.

Generally, pij is a predefined characteristic of each job and represents the actual
processing time of job i if it is processed on machine j including setup time for
every job in each machine. In the case of identical machines, all machines have the
same speed and hence processing times of a job are identical on different machines,
i.e. pij ≡ pi. Moreover, all jobs are independent from the job sequence and the
machine to be processed, all jobs are available for processing at time zero (assuming
precedence feasibility) and no preemption is allowed during processing. The objec-
tive is to find a schedule, i.e. an allocation of each job to a time interval on one
machine, such that the completion time (makespan) is minimized (the makespan is
denoted by Cmax). Minimization of makespan is expected to maximize the total
throughput and to minimize machine’s idle times and the number of slack jobs.

As stated above, there exists a predetermined job ordering restriction that spe-
cifies, for each job i, a set of jobs that must be scheduled before or after job i.
To explicitly take into account the possible job ordering restriction we only need
to consider those schedules where the partial schedule on each machine is feasible.
Thus, the following sets, for i ∈ N and z ∈ M , are defined:

Az
j = {i ∈ N | i can succeed j in a feasible partial schedule on machine z}

Bz
j = {i ∈ N | i can precede j in a feasible partial schedule on machine z}.

The mathematical programming formulation of the Pm|prec|Cmax requires three
groups of 0-1 variables to model the sequence in which jobs are assigned to each
machine and are defined as follows:

xz
ij =











1 if job j is processed immediately after job i
in the sequence of jobs scheduled on machine z

0 otherwise
(1)

xz
0j =

{

1 if job j is processed first on machine z
0 otherwise

(2)
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xz
j,n+1 =

{

1 if job j is processed last on machine z
0 otherwise

(3)

Let Cj denote the completion time of job j in a schedule. Given the above-de-
fined variables the problem can be formulated as follows:

min
(

max
j∈N

Cj

)

(4)

Subject to
∑

z∈M

∑

i∈Bz
j
∪{0}

xz
ij = 1, ∀j ∈ N (5)

∑

j∈N

xz
0j ≤ 1, ∀z ∈ M (6)

∑

i∈Bz
j
∪{0}

xz
ij =

∑

i∈Az
j
∪{n+1}

xz
ji, ∀j ∈ N, ∀z ∈ M (7)

Cj =
∑

z∈M





pjzx
z
0j +

∑

i∈Bz
j

(Ci + pjz)x
z
ij





 , ∀j ∈ N (8)

xz
ij ∈ {0, 1}, ∀i, j ∈ N, z ∈ M . (9)

The objective function (4) seeks to minimize the makespan Cmax. Constraint (5)
ensures that each job is assigned to one and only one machine. Constraint (6)
ensures that each machine is utilized at most once. Constraint (7) guarantees that
the assignment of jobs to machines is well defined. Equality constraint (8) defines
completion timeCj. The last constraint (9) represents binary integrality requirement
of 0-1 variables. Constraints (7), (8) and (9) ensures that schedule on each machine is
feasible according to the explicitly defined precedence constraints. However, since all
machines are identical, we do not need to distinguish different machines, and hence
the formulation (4–9) can be simplified. Moreover, a problem without precedence
constraints, if we do not know any ordering pattern that an optimal schedule must
follow, thus any schedule is feasible and simply Az

j = Bz
j = N\{j} for all j and z.

