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Abstract. This article introduces a genetic algorithm based system intended for
automated generating of a realistic rhythmic (drum set) accompaniment. Present
systems do not insist on the natural music criteria and realistic (human-like) result.
They generate a rhythmic accompaniment regardless to the other instruments used.

The fitness operators are mostly based on manual evaluation by user. The system
described in this paper uses automatic fitness evaluator and prefers some of the
natural music criteria. Accompaniment is generated with regard to a harmonic-

accompaniment instrument (HAI).
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1 INTRODUCTION

Modern artificial intelligence techniques are (among other things) used in many
human domains like aesthetics and art. There are some AI-based systems for ge-
nerating of visual art (e.g. AARON) or music (GenJam, CONGA). The genetic
algorithm (GA) based artificial music systems are mostly applied to generate a har-
monic accompaniment. These systems “hear” the melody and they should produce
an “interesting” and criteria satisfying harmony. However, this task is quite far
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from the generating of rhythms, because theory of music harmony is more subtle,
so that there can be found enough explicit rules for this task. In the case of musical
rhythm, there is a fundamental rule – the so called “skeleton of rhythm” – charac-
teristic rhythm figure. This concept will be the starting point for our investigations.
Every concrete accompaniment (of some rhythm) contains characteristic rhythmic
figure and its adaptations or extensions. However, we can’t explicitly describe these
adaptations (extensions) by explicit and sufficiently distinct rules. In a musical
reality, the form and the realisation of rhythmic accompaniment was much more
influenced by “usage” (evolution of musical styles, instrumentation tradition) than
some distinct or explicit rules. We assume that other than rule-based approach is
more appropriate to apply to generating a rhythmic accompaniment.

1.1 Genetic Algorithms and Rhythm

What relation is there between search algorithms and a rhythm composition? We
can imagine the music composition process as a search problem. The search space
contains all possible compositions (all combinations) and a componist (player) is
a “searcher” who composes – searches the searching space for a composition which
satisfies his/her criteria (idea, feeling, intention). It can be said that talented and
musically more erudite composer has a “higher chance” (probability) to achieve
better composition than a musically less erudite composer using the same search
effort.

1.2 Genetic Algorithm as a Model of Rhythm Creativity

The composer takes an advantages of his/her invention – the ability to produce an
original idea, and creativity – the ability to transform, adapt and apply various
knowledge, ideas and thoughts. There is no distinct proof that we can effectively
simulate a human-like musical invention, but we are able to “reprint” the result
of a human invention into the machine. It can be done for instance by using the
population of GA. Note that machine is able to learn a musical knowledge as well
as people do. Crossover and mutation serves here for the transformation and adap-
tation of musical inventions (elements of population) – GA could be understood as
a model for (artificial) rhythm creativity.

1.3 Previous Work on GAs and Rhythms

The first known system which outlined the usage of GA for the generating of rhythms
was the Damon Horowitz’s system [5] which worked with a randomly generated ini-
tial population of 10 chromosomes. The result of GA was a chromosome – rhythmic
phrase – one beat long rhythm pattern, which represents (only) one percussion
instrument so that the resultant pattern is not polyphonic. Both crossover and
mutation operators worked randomly without any musical knowledge. The fitness
operator is based on manual evaluation by the user.
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Second interesting approach can be found in [10] where the system called CON-
GA is described. CONGA produces a rhythmic phrase from 4 to 16 beats long. The
population is constructed using two-dimensional chromosomes. Columns determine
the volume (strictly speaking the velocity) of a drum instrument, and lines deter-
mine an individual drum instruments staff. The initial population contains sample
rhythmic phrases which are one beat or half-beat long. The GONGA’s fitness opera-
tor is based on manual evaluation by the user and it is extended with a three-layer
neural network which learns responses from the user and works as an evaluation
assistant.

