Computing and Informatics, Vol. 35, 2016, 761-763

SPECIAL SECTION ON FUNCTIONAL
PROGRAMMING PARADIGM
AND ITS APPLICATIONS

Wojciech TUREK, Roman DEBSKI, Aleksander BYRSKI
Marek KISIEL-DOROHINICKI

AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Krakéw, Poland
e-mail: {wojciech.turek, rdebski, olekb, doroh}@agh.edu.pl

Current trends in hardware development provide powerful computing platforms,
which support large number of independent processing units. Implementation of
highly concurrent systems, which can efficiently use this type of hardware, poses
a significant challenge for the practitioners. Parallel execution both on manycore
architectures and on distributed hardware rises issues related to proper synchroniza-
tion between threads and processes, development of robust communication proto-
cols, and maintaining scalability and resilience of systems, to name a few.

Many mechanisms covering the above-mentioned issues are easily available for
the developers following functional paradigm of programming. Its inherent capa-
bilities, such as referential transparency, lazy evaluation and absence of side-effects
in pure functional languages make them perfect as a means for implementation of
concurrent algorithms and distributed systems. Choosing such languages as Er-
lang, Scala/Akka, Haskell, F# or Clojure simplifies implementation of concurrent
systems, making utilization of modern hardware platforms far more efficient.

Recent years have brought fast development of the paradigm and the languages
that use it, changing the approach to design and implementation of large scale and
massively concurrent systems. Thus in this special section, we focus on selected
issues connected with functional paradigm utilization and development, in order to
present the promising, novel solutions to the researchers interested in functional
programming.

The first part of the section shows programming language development issues,
showing the idea of automatic parallelization based on static program analysis with
refactoring support in the context of Erlang (Tamds Koszik, Melinda Téth, Istvan
Boz6, Zoltan Horvéath: Static Analysis for Divide-and-Conquer Pattern Discovery).
Next, the construction of algorithmic skeletons (parallel programming patterns) is
discussed, showing an Erlang-based computing system as a use case (Adam D. Bar-



762 W. Turek, R. Debski, A. Byrski, M. Kisiel-Dorohinicki

well, Christopher Brown, Kevin Hammond, Wojciech Turek, Aleksander Byrski:
Using Program Shaping and Algorithmic Skeletons to Parallelise an Evolutionary
Multi-Agent System in Erlang). Finally, metaprogramming issues are addressed by
the authors trying to employ Haskell into flexible and reliable generation of C pre-
processor macros (Bodizsar Németh, Maté Kardcsony, Zoltdn Kelemen, M&té Tejfel:
Defining C Preprocessor Macro Libraries with Functional Programs).

The following two papers are focused on reactive programming. The first one
presents the development of the Reactive Streams API in order to fit better for
mobile applications (Przemystaw Dadel, Krzystof Zielinski: Evolution of Reactive
Streams API for Context-Aware Mobile Applications), while the second one exam-
ines the challenges and advantages of using an actor framework for the programming
and execution of scientific workflows (Bartosz Balis, Krzysztof Borowski: Using an
Actor Framework for Scientific Computing: Opportunities and Challenges).

The authors of the last paper show how to make easier-to-read the property-
based testing, by transforming the properties and the test models into semi-natural
language representation, allowing not only skilled programmers to interfere with
the complex and demanding process of testing (Laura M. Castro, Pablo Lamela,
S. Thompson: Making Property-Based Testing Easier to Read for Humans).

These valuable research results are only the examples of the great potential and
the increasing interest given to functional programming paradigm nowadays. The
further development of functional languages and their applications will definitely
lead to novel solutions in various areas of computer science, especially in the context
of building large-scale systems.

Wojciech TUREK received his Ph.D. in 2010 from the AGH
University of Science and Technology in Cracow. He works as
Assistant Professor at the Department of Computer Science of
AGH-UST. His research focuses on agent-based systems, multi-
robot systems and functional programming.

Roman DEgBSKI holds his M.Sc. in computer science (AGH Uni-
versity of Science and Technology) and in mechanical engineering
and Ph.D. in computational mechanics (both received from the
Cracow University of Technology). He has over 14 years of ex-
perience in IT and currently works as Assistant Professor at the
AGH University of Science and Technology. His current research
focuses on modelling and simulation.




Special Section on Functional Programming Paradigm and Its Applications 763

Aleksander BYRSKI received his Ph.D. in 2007 and D.Sc. (ha-
bilitation) in 2013 from the AGH University of Science and
Technology in Cracow. He works as Assistant Professor at the
Department of Computer Science of AGH-UST. His research
focuses on multi-agent systems, biologically-inspired computing
and other soft computing methods.

Marek KiSIEL-DOROHINICKI received his Ph.D. in 2001 and
D.Sc. (habilitation) in 2013 from the AGH University of Science
and Technology in Cracow. He works as Assistant Professor at
the Department of Computer Science of AGH-UST. His research
focuses on intelligent software systems, particularly using agent
technology and evolutionary algorithms, but also other soft com-
puting techniques.




