
Computing and Informatics, Vol. 24, 2005, 351–370

ETHICALLY-SOCIAL APPROACH
TO COMPUTER SECURITY PROBLEM

Krzysztof Cetnarowicz

Institute of Computer Science

AGH University of Science and Technology

Al. Mickiewicza 30, 30-059 Kraków, Poland

e-mail: cetnar@agh.edu.pl

Gabriel Rojek

Department of Computer Science in Industry

AGH University of Science and Technology

Al. Mickiewicza 30, 30-059 Kraków, Poland

e-mail: rojek@agh.edu.pl

Manuscript received 2 September 2004; revised 22 September 2005
Communicated by Patrick Brézillon

Abstract. This article came to existence on the ground of interest in what makes
possible inter-human contacts and co-operation without excessive risk for any per-
son. An individual is protected in society from dishonesty by ethical system as well

as social mechanisms, which are not infallible, although so effective in working that
transferring them onto the ground of computer systems is worth testing. Equipping
computer resources with mechanisms observed in individuals within human societies
will enable these resources to control the safety. Our goal is to obtain mechanisms
which will enable security without definition what is desirable or undesirable in
a computer system. This should enable to detect viruses or attack techniques that
are not already known. Mechanisms are presented which may enable to recognize
and dismiss resources undesirable or harmful in the computer system on the basis
of behavior observation. The proposed mechanisms were tested and tests results
are presented and discussed.



352 K. Cetnarowicz, G. Rojek

Keywords: Computer security, behavioral detection, ethically–social mechanisms,

multi–agent systems, open systems

1 INTRODUCTION

From the moment of origin of the first computer virus or of the first illegal use of
computer resources continuous works on successive protection has been going on.
Despite rising expenditures on traditional safety concept of computer systems, the
number of incidents doubles each year. Attacks are more and more sophisticated
and those protecting themselves from them stay behind the possibilities of illegal
use of computer systems. Traditional protection techniques may become insufficient
in quite a short time [1].

Apart from the noticed trends in attacks on computer systems [1], there are
noticeable trends of integration in computer systems themselves. The process of
integration leads to creating one extensive computer system in the place of many
smaller and easier to manage ones. The computer system that is the consequence
of integration is, in the scope of correct ensuring of operation and development,
difficult to command by man. The solution is to provide and develop tools that are
a part of the system mentioned or of its resources. These tools enable automatic
solving or assistance in the tasks given to them, which leads to solution of the above
problems. The use of multi-agent systems is an example, in which man delegates
his tasks to an agent autonomous in its work. Universal use of agent technique also
enforces reviewing and presumable supplementing of the systems ensuring computer
safety.

Our goal is to obtain a security system which will enable to detect undesirable
resources in a computer system that is open. The security system should self-adjust
to the computer system and to undesirable activities (viruses, attack techniques,
etc.). The detection of undesirable resources should not be based on any a priori

knowledge because of the changing activity of legitimate users and intruders in
a computer system. One of known solutions how to detect a priori unknown intru-
ders is computer immune system. An immunological approach to change detection
is the basis of our analysis how to obtain a protection which will detect an a priori

unknown undesirable activity in open computer system.

This paper is organized as follows: Section 2 presents the main issues of an
immunological approach to computer security. Section 3 discusses open computer
systems and effectiveness of immunological self/non-self discrimination. Section 4
presents ethically-social mechanisms that are the point of our interest, and also
a conception of using this mechanism in the research on computer security. This
conception is presented at general level in Section 4 and at lower level in Sections 5
and 6. M-agent architecture of multi-agent systems is used which is introduced
among others in [2, 3]. In Section 7, a part of interesting us ethically-social mecha-
nisms that have been implemented is given. Section 7 describes the social profile



Ethically-Social Approach to Computer Security Problem 353

at low (implementation) level. Section 8 presents the experiments done on the
implemented multi-agent system with and without functioning of the social profile.
In Section 9, conclusions of the discussion and experiments described in this paper
are given.