The model of (4–9) is a typical binary program that mathematically depicts
the parallel machine production scheduling problem with precedence constraint. It
is a complex combinatorial optimization model that requires substantial effort for
determining approximate solutions even for medium size problems. Due to the com-
putational complexity problems, heuristic approaches are appropriate for obtaining
solutions of relatively good quality in reasonable computational times. In order
to evaluate the worst-case performance of an approximate algorithm, we recall the
definition of the relative performance of a heuristic h:

ρh = max
G

Ch
max(G)

Copt
max(G)

(10)

where Copt
max(G) denotes the optimal makespan of a feasible schedule of a graph G,

and Ch
max(G) themakespan obtained by the heuristic h [8]. These performance ratios
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are either constant or may depend on some instance input data like the number of
machines, tasks or precedence relation. However, optimal solutions can only be
achieved by implicit enumerations schemes and in many cases the optimal values
could not be computed in reasonable time unless P = NP . Sometimes the worst
case instances and values cannot be computed either. Therefore in order to do the
comparison, approximate values are used. For correctness, a lower bound of the
optimal value and an upper bound of the worst case value are computed in such
cases.

A very simple lower bound on the maximum completion time is the ideal machine
load H̄, which is given by the ratio of the total processing time and the number of
machines H̄ =

∑n
j=1 pj/m. Although this lower bound is not very tight, it can

be used to preliminary evaluate the performance of our heuristic through relative

performance ratio (10).

3 METHODOLOGY AND STRATEGY

The basic concept of the methodology developed is the combination of several
dispatching rules, proposed earlier in [13] along with the Critical Path Method
(CPM) [22], so that schedules are created with respect to the shortestmakespan Cmax

of the production plan. The CPM guarantees the revelation of the optimal schedule,
which coincides to the shortest feasible path. However this method presumes that
the jobs are already loaded on the machines and are following a specific sequence.
In addition, dispatching rules do not guarantee optimal schedules and cannot be
applied alone on precedence constraint problems. Allocating a job j with duration
time pj at the time point t = 0 before job i does not imply necessarily that it can
be connected at time point t = pj. Dispatching rules just allocate the jobs one after
another and thus they are not appropriate for precedence constraint problems.

Combining the CPM with dispatching rules for solving precedence constraint
problems has the advantage of utilizing effective features of each approach in a sin-
gle solution procedure. Moreover, the proposed solution procedure is “intuitively
intelligent” since it examines the performance of several dispatching rule applica-
tions combined with a diagram analysis methodology. In particular, the solution
approach is divided into two phases as follows:

Phase A: Loading the required jobs and developing a sequence between them
through the application of heuristic nature dispatching rules.

Phase B: Timing the jobs in the machines through the application of CPM.

The usage of dispatching rules plays a two-fold role. Firstly, several different dis-
patching rules are used to allocate the jobs to machines and to create the sequence
with respect to the precedence constraints. Secondly, the initial scheduling is “im-
proved” by selecting the dispatching rule performed best in each case. As shown
in the computational results section considering the same problem parameters and
precedence constraints diagram, the dispatching rules performance is independent
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of the number of jobs, which is actually the size of the problem. In other words, if
one apply the proposed solution procedure for restricted number of jobs and find the
best performing dispatching rule, then the solution procedure considering the same
precedence constraints guarantees to find high quality solutions for every problem of
the same class, regardless of the size of the problem itself. There are cases in which
this improvement can be equal to reduction of the makespan to less than the half of
the initialmakespan. However, along with the good performance, an other advantage
of the proposed solution procedure, is the small computational labor required.

4 SOLUTION PROCEDURE

Given the model formulation and the strategy discussed earlier, we proceed to the
development of a solution approach to tackle effectively and efficiently the produc-
tion scheduling problem with complex precedence constraints in identical parallel
machines environment. The proposed solution framework mainly consists of the
following five steps:

Step 1: Read the data and create the diagram of precedence constraints for each
product PK .

Step 2: Load the jobs to the m parallel machines and create a sequence of job
performances, with respect to precedence and other constraints. Note that this
step is based on the application of several dispatching rules that are related
either to the duration of jobs or to the precedence constraints. In particular,
the following dispatching rules are applied and evaluated:

SIRO (Service in Random Order), allocates the jobs on the machines in random
order.

LPT (Longest Processing Time first), gives priority to the job with the longest
processing time.

SPT (Shortest Processing Time first), gives priority to the job with the shortest
processing time.