Both described systems generate rhythmic phrases as stand-alone boxes (re-
gardless to the other instruments). The GeneticDrummer system described here
generates a matching rhythmic accompaniment (optionally with a break) to an ar-
bitrarily long harmonic accompaniment (like bass or rhythm piano) phrase. For
instrumentation a conventional drum set is used, composed of snare drum, bass
drum, four toms, hi-hat, two crash cymbals, splash and ride cymbal. The generating
of the accompaniment is based (by design) on local restriction – GA can “hear”
only current beat of the harmonic accompaniment to the rhythm phrase which is
generated. However, there is a global (indirect) relation ensured by the harmonic
accompaniment phrase itself.

2 DESIGN OF THE GENETIC ALGORITHM

Now we will describe the design of the used GA. It partially stems out from the well
known basic genetic algorithm called Simple Genetic Algorithm (SGA). The main
differences and innovations can be found in the construction of the population and
in the design of the fitness and mutation operators.

2.1 Population

The population carries a musical knowledge about the concrete rhythm. The ele-
ments of the population (the so-called multichromosomes, which are described be-
low) are rhythmic figures (grooves) – concrete examples of concrete rhythm. In
other words, we can imagine the population as a set of drum practice phrases that
the player is able to play, so that learning of GeneticDrummer (genetic algorithm)
is similar to the human drummer. We can “teach” GeneticDrummer by “rewrit-
ing” practices from the drum playing schoolbooks into the population. The rhythm
figures are always one beat long.

The population of GA reflects the human player’s musical knowledge (the cha-
racteristic grooves). The used GA contains two types of population – the accompani-
ment (groove) population for generating an accompaniment and the break population
for generating rhythm breaks (usually between grooves) or solos. The initial popula-
tions should be musically consistent and should represent right grooves and breaks.
The populations can hold arbitrary even number of multichromosomes. The popu-
lation construction is defined by the following rules:
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1. A basic item is the rhythm element

2. Rhythm elements construct chromosomes

3. Chromosomes construct multichromosomes

4. Population is a set of a multichromosomes.

2.1.1 Rhythm Elements

The basic musical symbol is generally a note1. We assume that note is not op-
timal as basic element for realistic, flexible and natural representation of rhythm
instrumentation. Natural drum playing utilises (naturally except single stroke) the
so called multiple drum strokes (see Figure 1), when a player is able to produce
a couple of notes by playing one stroke only. We use these single or multiple strokes
as the basic elements and we call them the rhythm elements.

A similar approach to our rhythm elements can be found in the common drum
notation – the multiple strokes are written as one note with a special symbol. The
usage of the rhythm elements instead of notes allows for more expressive result –
an element can be simply replaced by another element (for instance using a mutation
operator). The rhythm elements are more handy and useful for the representation of
natural drum playing nuances (multiple strokes) than single notes. The composition
of multiple strokes using single notes (by some rules for example) without musical
flaws would be disproportionately difficult.

The rhythm elements are individually coded for each instrument (drum) to al-
low to represent the natural technical possibilities and the specific features of each
represented drum (or cymbal) in a drum set. For instance: we can play a drumhead
stroke or a side-stick stroke on snare drum but only a drumhead stroke on bass
drum; or we can stroke hi-hat opened, closed or foot splashed, but not the other
drums or cymbals.

2.1.2 Chromosome

Every chromosome represents one instrument (one staff-line on the staff). The
length of the chromosome and the specified chromosome resolution determines the
metre. Every chromosome element (gene) represents a note (stroke) or a rest with
the duration corresponding to the given resolution (for example: for sixteenth-note
resolution one gene (element) represents one sixteenth note). Interpretation of the
genes is described in the so-called implementation tables, see Tables 2–4 for the
example of the implementation tables for the bass drum, the snare drum and the hi-
hat, respectively (implementation tables for other drums and cymbals are not given
here due to lack of space). The first digit of the value from the implementation
table determines the stroke type and the second digit determines the stroke velocity.
The special code 00 means a current-resolution-long rest and the special definition
(empty) means empty chromosome (the chromosome composed of the rests).