2 RELATED WORK – AN IMMUNOLOGICAL APPROACH

TO CHANGE DETECTION

The problem of computer system protection is viewed as an instance of the more
general problem of distinguishing self (legitimate users, data, etc.) from non-self

(unauthorized users, viruses, etc.). The algorithm of protection with immunological
approach has two phases (as presented in [6]):

1. Generate a set of detectors. Each detector is a string that does not match any
part of the protected data.

2. Monitor the protected data by comparing them with the detectors. If a detector
is ever activated, a change is known to have occurred (e.g. a change caused by
a virus or by an unauthorized user).

In the immunological approach, the detection problem is reduced to the problem
of detecting whether or not a string has been changed, where a change could be
a modification to an existing string or a new string being added to self. The string
could be a string of bits, a string of assembler instructions, a string of data, etc. Self
is defined as the string to be protected and other is defined as any other string.

2.1 Generation of Detector Set

To generate valid detectors, first the self string is split into segments of equal size.
This produces the collection S of self (sub)strings to be protected (S contains all
the substrings). The second step is the generation of collection R0 which contains
random strings of equal length as the strings in the collection S. Strings from R0

that match self are eliminated. Strings that do not match any of the strings in S
become members of the detector collection R. This procedure is called censoring.

2.2 Monitoring Protected Strings for Changes

Once a collection R of detector strings has been produced, the state of self can be
monitored by continually matching strings in S against strings in R. This is achieved
by choosing one string from S and one string from R and testing the matching of
these two strings. If ever a match is found, then it is concluded that S has been
changed – a non-self string is detected.



354 K. Cetnarowicz, G. Rojek

2.3 Matching

A perfect match between two strings of equal length means that at each location
in the string, the symbols are identical. The matching requirement can be relaxed
by using a matching rule that looks for r contiguous matches between symbols in
corresponding positions. Two strings x and y match if x and y agree (match) at at
least r contiguous locations. The matching rule can be applied to strings defined
over any alphabet of symbols.

3 OPEN SYSTEMS AND AGENT TECHNOLOGY

Present computer systems become more and more complex and related to each other.
Large nets used in transport, banking or insurance, as well as almost all devices
connected to the Internet, are open systems. To have full knowledge about topology
or current state of such system is impossible even for the owner or administrator.
Central control of open system does not exist or is ineffective. There is no complete
theory of open systems [8].

Rapidly developing agent technology allows full flow of resources among open
computer systems. Autonomous agents can yet freely migrate in the net with-
out knowledge of the owner or administrator. Agents can also execute their tasks
without anybody’s knowledge. These tasks can be both useful for the owner and
destructive for the system. Two kinds of agents can be distinguished; although
coming outside of the system on which they operate, they can fulfil two extremely
different functions:

• intruder migrating and searching for a system, which it can attack

• agent sent by a friendly system to improve protection.

The two quoted examples do not cover the whole spectrum of possibilities, if
one tries to relate agent functions to its origin. An agent created in the native
environment and with the help of means available in this environment can be used
to attack, destruct or blockade the computer system.

The new ways of designing of systems which, despite openness, would be able
to survive the attacks, seem necessary. One should search for methods, which will
allow, even for a damaged system, to continue its principal task, even at the cost of
sacrifying some of its components [8]. Such systems should also allow to distinguish
undesirable intruders, even if earlier they have been classified as self. The access
to resources, also non-self ones, which are desirable and useful, should be enabled.
It seems that all resources, more precisely, exact working of all resources, should
be constantly monitored and on this basis the resources which are damaging or
undesirable should be eliminated.



Ethically-Social Approach to Computer Security Problem 355

3.1 Immunological Approach to Safety of Open Computer Systems

The previously quoted example of two agents, intruder and friendly agent which
migrate in net and want to get to system without knowledge of administrator,
is possible in open computer systems. Security system with immunological ap-
proach [6, 7, 9, 11] permits the following distinction of resources:

• self, treated as desirable,

• non-self, treated as undesirable intruders.

Immunological mechanisms do not appear useful to investigate the above case
of two migrating agents. Both resources mentioned would be classified by immuno-
logical system as non-self, which means (and it is treated accordingly) undesirable
supplies. Treatment of a friendly but non-self agent as undesirable is not proper.
However, it would be proper to divide computer resources as follows:

• good, desirable

• bad, undesirable.