CP (Critical Path), gives priority to the job with the highest level on the span
tree, which is equivalent to the job with the highest queue of jobs waiting
after it.

LNS (Largest Number of Successors), gives priority to the job with the greatest
number of successors in the span tree overhaul.

LNSNL (Largest Number of Successors in Next Level), gives the priority to
the greatest number of successors in the next level or equivalently to the
greatest number of immediate successors. This rule is also known as GNIS
or LNIS (greatest or largest number of immediate successors) [23].

A key feature of LNSNL rule is that seems to generate high quality solutions
for out-tree precedence constraint diagrams, compared to others. It differs from
the simple LNS because it does not examine all successors of every job, but only



Production Scheduling with Complex Precedence Constraints in Parallel Machines 305

for those jobs belonging to the next level. The LNS rule gives priority to the
job with the largest number of successors overhaul. However, the precedence
constraints do not leave many choices regarding the sequence to be followed and
in most cases the results do not differ from SIRO. On the contrary, LNSNL rule
allows more options, because it only examines jobs of the next level.

Step 3: Apply the Forward Pass Method (FPM) and calculate the early start ESi

and finish times EFi for all jobs i ∈ N and the total makespan Cmax. The
job precedence is appropriately formulated into a graph network where nodes
are represented by arcs and precedence constraints by direct links between arcs.
Lastly, task duration is assigned to each node. The FPM mainly consist of the
following steps:

• Iterate until all jobs i ∈ N are labelled.

• The starting activity/job, which is an activity with no predecessors, is de-
termined first.

• The early start time of the starting activity is set to zero.

• The arcs of the diagram, defining job precedence order, are followed forward
and early start time of job i is set equal to early finish time of job j, were
j is predecessor of job i (j → i).

• If job i has more than one predecessor then the early start time of next job
i is equal to the maximum early finish time of all predecessors.

ESi = maxj:j→i{EFj} = max{ESj + pj}
EFi = ESi + pi

(11)

Step 4: Apply the Backward Pass Method (BPM) to calculate the late start LSj ,
the finish time LFj and the total slack time TSj of all jobs j ∈ N . The BPM
mainly consists of the following steps:

• Iterate until all jobs j ∈ N are labelled.

• The finishing activity/job, which is an activity with no successors, is deter-
mined first.

• The latest finish time of finishing times is set to the earlier start time of the
project, i.e. the calculated total makespan Cmax. The opposite direction of
the arcs on the network diagram is followed and the late finish time of job j
is labelled equal to the late start of the next job k. Note that according to
the precedence constraints j is predecessor for job k, j → k.

• If j has more than one successors then the late finish time of previous job is
equal to the minimum late finish time of all successors late start time:

LFj = mink:j→k{LSk} = min{LFk − pk}
LSj = LFj − pj.

(12)
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Finally the total slack time TSj of a job j is calculated as

TSj = LSj − ESj = LFj − EFj. (13)

Step 5: Create the schedule diagram. Repeat steps 2 to 4 using a different dis-
patching rule.

Step 6: Compare the total makespan Cmax of each schedule, output the best sche-
dule and terminate.

It is important to note that the most determinant factor for efficient deployment
of the above solution procedure is the selection through the comparison among the
most appropriate dispatching rule based on the nature and the characteristics of
the network diagram of the problem considered. Although at step 6 the solution
procedure is terminated, one can apply the best performed dispatching rule alone
to a larger instance of the problem with the same characteristics and guarantee
simultaneously to find high quality solutions, without the need to compare the per-
formance of different dispatching rules. This is due to the fact that there is evident
correlation between the dispatching rule and the nature (chain, complex out-tree or
in-tree and so on) of the network diagrams. As proven in the subsequent section,
the performance of the dispatching rules is independent to the problem size.