1 It is also the basic element for the both above-mentioned systems.
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Note symbol Meaning Element name

single stroke

double stroke

triple stroke

flam

drag

ruff

Table 1. Rhythm elements

Playing technique p mp mf f ff fff

Single stroke 11 12 13 14 15 16

Table 2. Implementation table – bass drum

2.1.3 Multichromosome

Multichromosome is a list composed of the chromosomes. The structure is as follows:

((chromosome representing splash cymbal)

(chromosome representing crash cymbal 2)

(chromosome representing crash cymbal 1)

(chromosome representing ride cymbal)

Playing technique p mp mf f ff fff

single stroke 11 12 13 14 15 16

double stroke 21 22 23 24 25 26

triple stroke 31 32 33 34 35 36

flam 41 42 43 44 45 46

drag 51 52 53 54 55 56

ruff 61 62 63 64 65 66

side-stick 71 72 73 74 75 76

Table 3. Implementation table – snare drum



326 M. Dostál

Playing technique p mp mf f ff fff

hi-hat closed, single stroke 11 12 13 14 15 16

hi-hat closed, double stroke 21 22 23 24 25 26

hi-hat closed, triple stroke 31 32 33 34 35 36

hi-hat closed, flam 41 42 43 44 45 46

hi-hat closed, drag 51 52 53 54 55 56

hi-hat closed, ruff 61 62 63 64 65 66

hi-hat open, single stroke 71 72 73 74 75 76

hi-hat foot 81 82 83 84 85 86

Table 4. Implementation table – hi-hat

(chromosome representing hi-hat)

(chromosome representing snare drum)

(chromosome representing bass drum)

(chromosome representing small tom-tom)

(chromosome representing medium tom-tom)

(chromosome representing large tom-tom)

(chromosome representing floor-tom))

Example of a multichromosome and the corresponding notation is shown in Figure 1:

((empty)

(empty)

(empty)

(empty)

’(14 00 14 00 14 00 14 00 44 00 74 00 24 00 15 00)

’(00 00 00 00 14 00 00 00 00 00 00 00 14 00 00 00)

’(14 00 00 00 00 00 14 00 14 00 00 00 00 00 00 00)

(empty)

(empty)

(empty)

(empty))

HH 

SD 

BD 

Fig. 1. Example of notation
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2.2 Selection Operator

Selection of the multichromosomes is based on a random selection of the parental
multichromosomes. All multichromosomes have the same selection probability.

There are two different selection strategies:

Arbitrary selection – pairs of multichromosomes are selected randomly, the se-
lected multichromosomes are not deleted from the list of selected multichromo-
somes, so that one multichromosome can be selected more than once.

Strict selection – every selected multichromosome is deleted from the selection
list; thus, every multichromosome will be selected exactly once.

2.3 Crossover Operator

The multichromosomes are crossed at one randomly selected position (every chro-
mosome in the multichromosome at the same position). The crossover operator
produces a pair of new multichromosomes (offsprings) in the same way as SGA do.

2.4 Mutation Operator

The mutation operator is composed of several functions called mutation operators.
The mutation operators are applied to the chromosomes. They serve as an efficient
way to fetch more indeterminism to the GA and to adapt multichromosomes to
acquire higher fitness. The mutation operators are defined generally and they can
be applied to arbitrary chromosomes. The configuration of the mutation operators
is stored in the structure called mutation script. Every instance of the mutation
operator has assigned a weight of the operator. The weight of the operator is
defined stochastically using a random “lot” from interval < 0, 1 >, which determines
the probability that the operator will be applied on the current rhythm element
(for example: 1 means absolute certainty, 0.5 means 50% probability, 0 means no
possibility).

2.4.1 Accentuate Operator

It imitates velocity accents (rhythm phrasing) of the accompaniment harmonic in-
strument (HAI). It is useful for the generating of breaks, solos or bass drum patterns.

Scheme:

DO for all chromosomes of a multichromosome:

DO for all elements of a chromosome:

IF current element is in the rhythm consonance with HAI AND

the volume intensity of the current element is less than 4 AND

a lot is positive THEN

add 2 to the volume intensity of the rhythm element.
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2.4.2 Syncopize Operator

It imitates a simple syncopation effect2. Syncopation is useful in music genres like
jazz or latino. For adequate results, it is recommended to set the operator weight
to a relatively small value.