The above notions of good and bad do not have absolute meaning. Good resource
is a desirable resource for a definite computer system, in which evaluation takes
place. Bad resource is an undesirable resource for a given system, although it can
happen that in a different computer system it would be greatly desirable. Obviously
the situation that a good resource in a certain system would be undesirable and
valued as bad in a different system is also possible.

In open systems, resources recognized through immunological system as non-

self can actually be desirable as well as useful. Resources defined as self do not
necessarily have to be useful and good for the system, although resources recognized
as non-self do not have to be harmful, i.e. bad (Figure 1). The division good/bad
is not equivalent to self /non-self .

'
&

$
%non-self

'
&

$
%

bad '
&

$
%self

'
&

$
%

good

Fig. 1. Non-self is not equal to bad, self is not equal to good

In open systems, the more adequate discrimination turns out to be the dis-
tinction between bad – harmful and good – useful resources; however, the origin of
supply (self /non-self ) is not essential here. Distinguishing between good and bad

can be accomplished only on the basis of observation of activity or intentions of the
acting resource. Recognizing the resource structure, which allows the division into
self and non-self, will not cause distinguishing between good and bad resources.



356 K. Cetnarowicz, G. Rojek

4 ETHICALLY-SOCIAL APPROACH TO BEHAVIOR ESTIMATION

In this section, M-agent architecture of multi-agent systems is used. M-agent archi-
tecture is introduced among others in [2, 3]. Activity of an autonomous agent in
M-agent architecture is formed through profiles. Every profile is a different point of
view according to which the agent takes its actions. The intellectual profile means
the group of goals, the decisions made and actions realized in the sphere of basic
jobs of an agent, for whose realization the agent was created. Agents can have other
profiles too, e.g. the energetic profile, which serves to determine the existence of
a given agent in the environment depending on its “energy”, which the agent can
draw in dependence on the actions it takes.

4.1 Social Phenomena Related to Security

On the one hand, the behavior of an individual within society is specified by ethical
rules, and on the other by the rules of social living together [12, 13]. A human being
taking decision about his/her action is influenced first of all by his/her ethical rules.
The effects of this human action are, however, observed through other individuals
in the society, who suitably, according to their social norms, react on such behavior.
The human being obviously watches those reactions and, if the reactions indicate
his/her bad behavior, s/he changes his/her own ethical norms. Society has an impact
on the ethical system of such individual. Various factors of the environment can also
have an impact; nobody would, for instance, accept ethical norms that would make
him or her impossible to survive (“do not eat”).

The above model of ethically-social mechanisms functioning in a society allows to
develop ethical rules. The model also can be transferred to computer environment,
and such ethical and social rules can be useful e.g. to control the access to computer
resources by competing processes (as presented in [5]).

4.2 Concept of Using Social Phenomena in Secure Computer Resources

Research

The main idea of ethically-social estimation of an autonomous agent behavior is the
addition of two profiles: the ethical and the social ones. The ethical profile would
cover operations that aim at:

• construction of “notion” about itself on the basis of one’s ethical rules,

• fulfilment of one’s ethical rules,

• updating and learning of ethical rules on the basis of environment observation,
particularly of those environment elements which are agents.

The group of goals, decisions, operations and knowledge relating to social life
mechanisms will be named the social profile. These will be the operations that aim
at:



Ethically-Social Approach to Computer Security Problem 357

• fulfilment of living together rules in society,

• observation of environment, especially agents,

• “punishing” of the agents that do not fulfil the rules of living together.

The social and ethical profiles are inseparable and mutually supplementary. So-
cial profiles of agents from the environment exert an indirect influence onto ethical
profile of the agent concerned, as shown in the last subsection. Only thanks equip-
ping every computer with resources within these two profiles it is available to keep
social and moral order in open systems, and thus to create mechanisms similar in
safety to those functioning well in known societies.