5 APPLICATIONS AND COMPUTATIONAL RESULTS

The proposed solution methodology is applied to various problem applications,
which are instances of the above-described parallel machine production scheduling
problem with different complexities of the precedence constraints. In the subsections
below, the nature and the particular characteristics of each problem is presented
along with the computational results obtained. Moreover, for each individual prob-
lem scaling issues are examined. In particular, the solution procedure is applied
for different number of jobs n with the same precedence constraints and processing
times, by changing the number of products Gk to be produced of each product type.

5.1 Problem (1)

The first problem involves three product types (K = 3) P1, P2 and P3, in particu-
lar P1 and P3 of out-tree nature networks and P2 of chain shape network diagram, as
shown in Figure 1. Table 1 presents all related parameters of problem (1) and con-
tains the number of jobs/production phases ΦK , the precedence constraints between
jobs and the processing times pj for each job j of each product type K, respectively.
The number of available identical parallel machines m is set to 10 and the produc-
tion requirements for each product type K are G1 = 10, G2 = 20 and G3 = 15,
respectively. Therefore, the total number of products to be produced pp is equal to
∑

3
K=1GK = 45 products and the total number of jobs n to be scheduled is equal to

∑

3
K=1ΦKGK = 190 jobs.
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J1,1 J2,1

J3,1

J4,1

PP11

J1,2 J2,2 J3,2 PP22

J1,3

J2,3 J4,3

J3,3

J6,3

J5,3

PP33

Fig. 1. Problem (1): Network diagrams for each product PK

The schedules produced using the proposed solution procedure, given the data
of Table 1, are illustrated in Figure 2, in the form of Gantt charts. In particular,
Figures 2 a)–2 f) refer to the applications of SIRO, LPT, SPT, CP, LNS and LNSNL
dispatching rules, respectively. The horizontal axis represents time and the vertical
axis the machines m. Each bar shows the time schedule of each machine. Different

Product type/ Jobs Precedence Constraints Processing

Number of Phases Predecessors Precedence jobs Time

J1,1 – – 40
P1 J2,1 1 J1,1 35

Φ1=4 J3,1 1 J2,1 48

J4,1 1 J2,1 45

P2 J1,2 – – 45
Φ2=3 J2,2 1 J1,2 33

J3,2 1 J2,2 25

J1,3 – – 34
J2,3 1 J1,3 27

P3 J3,3 1 J1,3 52
Φ3=6 J4,3 1 J2,3 63

J5,3 1 J3,3 49

J6,3 1 J3,3 53

Table 1. Problem (1): Data and precedence constraints
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colors present processing of different jobs and white spaces between jobs processing
show the time slack of each machine schedule. Lastly, the latest idle time of all
machines denotes the totalmakespan Cheuristic

max of the schedule (vertical dashed lines).

(a) SIRO (CSIRO
max =1917) (b) LPT (CLPT

max =1432)

(c) SPT (CSPT
max =1676) (d) CP (CCP

max=1917)

(e) LNS (CLNS
max =1917) (f) LNSNL (CLNSNL

max =1306)

Fig. 2. Problem (1): Gantt charts of dispatching rules applications for the instance
G1 = 10, G2 = 20&G3 = 15

Obviously, the application of LNSNL dispatching rule (see Figure 2 f)) produced
the best schedule. The application of LNSNL minimized the total makespan Cmax,
the idle times of all machines and compressed all jobs to the left section of the time
axis. On the contrary, Figures 2 a), 2 d) and 2 e) show the profiles of the schedule
diagrams produced by applications of SIRO, CP and LNS dispatching rules along
with the respective total makespan Cheuristic