Scheme:

DO for all chromosomes of a multichromosome:

DO for all elements of a chromosome:

IF the current element stands on strong beat AND

a lot is positive THEN

locate syncopable positions for the current element

AND randomly select a syncopable position

IF volume intensity > 1 THEN

decrement volume of the rhythm element

DO syncopation (move element to the selected position)

2.4.3 Rhythm-Element-Change Operator

It changes the type of the rhythm element (stroke type).

Scheme:

DO for all chromosomes of a multichromosome:

DO for all elements of a chromosome:

IF a lot is positive THEN

randomly change the type of element AND

the volume intensity (velocity) of element left unchanged

2.4.4 Bass-Teamwork Operator

This operator ensures (adapts) rhythm consonance between a chromosome (drum)
and HAI. It is especially used to generate drum breaks or bass drum patterns rhyth-
mically consonant to HAI. Because the bass drum usually does not play3 on the
strong beats, this operator skips rhythm elements standing on the strong beats.

Scheme:

DO for all chromosomes of a multichromosome:

DO for all elements of a chromosome:

2 File with population definition contains a list of the strong beats in population’s
rhythm which is a necessary parameter for this operator.

3 An instance of exception from this assertion may be some double bass drum patterns
in rock music, where the bass drum may be played on the strong beats as well. In such
cases it is recommended to set the weight of the operator to a negligible number.
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IF there is on the current position in chromosome any rhythm

element, but no HAI note THEN

delete current rhythm element (replace it with code 00)

IF the current rhythm element stands on the strong beat

in the current measure THEN delete it

IF there is a note on the current position of HAI,

but no rhythm element THEN

place at the current position rhythm element 14

Mutation script example:

’(list

(list ’notes-bass ’mutation-bass-teamwork 0.12 music)

(list ’notes-snare ’mutation-syncopize 0.102 music)

(list ’notes-snare ’mutation-rhythm-element-change 0.029)))

2.5 Fitness Operator

The fitness operator is based on a similar idea as the mutation operator. There
are several fitness operator functions (fitness operators) which can be applied on
arbitrary chromosome(s) in a multichromosome. Fitness operators evaluate quan-
titative parameters of generated rhythmic accompaniment. Qualitative parameters
(like drive, or tastiness) can be objectively evaluated by a human only, but the de-
sign of evaluation of the quantitative parameters by the fitness operators establishes
a fine assumption of meeting the quality criteria.

The global fitness setup is saved in the so-called fitness script. Some of the fitness
operators use HAI for the evaluation and the others use user defined criteria – the
user can specify the so-called ideal effect. The main objective of ideal effect is to
formulate quantitative characteristics of the result desired by the user. Ideal effect is
a number from interval < 0, 1 >, which describes the operator result desired by the
user. 0 means minimum result and 1 maximum result. For instance: ideal effect set
to 1 on Rhythm-quantity operator means that the best chromosome (with highest
fitness) will be considered a chromosome with all positions set to a non-zero rhythm
element. The resultant value is normalized by formula (1), so that normalized value
is from interval < 0, 1 >.

qo = 1−

∣

∣

∣

∣

∣

iu −
f

fmax

∣

∣

∣

∣

∣

(1)

qo =
f

fmax

(2)

where: f – acquired fitness value, fmax – maximum achievable fitness value, iu – ideal
effect.
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2.5.1 Rhythm-Conformity Operator

This operator evaluates rhythm consonance between an HAI and a chromosome.
The rhythm consonance characterises a situation when both current HAI note and
the chromosome element stand on the current position. The value is normalized
by formula (2), so that this operator returns the relation between acquired and
achievable rhythm consonance.

2.5.2 Rhythm-Unconformity Operator

This operator evaluates rhythm dissonance between an HAI and a chromosome.
The rhythm dissonance characterises a situation when the HAI note stands on the
current position but the rhythm element does not. The value is normalised by
formula (2), so that this operator returns relation between acquired and achievable
rhythm dissonance.