Ethical and social profiles can make up a supplement of every autonomous agent
in M-agent architecture. In one of the most basic cases an agent a = (ai, ae, as) would
consist of three profiles (Figure 2) defined as follows:

• intellectual profile agent ai = (M,Q, S, I, X, L,m, q, s), where: m is the model
of environment, m′ is the model of foreseen environment after realization of
strategy s, S is the configuration of possible strategies, M is the set of models
of environments, q is the goal of agent a, Q is the configuration of possible goals
of agent a, I is the operator of environment observation, X is the operator of
strategy s realization, L is the operator of agent’s learning, V = (E,A, C) is the
environment;

• ethical profile of agent ae = (Me, Qe, Le),where: Me is the set of ethical states
me of agent a, Qe is the set of goals and “anti-goals” (ethical rules) qe of agent’s
ethical profile, Le is the operator of agent’s ethical learning Le : Qe × V → Qe.

• social profile of agent as = (Ms, Qs, Ls), where: Ms is the set of social states ms

of agent a, Qs is the configuration of goals qs of agent’s a social profile, Ls is the
operator of social observation Ls : Ms × V → Ms.

4.3 Trust and Belief Versus Ethically-Social Behavior Estimation

in Multi-Agent Systems

In [10] the author’s view on the topic of security in open computer systems in-
cluding open multi-agent systems according to the pervasive computing paradigm
is presented. The opinion that existing security solutions are inadequate for open
environments is given, which is similar to our view of security in open computer
systems. The authors consider the use of agent methodologies, trust management,
exchange of beliefs, delegation of permissions, obligations and credibility in relation
to security of pervasive computing environments.

The Vigil security infrastructure [10] provides authentication of users and also
allows users to delegate their rights and beliefs to other users. Classical trust mana-
gement is extended by incorporating conditional delegation which allows conditions
to be placed on execution of access right, re-delegation and negotiable delegation.
An agent may receive delegation, but, in turn, has to fulfil certain obligations and/or



358 K. Cetnarowicz, G. Rojek

$
�� �
�I�

?

ethical
profile

intellectual
profile

social
profile

m

?
m′

'

&

-

-

q

me

?
m′

e

'

&

-

-

qe

ms

?
m′

s

'

&

-

-

qs
�� �
-Xs -

%

agent

environment
Fig. 2. Concept of social, ethical and intellectual profiles in M-agent architecture

prohibitions. A policy is designed which contains basic/axiomatic rights attributed
to users, which are associated with roles, rules for delegation and rules for checking
the validity of requests. Security infrastructure uses x.509 certificates that allow
authentication of users and agents.

The ethically-social behavior estimation presented in this paper differs much
from the security infrastructure presented in [10]. We do not make any assumptions
about basic or axiomatic rights of agents. We would like to propose an infrastruc-
ture in which behavior of users or agents would be evaluated. Only the behavior
evaluations are the basis for deciding whether an agent or a user is trustworthy and
can act inside a system. This induces the necessity of enabling all agents to get in
and act for some period of time inside a protected system. Our work does not ex-
clude the facts presented in [10] – behavior evaluation could allow to trust an agent
which does not have any basic/axiomatic rights and none agent or user would like
to delegate its rights to such agent. It seems that behavior evaluation could allow
to resign the axiomatic rights that have to be attributed to users or agents in Vigil

security infrastructure.

5 SOCIAL PROFILE

Social profile is a class of agent activity with the goal to observe other agents in
a society and possible other elements of environment. Those observations should
be done to distinguish individuals, which do not fulfil social and ethical rules and
whose behavior is unfavorable, incorrect or bad for the observer. Such distinguished
bad individuals should be adequately treated (e.g. convicted, avoided); this should
also be formed by social profile.



Ethically-Social Approach to Computer Security Problem 359

Social profile is defined as as = (Ms, Qs, Ls), where:

• Ms is the set of social states ms of agent a,

• Qs is the configuration of goals qs of agent’s a social profile,

• Ls is the operator of social observation Ls : Ms × V → Ms.

5.1 Social State

Social state ms of agent a is represented as a vector ms = [m1

s, m
2

s, . . . , m
j−1

s , mj
s],

where:

• j is the number of neighboring agents; neighboring agents are agents, which are
visible for agent a,

• mk
s is the factor subordinated to neighboring agent number k. This factor can

be a number of any range.