max . These rules appear to have the worst
performance, since idle times of all machines are very late (e.g. see the distances
between the jobs executions on the charts) and overall quality of the schedules
produced is very poor. On the other hand, Figure 2 b) shows that the application
of the LPT rule significantly improves the quality of the resulted schedule, contrary
to SIRO, CP and LNS dispatching rules.
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Lastly, Figure 2 c) presents the schedule diagram and the total makespan pro-
duced by SPT, which seems slightly bigger than that of LPT rule. Recall that SPT,
contrary to the Longest Processing Time first rule, considers the job with Shortest
Processing Time first. It is worth mentioning that solutions generated from LNS
have the same quality (i.e. schedule diagram and total makespan) with those pro-
duced by SIRO and CP rules. Note that this is one of the worst case performance
of LNS and CP [24, 25] since CP and other precedence related dispatching rules
have generated the best schedules on well-known problems, such as Pm|pj = 1;
in− tree|Cmax and Pm|pj = 1; out− tree|Cmax [13].

Number of G1 = 2 G1 = 5 G1 = 10 G1 = 15 G1 = 10 G1 = 20
products produced GK G2 = 2 G2 = 8 G2 = 10 G2 = 5 G2 = 20 G2 = 40

for each type K G3 = 2 G3 = 7 G3 = 10 G3 = 10 G3 = 15 G3 = 30

Total Number of Jobs n = 26 n = 86 n = 130 n = 135 n = 190 n = 360

Dispatching Rule Makespan (Cheuristic
max in time units)

SIRO 334 880 1 408 1 390 1 917 4 100
LPT 312 654 1 000 1 046 1 432 2 738
SPT 329 793 1 039 1 077 1 676 3 481
CP 334 880 1 408 1 390 1 917 4 100
LNS 334 880 1 408 1 390 1 917 4 100

LNSNL 270 586 899 914 1 306 2 552

Ideal machine load (H̄) 109.8 361 549 581.5 791 1 582

CPU time (sec) 0.3 ≈ 1.5 ≈ 3 ≈ 3 ≈ 6 ≈ 21

Dispatching Rule Relative Performance (Cheuristic
max /CH̄

max)

SIRO 3.04 2.44 2.56 2.39 2.42 2.59
LPT 2.84 1.81 1.82 1.80 1.81 1.73
SPT 3.00 2.20 1.89 1.85 2.12 2.20
CP 3.04 2.44 2.56 2.39 2.42 2.59
LNS 3.04 2.44 2.56 2.39 2.42 2.59

LNSNL 2.46 1.62 1.64 1.57 1.65 1.61

Table 2. Problem (1): Results and performance of dispatching rules for various total num-
ber of jobs n and constant m = 10

Table 2 summarizes on the fifth column the results (total makespan Cheuristic
max

in unit times) obtained by application of the proposed solution procedure to the
given production requirements. However, in order to examine scaling issues, the
proposed solution procedure is applied to several instances with the same precedence
constraints and processing times (as those shown in Table 1), although for different
number of jobs n, by changing the number of products GK required for production
from each product type K. Evidently, using the same problem parameters set and
precedence constraints diagrams, the dispatching rules performance is independent
to the total number of jobs n, which is actually the size of the problem.

Therefore, one can apply the proposed solution procedure to an instance with
restricted total number of jobs n in order to determine quickly the best performing
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dispatching rule, and later on apply solely the best performing rule along with the
proposed solution procedure to a larger instance. Due to the fact that when con-
sidering the same precedence constraints and processing times, the best performing
dispatching rule is expected to provide high quality solutions, regardless of the size
of the problem itself.

Furthermore, Table 2 contains the relative performance of each dispatching rule
using equation (10) and as lower bound the ideal machine load H̄. It is worth
mentioning that as the total number of jobs n increases, the difference between the
best schedule and worst performing dispatching rules is higher. On the contrary, the
relative performance of the best performing dispatching rule seems to be constant
as the size of the problem increases.