2.5.3 Dynamic-Conformity Operator

This operator evaluates the relation of velocity intensity between an HAI and a chro-
mosome. Every element of the chromosome is evaluated according to formula (3),
where cl describes a chromosome length (normalisation parameter), Ndhn is a set of
an HAI notes, ei is the ith rhythm element, and dhni is a ith HAI note.

dc =
1

cl

∑

i∈Ndhn

(1−
|ei − dhni|

dhni

) (3)

2.5.4 Instrument-Quantity Operator

This operator evaluates a weighted count of rhythm elements in a chromosome.
The weights of rhythm elements are specified in Table 5. The resultant value is
normalised by formula (1).

Element type Value

single stroke 1.1

double stroke 1.2

triple stroke 1.3

flam 1.2

drag 1.3

ruff 1.4

Table 5. Weights of the rhythm elements
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2.5.5 Instrument-Quantity-on-Strong-Beats Operator

This operator is similar to the Instrument-quantity operator except that it evaluates
only quantity on the strong beats of a multichromosome. The resultant value is
normalised by formula (1).

Fitness operator parameters are specified in the fitness script: weight – arbitrary
whole number (suggested range is < −100, 100 >) and a chromosome (instrument)
on the operator to be applied, and (if supported by he operator) the ideal effect.
An example of the fitness script can be seen on page 333. Note the ideal effect
specified (the rightmost value in a given row) on instrument-quantity operator in
this example. The following formula (4) computes total fitness value.

fitness =
n
∑

k=1

wkfk (4)

where: wk specifies operator weight and fk fitness of the kth fitness operator. If the
resultant fitness is less than 1, then it is set to be 1 (resultant fitness should not be
zero or negative).

2.6 Reproduction Operator

Reproduction of multichromosomes is done by the well known weighted roulette-
wheel operation. Each multichromosome belongs to the part of the roulette so that
a multichromosome with higher fitness has higher probability to be reproduced into
the new generation.

2.7 Final Selection

After GA passes the given count of generations then the best multichromosome is
returned from the current population as the result.

3 FUNCTIONAL SCHEME OF GA

Functional scheme of the described system will be described in the following parts:

1. scheme for generating accompaniment of the current measure (beat)

2. scheme for generating whole accompaniment phrase.

3.1 Generating the Current Beat

One run of GA produces the matching drum set accompaniment (optionally ended
by break) to the current (one) beat of HAI.
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Scheme:

1. evaluate initial population

2. reproduce initial population

3. make selection

4. make crossover

5. mutate new population (population of offsprings)

6. evaluate new population

7. reproduce new population

8. if the algorithm passes given count of generations, then go to step 9, else generate
next generation: repeat from step 1

9. select final multichromosome (winner) – produced accompaniment

3.2 Generating the Whole Phrase

1. read HAI phrase from the MIDI file

2. read fitness script for groove and break population

3. read mutation script for groove and break population

4. set current beat

5. load population for a groove

6. generate current beat (see the scheme below)

7. add generated beat to the other generated beats

8. while generating of the accompaniment not completed, then repeat from step 4

9. if the system is set to generate break then continue, else go to the end

10. set current beat to the last beat

11. load population for a break

12. read fitness script

13. read mutation script

14. generate a beat

15. according to the user preferences append the result to the correct position.

4 SIMULATING THE PSYCHOMOTORIC PERFORMANCE

IMPERFECTION OF A HUMAN PLAYER

It is well known that a human player does not play with absolute accuracy. These
imperfections are not perceived as a mistake, rather as a fine drive of human player
instrumentation. We involved this into the system by implementating of the so called
Humanizer module which adds imperfections to generated rhythmic accompaniment
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(the time-shifting and velocity-shifitng of rhythm elements). Time-shifiting is imple-
mented as a random untuning of the time position of notes. Maximal time untuning
is determined by time-shift parameter (up to ± 1

32
note). Velocity-sfihting untunes

the velocity (volume) of notes. Maximal velocity untuning is determined by velocity-
shift parameter (up to ±25%). The sliders for customizing the Humanizer can be
seen on the screenshot of user interface in Figure 2.