Example 1. ms = [1, 5, 2] – agent a noticed 3 neighboring agents, Agent 1 is good,
Agent 2 is bad and Agent 3 is “rather good”.

5.2 Social Observation Operator

To distinguish bad individuals (estimation of behavior), immunological system me-
chanisms can be used. Immunological intruders detection in a computer environment
has to be done on the basis of certain characteristic structures. In the case of
behavior observation, such structures can be chains of actions made by an observed
agent; the chains have length l.

Example 2. If possible actions of an agent in an environment will be indicated
by A, B and C, and length of chains will be set to l = 3, then example of such action
chain can be (ABA) or (CCA).

5.2.1 Observation of Neighboring Agents’ Actions

The way in which agent a will recognize (notice, but not estimate) the action un-
dertaken by neighbors should be defined. Intellectual profile of agent a can be used.
Agent a observes environment V and creates model m = I(V ). Event Z changes
model mk in ml. Every action taken by neighbor can be described as change of the
environment model of agent’s a intellectual profile. The same event Z can be the
result of different agents’ actions, which potentially can change mk in ml.

Observed event Z transposes itself onto actionD of agent a, when the performer
of this event is known. The performer can be recognized when signs of the unit,
which has changed model m, will remain in environment V .



360 K. Cetnarowicz, G. Rojek

5.2.2 Generation of Detectors’ Collection

In order to generate collection of detectors R, own collection W is necessary. This
collection includes correct – self resources. This collection W should consist of
actions’ chains undertaken by the agent – observer. This is correct due to the
assumption that actions undertaken by an agent are evaluated by the agent as good.
Those actions are the result of influence of three profiles: intellectual, ethical and
(to a lesser degree) social. Social profile does not influence the actions of an agent
so strongly, because it forms “sociable life” – for example, with whom does an agent
co-operate or whom does an agent avoid. Observed actions primarily indicate the
ethical rules of observed agent and its intellectual goals.

Example 3. Agent can undertake actions A, B and C. Let us assume that intellec-
tual profile orders the agent to execute any operations and its ethical norms forbid
repeating the same operation. The agent takes actions in a different order, never
repeating any of them. This is the agent’s collection W = {(ABA), (ABC), (ACA),
(ACB), (BAB), (BCA), (BCB), (CAB), (CAC), (CBA), (CBC)}, assuming length of chains
l = 3.

5.2.3 Detector Generation Algorithm

The detector generation algorithm refers to the method used to generate T-lympho-
cytes. From the collection of randomly generated chains R0 the chains which match
any chain from collection W are rejected. Chains from collection R0, which will
pass such negative selection, create the set of detectors R. This process is shown in
Figure 3.

Self
Chains
(W )

?Generate
Random

Chains (R0)

- Match -

no
Detector
Set (R)

?

yes

Reject

Fig. 3. The detector generation process

Example 4. W – collection from example 3; R0 = {(AAA), (AAB), (ABA) . . . (CCC)} –
random generated chains of length 3; R = R0 − S = {(AAA), (ABB), (BBA), (BBB),
(BAA), . . . , (CCC)} – collection of detectors.



Ethically-Social Approach to Computer Security Problem 361

5.2.4 Behavior Estimation of Neighboring Agents

The first stage is neighbor observation, during which actions (and their order) exe-
cuted by neighboring agents are remembered. Those remembered actions create
sequenceN of any length. Every subsequence n of length l of sequenceN is compared
with every detector r from set R, as shown in Figure 4. If chains n and r match, it
means bad, unfavorable actions.

Detector
Set
(R)

?

Neighbor 1
(N1)

Neighbor 2
(N2)

rrr
Neighbor k

(Nk)

rrr
Neighbor j

(Nj)

�� AA

- Match

�
?

�
�

no

?

yes

Qualification of
Neighbor k as
bad or “worse”

Fig. 4. Process of neighboring agents behavior estimation

The number of matches and of detectors which match should be counted. On
this basis, the behavior should be estimated – social state ms of agent-observer is
modified to state m′

s. Influence on social state m′

s should also have the existing
state ms because of the operator Ls : Ms × V → Ms.