5.2 Problem (2)

The second problem involves two product types (K = 2) P1 and P2, both of out-tree
nature network diagrams, as shown in Figure 3. Although products P1 and P3 of
problem (1) assumed also out-tree nature network diagrams, those of the second
problem are more complex. Table 3 demonstrates all related parameters of prob-
lem (2), including the number of jobs/production phases ΦK , the precedence con-
straints among jobs and processing time pj for each job j of both product types.
The number of items to be produced from each product type K are G1 = 10 and
G2 = 15 and the number of available identical parallel machines m is 10. Thus,
the total production requirements pp is 25 and the total number of jobs n to be
scheduled is 245.

J1,1 J4,1

J5,1 J10,1

J11,1J6,1

J9,1

PP11

PP22

J3,1

J2,1

J7,1

J8,1

J3,2

J4,2

J7,2

J9,2

J5,2

J2,2

J1,2

J6,2 J8,2

Fig. 3. Problem (2): Network diagrams for each product PK
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Product type/ Jobs Precedence Constraints Processing
Number of Phases Predecessors Precedence jobs Time

J1,1 – – 27

J2,1 1 J1,1 35
J3,1 1 J1,1 32
J4,1 2 J2,1 & J3,1 25

P1 J5,1 1 J2,1 37
Φ1=11 J6,1 2 J4,1 & J5,1 23

J7,1 1 J3,1 34
J8,1 1 J7,1 25
J9,1 1 J7,1 27
J10,1 1 J5,1 38
J11,1 4 J6,1, J8,1, J9,1 & J10,1 32

J1,2 – – 35
J2,2 – – 20
J3,2 2 J1,2 & J2,2 22

P2 J4,2 1 J3,2 30
Φ2=9 J5,2 1 J3,2 25

J6,2 1 J3,2 27
J7,2 2 J4,2 & J5,2 30
J8,2 1 J6,2 25
J9,2 2 J7,2 & J8,2 32

Table 3. Problem (2): Data and precedence constraints

The schedules produced using the proposed solution procedure given the above
production requirements are illustrated in the form of Gantt charts, as shown in
Figure 4. In particular, Figures 4 a) and 4 b) demonstrate the schedules produced
by applications of LPT and SPT dispatching rules, respectively. Contrary to Prob-
lem (1), SPT produces a slightly improved schedule compared to LPT dispatching
rule in terms of total makespan. Moreover, Figure 4 c) shows the Gantt chart sched-
ule produced by applications of CP, LNS and SIRO dispatching rules. Clearly, the
schedule produced is insufficient in terms of quality since the idle time of machines
is high due to the large spaces (time slack) occurred between job’s execution. Lastly,
Figure 4 d) demonstrates the schedule produced by application of LNSNL dispatch-
ing rule. Obviously, LNSNL is again the best performing dispatching rule. The
application of LNSNL minimized the total makespan Cmax, the idle times of all
machines and compressed all jobs to the left section of the time axis.

Table 4 summarizes on the fourth column the results (total makespan Cheuristic
max

in unit times) obtained by the proposed solution procedure for the instance G1 = 10,
G2 = 15 and m = 10. Similarly, scaling issues are examined. The rest of columns
contain detailed results for each dispatching rule, for several instances (different total
number of jobs n and number of products produced pp from each product type K).
It is clear that the performance of dispatching rules is independent to the size of the
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(a) LPT (CLPT
max =1558) (b) SPT (CSPT

max =1448)

(c) CP, LNS&SIRO (CCP,LNS,SIRO
max =

1 853)
(d) LNSNL (CLNSNL

max = 1 352)

Fig. 4. Problem (2): Gantt charts of dispatching rules applications for the instance G1 =
10&G2 = 15

Number of G1 = 2 G1 = 5 G1 = 10 G1 = 10 G1 = 20
products produced GK G2 = 2 G2 = 5 G2 = 10 G2 = 15 G2 = 30

Total Number of Jobs n = 40 n = 100 n = 200 n = 245 n = 490

Dispatching Rule Makespan (Cmax in time units)

SIRO 390 862 1 541 1 853 3 611
LPT 306 707 1 249 1 558 2 935
SPT 307 623 1 198 1 448 2 885
CP 390 862 1 541 1 853 3 611
LNS 390 862 1 541 1 853 3 611