5 IMPLEMENTATION AND USAGE OF THE DESCRIBED SYSTEM

The described system (we call it GeneticDrummer) was implemented in LISP, in-
cluding GUI. GeneticDrummer works in conjunction with professional hard disc
recording (HDR) applications Cakewalk ProAudio or Cakewalk Sonar. The user se-
lects an HAI phrase4 in a HDR application and starts the rhythmic accompaniment
generating process from GeneticDrummer GUI, where the parameters of genetic
algorithm can be set up (populations, number of generations), parameters of Hu-
manizer and generated phrase: the user can select whether a generated phrase will
start with a crash cymbal stroke5 and starting beat of last measure, where a break
will be generated. The generated accompaniment is returned to HDR application
as a new MIDI track. Such track can be further user-edited, as well as the other
tracks. Screenshot of GUI can be seen in Figure 2.

6 EMPIRICAL MEASUREMENTS OF GA

Now some empirical measurements will be shown. Complex and rigorous measure-
ment would be quite problematic, because results depend on many circumstances –
used HAI, user-specified criteria, used mutation and fitness scripts and used popu-
lations. How objective parameters for the measurement can be found? The best
evaluator would be a human listener with corresponding musical knowledge. The
measurement results show average fitness of the populations after GA passed given
count of generations. Every measurement was repeated six times.

In the graphs in Figures 4–7 and 9 axis x shows generation (0 means initial po-
pulation), axis y shows the mutation operator weight, and axis z shows the acquired
fitness.

6.1 Operator Bass-Teamwork

We will measure the influence of the Bass-teamwork operator upon the population
fitness. The fitness script defines that we want a result with crash cymbal and bass
drum with the same rhythm as the HAI. See HAI phrase in Figure 3.

4 This phrase is a part of a MIDI track.
5 This stroke is generated independently of GA.
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Selected HAI phrase in Sonar

GeneticDrummer GUI

New track created by 
GeneticDrummer

Fig. 2. User interface of GeneticDrumnmer and cakewalk sonar

(setq fitness-script

’(list

(list 60 ’fitness-rythm-conformity ’notes-bass music)

(list 60 ’fitness-rythm-conformity ’notes-cc-1 music)

(list -20 ’fitness-rythm-unconformity ’notes-bass music)

(list -20 ’fitness-rythm-unconformity ’notes-cc-1 music)

(list 22 ’fitness-instrument-quantity ’notes-snare 0)

(list 22 ’fitness-instrument-quantity ’notes-tt-10 0)

(list 22 ’fitness-instrument-quantity ’notes-tt-12 0)

(list 22 ’fitness-instrument-quantity ’notes-tt-13 0)

))

Parameter w specifies mutation influence (mutation probability):

(setq mutation-script

’(list

(list ’notes-cc-1 ’mutation-bass-teamwork <w> music)

(list ’notes-bass ’mutation-bass-teamwork <w> music)

))
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8

Fig. 3. HAI phrase

The following Tables 6–8 and 9 show the experiment results. The left column
specifies current generation (zero for initial population), the first row specifies the
measure (beat) number, values in the table specify average fitness after the five-times
repeated experiment.

1 2 3

0 100.8 101.3 82.7

1 104.3 124.6 76.7

2 130.2 142.8 84.8

3 154.6 153.4 78.1

4 154.9 159.8 70.7

Table 6. Bass-teamwork operator – without mutation, w = 0

1 2 3

0 100.8 101.3 82.7

1 120.1 120.3 91.3

2 143.7 148.5 100.7

3 159.4 153.8 117.4

4 172.9 162.3 126.2

Table 7. Bass-teamwork operator – mutation probability w = 0.15

It can be seen from Tables 6–9 and the used HAI phrase that higher influence
of a mutation operator causes faster growth of fitness. However, in measures 1
and 2 there is less quality improvement than in measure 3, because measures 1
and 2 are rhythmically simpler than measure 3 where there is no possible to acquire
a good result with the zero or small influence of a mutation operator. Measure 3 is
rhythmically complex so it is necessary to use a mutation operator to acquire a good
result.

6.2 Operator Syncopize

We will measure the influence of the Syncopize operator on syncopation of non-
syncopated (rhythmically straight) snare drum pattern.