Example 5. Agent a notices 3 neighboring agents and its social statems = [1, 5, 2];
it starts the behavior estimation process of the neighboring agents:

• Agent 1 undertook actions BAACBABCBCA – 2 matches,

• Agent 2 undertook actions BACABCBCACA – 0 matches,

• Agent 3 undertook actions BAAAAACBCAA – 6 matches.

Social state of agent a is modified: m′

s = [1, 3, 5].



362 K. Cetnarowicz, G. Rojek

5.3 Treatment of Neighboring Agents

The way how neighboring agents are treated is described by Qs – configuration of
goals qs of agent’s social profile. Configuration of goals of an agent is constant, with
possible goal adaptation. Goal adaptation means the situation, in which one agent
adapts the goals of another agent or of a group of agents.

Example 6. Configuration of goals qs of agent a:

• indifferent treatment neighboring of agent number g, if ms[g] ≤ 2,

• avoidance of the neighboring agent number h, if ms[h] > 2,

• liquidation of the neighboring agent number i, if ms[i] > 4.

Continuing example 5, the agent with the above goals and state m′

s = [1, 3, 5] will
indifferently treat Agent 1, avoid Agent 2 and try to liquidate Agent 3.

6 ETHICAL PROFILE

Ethical profile is a class of agent activity with the goal to fulfil one’s ethical rules and
update or learn the ethical rules on the basis of environment observation, particularly
of those environment elements which are agents.

Ethical profile of agent a is defined as ae = (Me, Qe, Le), where:

• Me is the set of ethical states me of agent a,

• Qe is the set of goals and “anti-goals” (ethical rules) qe of agent’s ethical profile,

• Le is the operator of agent’s ethical learning Le : Qe × V → Qe.

The operator of agent’s ethical learning allows to change ethical standards in order
to be “better” treated in a society.

6.1 Possible Simplification

The above ethical-social model can also function without the operator of agent’s
ethical learning. In this situation agents, which:

• are qualified as bad,

• are in minority,

• are not able to change ethical norms (without operator of agent’s ethical learn-
ing)

would be eliminated. It should be taken into consideration that the notion good/bad
is relative and depends on estimating agent’s ethical rules. It can happen that bad
(for anyone) agent will survive (“win”) because of existing superiority of bad agents’
group as to number.



Ethically-Social Approach to Computer Security Problem 363

Example 7. There are 5 agents in the environment. They can undertake actions
A, B and C. Let’s assume that:

• agent 1:

– the intellectual profile orders the agent to execute any operations,

– its ethical standards do not forbid repeating the same operation;

• agents 2, 3, 4 and 5:

– the intellectual profile orders them to execute any operations,

– the ethical norms forbid repeating the same operation.

Agent 1 undertakes actions BBBB..., so its behavior is estimated by the neigh-
boring agents (more exactly: their social profiles) as bad (e.g. ms[agent1] = 5 for
every neighbor in the environment). Let us assume that all agents have the con-
figuration of social goals qs shown in example 6. Agents 2, 3, 4 and 5 will try to
liquidate agent 1. Agent 1 will be destroyed.

7 SOCIAL PROFILE IMPLEMENTATION

In our simulations the above social profile was implemented. The goal of social
profile functioning is to divide agents into bad or good agents in a society of agents.
For that reason the social profile is named division profile in this implementation.
In this profile, the main assumptions about a social profile are fulfilled; however,
there are some additional aspects related with the implementation. These aspects
are given below.

7.1 Detectors

The detector generation method is analogous to that presented in the social profile
section. In order to generate a set of detectors R, own collection W should be speci-
fied. This collection W should consist of action-object sequences of length l, which
are undertaken by the agent-observer. Presuming that h last actions undertaken
by every agent are stored, own collection W will contain h − l + 1 elements. From
set R0 of generated sequences of length l those reacting with any sequence from
collection W are rejected. Set R0 contains every possible sequence (but it is also
possible to use a set of randomly generated sequences). Sequence reaction means
that elements of those sequences are the same. Sequences from set R0 which will
pass such a negative selection create a set of detectors R.