LNSNL 263 607 1 078 1 352 2 653

Ideal machine load (H̄) 116.2 290.5 581 704 1 408

CPU time (sec) ≈ 0.5 ≈ 2 ≈ 7 ≈ 10 ≈ 37

Dispatching Rule Relative Performance (Cheuristic
max /CH̄

max)

SIRO 3.36 2.97 2.65 2.63 2.56
LPT 2.63 2.43 2.15 2.21 2.08
SPT 2.64 2.14 2.06 2.06 2.05
CP 3.36 2.97 2.65 2.63 2.56
LNS 3.36 2.97 2.65 2.63 2.56

LNSNL 2.26 2.09 1.86 1.92 1.88

Table 4. Problem (2): Results and performance of dispatching rules for various total num-

ber of jobs n and constant m = 10
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problem (total number of jobs n). Moreover, the performance of dispatching rules
in both problems examined so far, regardless the different degree of complexity, is
almost constant. The best schedule corresponds to the LNSNL rule, while SIRO,
CP and LNS dispatching rules perform worst producing schedules with the largest
total makespan.

As already mentioned, problems (1) and (2) differ only in the degree of com-
plexity of their precedence constraints network diagrams. However, both belong to
the same class of problems with out-tree precedence network diagram constraints.
Therefore, the precedence related dispatching rules are expected to generate the best
schedules. On the contrary, as will be discussed later, applying rules related to the
precedence constraints is meaningless for chain network diagrams.

5.3 Problem (3)

So far our solution procedure has been applied only on simple and complex out-tree
precedence constraints network diagrams. However, apart from scaling issues, there
is a need to examine the differences between other classes of network diagrams.
Therefore, we assume that the third problem’s network diagrams of products are
simple chains. In particular, two product types (K = 2) (P1 and P2) of chain nature
network diagrams are involved as those shown in Figure 5. Table 5 contains all
related data and parameters concerning problem (3). The production requirements
are initially set to G1=15 and G2 = 12. The number of the available identical
machines m is 10; therefore, the total number of products to be produced is pp = 27
and the total number of jobs to be scheduled is n = 201.

J1,1 J4,1 J7,1J6,1J5,1

PP11

PP22

J2,1 J3,1

J1,2

J4,2

J7,2

J6,2

J5,2J2,2 J3,2 J8,2

Fig. 5. Problem (3) network diagrams for each product PK

The results obtained for each dispatching rule application given the above pro-
duction requirements are illustrated in the form of Gantt charts, as shown in Fi-
gure 6. Figure 6 b) presents the schedules generated from SIRO, LNS and CP
dispatching rules. Still the schedule produced from the random order of jobs con-
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Product type/ Jobs Precedence Constraints Processing
Number of Phases Predecessors Precedence jobs Time

J1,1 – – 23

J2,1 1 J1,1 16
J3,1 1 J2,1 12

P1 J4,1 1 J3,1 25
Φ1=7 J5,1 1 J4,1 32

J6,1 1 J5,1 12
J7,1 1 J6,1 32

J1,2 – – 25
J2,2 – J1,2 32
J3,2 1 J2,2 20

P2 J4,2 1 J2,2 19
Φ2=8 J5,2 1 J3,2 17

J6,2 1 J5,2 21
J7,2 1 J5,2 13
J8,2 1 J7,2 23

Table 5. Problem (3) data and precedence constraints

cedes to be the worst one. Furthermore, Figures 6 a) and 6 c) illustrate the schedules
produced from SPT and LNSNL dispatching rules, respectively. Contrary to prob-
lems (1) and (2), LNSNL rule does not lead to the best schedule when applied to
problem (3). On the other hand, LPT dispatching rule produced the best schedule
(see Figure 6 d)). Moreover, the totalmakespan Cmax produced from LPT is reduced
to less than the half, compared to other dispatching rules schedules, such as that of
SIRO, LNS and CP.