(setq fitness-script

’(list

(list 60 ’fitness-rythm-unconformity ’notes-snare music)
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1 2 3

0 100.8 101.3 82.7

1 137.3 150.6 100.3

2 167.3 163.5 117.1

3 178.8 175.8 130.9

4 179.9 177.8 145.2

Table 8. Bass-teamwork operator – mutation probability w = 0.25

1 2 3

0 100.8 101.3 82.7

1 166.3 169.0 139.3

2 179.3 185.5 161.1

3 189.8 187.8 179.9

4 195.9 199.8 181.1

Table 9. Bass-teamwork operator – mutation probability w = 0.6
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Fig. 4. Bass-teamwork operator – measure 1
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Fig. 5. Bass-teamwork operator – measure 2
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Fig. 6. Bass-teamwork operator – measure 3

))

(setq mutation-script

’(list

(list ’notes-snare ’mutation-syncopize <w> music)

))

It can be seen from Table 10 and Figure 7 that the population quality cannot be
improved without mutation operator because the initial population is rhythmically
straight; thus, this task could be solved by help of crossover operator. We will
achieve enough fitness with a higher influence of the Syncopize operator only.

0.00 0.15 0.30 0.60

0 1.0 1.0 1.0 1.0

1 1.0 1.2 2.4 2.0

2 1.0 1.6 3.9 3.8

3 1.0 2.2 4.5 6.0

4 1.0 2.6 4.7 7.3

Table 10. The influence of the Syncopize operator

6.3 Selectivity of GA

We will measure the ability of a population to imitate the dynamic structure (ve-
locity changes) of the HAI (see Figure 8). GA will not use mutation operator at
all. The first population contains twelve multichromosomes – the real practices for
human drummers taken from [1]. Average quality of the population is 2.41, so it
can be considered as rather appropriate to perform the mentioned task. The second
population is designed large and rhythmically inconsistent and it is composed of
68 multichromosomes. Inconsistency is based on the fact that 80% of multichromo-
somes are fully improper for the task specified above. Average fitness of a population
is 1.41.
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Fig. 7. Syncopize operator – graph

The experiment result can be seen in Figure 9. The x, y and z axes show quality,
generation and (first or second) generations, respectively. It can be seen that GA
is selective enough. When we used the second (improper) population we could see
that there is a slower growth of the fitness than in the case of the first population.
After approximately eight generations there is a comparable result to the first, “bet-
ter” population. After approximately fourteen generations the second population
achieves higher average fitness values than the first population. GA with the first
population stops the fitness increase after approximately 18.7 generations and with
the second population the fitness increase stops after approximately 38.25 genera-
tions.

Fig. 8. HAI-phrase

(setq fitness-script

’(list

(list 10 ’fitness-dynamic-conformity ’notes-snare music-dynamics)

(list 10 ’fitness-dynamic-conformity ’notes-tt-10 music-dynamics)

(list 10 ’fitness-dynamic-conformity ’notes-tt-12 music-dynamics)

(list 10 ’fitness-dynamic-conformity ’notes-tt-13 music-dynamics)

(list 10 ’fitness-dynamic-conformity ’notes-ft-16 music-dynamics)

))

7 CONCLUSION

The described GA based system produces more realistic results than other mentioned
systems. Rhythmic accompaniment generating is more independent from the user
and can be considered as semi-automatic. Usage of higher-level musical structures
(elimination of local constraints) can probably produce even better results. After all,
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Fig. 9. Selectivity of GA

the local constraints allow generating of quite complicated and sophisticated results.
On the other hand, the local constraints potentially allow (when a population is not
rhythmically consistent) generating of two neigbhouring beats which are mutually
inconsistent. The configuration style of the fitness and mutation operators proved
that this is achievable for a musically not so much erudite person. The performed
experiments have revealed that at least four generations of GA must be passed to
achieve appropriate results.

Please note that accompaniment generating is nondeterministic so that we get
different (but still criteria satisfying) results if we run the generating process again
with the same parameter values.

Visit http://phoenix.inf.upol.cz/~dostal/evm.html for some results of the
GeneticDrummer system exported to MP3 format (for the piece Sockshop both ini-
tial groove and break population transfered to MP3 format are used. Each measure
in the MP3 file represents one multichromosome of a population). The HAI phrases
were manually selected by the author.
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