Therefore, as expected, the performance of dispatching rules is sensitive to the
precedence constraints network diagrams. The rules performed well on complicated
out-tree network diagrams, it is not necessary to have the same performance for
chain network diagrams. In addition to the problems examined previously, the per-
formance of dispatching rules remains the same for various total number of jobs n
and production requirements Gk (see Table 6). Furthermore, the relative perfor-

mance of each dispatching rule except very small instances is almost constant. This
leads to the conclusion that the performance of dispatching rules, and therefore the
proposed solution procedure, is independent of problem size. It is worth mentioning
that execution times shown in Tables 2, 4 and 6 were obtained when all dispatching
rules are being applied sequentially. Therefore, execution time is expected to be
significantly reduced, if the best performing rule is applied solely.

6 CONCLUSIONS

In this paper we presented a procedure for solving an NP-hard real-life production
scheduling problem with complex precedence constraints in an identical parallel ma-
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(a) SPT (CSPT
max =1111) (b) SIRO, CP&LNS (CSIRO,CP,LNS

max =1659)

(c) LNSNL (CLNSNL
max =1411) (d) LPT (CLPT

max =768)

Fig. 6. Problem (3): Gantt charts of dispatching rules applications for the instance G1 =
15&G2 = 12

Number of G1 = 5 G1 = 15 G1 = 30 G1 = 50
Products produced GK G2 = 5 G2 = 12 G2 = 24 G2 = 50

Total Number of Jobs n = 75 n = 201 n = 402 n = 750

Dispatching Rule Makespan (Cmax in time units)

SIRO 667 1 659 3 234 5 821

LPT 318 768 1 487 2 746
SPT 447 1 111 2 204 4 194
CP 667 1 659 3 234 5 821
LNS 667 1 659 3 234 5 821

LNSNL 510 1 411 2 522 4 048

Ideal machine load (H̄) 161 432 864 1 610

CPU time (sec) ≈ 1.3 ≈ 8 ≈ 35.7 ≈ 120.7

Dispatching Rule Relative Performance (Cheuristic
max /CH̄

max)

SIRO 4.14 3.84 3.74 3.62
LPT 1.98 1.78 1.72 1.71
SPT 2.78 2.57 2.55 2.60

CP 4.14 3.84 3.74 3.62
LNS 4.14 3.84 3.74 3.62

LNSNL 3.17 3.27 2.92 2.51

Table 6. Problem (3): Results and performance of dispatching rules for various total num-
ber of jobs n and constant m = 10
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chines environment, in adequately short computational time. The basic concept of
our solution procedure is based on comparison of the performance of several dis-
patching rules, combined with the Critical Path Method. As discussed earlier, this
solution approach can solve problems consisting of simple chains as well as complex
in-trees and out-trees precedence constraint diagrams. The results presented indi-
cated that the performance of the solution procedure is very efficient in terms of
computational effort and, most importantly, independent of the size of the problem
(products and jobs) and the complexity of the precedence constraints.

Furthermore, our results provided valuable information regarding the perfor-
mance of several dispatching rules on different precedence networks. In particular,
for complex precedence constraints problems, precedence related dispatching rules,
such as the LNSNL, generated the best schedules, while for chain precedence net-
works processing time related rules seem to work better. In fact, there were cases
where the makespan was reduced to more than the half when different rules were
applied. It is quite satisfactory in all cases studied in this paper that the computa-
tional time required varied from less than a second to only a few seconds, depending
on the problem size and precedence constraints, even for up to 360 jobs. This fact is
a prerequisite for deployment of production scheduling solutions methods in actual
industrial environments, where users require fast solutions, to be able to adjust pro-
duction plans and schedules, if necessary. The real world is dynamic, thus effective
and efficient decision support tools are needed to help practitioners run their daily
operations in the best possible manner.
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