7.2 Behavior Estimation of Neighboring Agents

The first stage is neighbor observation during which the actions (and their order)
executed by neighboring agents are remembered. Those remembered actions create



364 K. Cetnarowicz, G. Rojek

sequence N of presumed length h. After the next stage of detectors generation, the
generated detectors are used to find bad, unfavorable agents. Every subsequence n
of length l of sequence N is compared with every detector r from set R, as shown in
the social profile section in Figure 4. If sequences n and r match, it means that bad,
unfavorable actions have been found. Sequence matching means that the elements
of the sequences compared are the same.

The number of matches for every observed agent is counted. On this basis
behavior is estimated – division statemd = (m1

d, m
2

d, . . . , m
j−1

d , mj
d) of agent-observer

is modified to the md
′ = (m1

d

′

, m2

d

′

, . . . , mj−1

d

′

, mj
d

′

), where j is the number of agents
in the environment, mk

d

′

is assigned to the number of counted matches for agent
number k.

7.3 Configuration of Agent’s Division Profile Goals

The way neighboring agents are treated is described by Qd – configuration of goals qd
of agent’s division profile. In the implemented system the configuration of goals
consists of only one goal – liquidation of neighboring agent (or agents) number k, if
mk

d = max(m1

d, m
2

d, . . . , m
j−1

d , mj
d).

7.4 Configuration of Agent’s Division Profile Strategies

Tha actions which should be undertaken by agent a in order to treat agent number k
in the way described by the goal configuration are specified by Sd – the configuration
of strategies sd of agent’s division profile. The configuration of strategies of the agent
is constant, and in the system described the configuration of strategies consists only
of one goal: if the goal is to liquidate agent number k, a demand of deleting agent
number k is sent to the environment (coefficient od equal to the mk

d is attributed to
this demand).

This configuration of strategies presumes an intervention of system’s environ-
ment in the liquidation of the agent. In the system described, the environment
calculates the sum of coefficients for every agent separately attributed to demands,
and liquidates all agents which have the maximum sum of coefficients; this sum is
larger than constant OU . Periodically, after a constant time period, the calculated
sums of coefficients are set to 0. The constant coefficient OU is introduced in order
to get tolerance for the behavior evaluated as bad in a short time, or is evaluated as
bad by a small number of agents.

8 EXPERIMENT

In the computer system there are some operations which must be executed in cou-
ples, such as open and close a file, connection request and disconnection request.
There are a lot of attack techniques which consist in doing only one part from
a couple (or trio. . . ) of obligatory operations (for example so-called SYN flood
attack [14]). A system with two types of agents is simulated:



Ethically-Social Approach to Computer Security Problem 365

• type g=0 agents – good agents which perform some operations in couples (e.g.
open, open, open, close, open, close, close, close);

• type g=1 agents – bad agents (intruders) which perform only one from a couple
of some operations (e.g. open, open, open, open, open, open, open, open).

In the simulation there is no possibility of distinguishing the type of an agent on
the basis of the agent’s structure. Thus, the only possibility to distinguish whether
the agent is good or bad is to observe the agent’s behavior and process the actions
observed (actions-objects).

8.1 Results: Intruders Inside an Environment

In this part of research three cases were addressed:

• a case with only type g = 0 agents in the system without division profile me-
chanisms – initially there are 50 type g = 0 agents in the system, which do not
have any security mechanisms;

• a case with type g = 0 agents and type g = 1 agents without division profile
mechanisms – initially there are 35 type g = 0 agents and 15 type g = 1 agents,
all agents do not have any security mechanism;

• a case with type g = 0 agents and type g = 1 agents with division profile
mechanisms – initially there are 35 type g = 0 agents and 15 type g = 1 agents,
all agents in the system are equipped with the division profile mechanisms with
parameters h = 18, l = 5, OU = 300.

In those three cases, the system was simulated to 300 time periods and 10 simulations
were performed. The diagram in Figure 5 shows the average numbers of agents in
separate time periods.

In the two cases of system with agent without division profile mechanisms: if
there are not any intruders in the simulated system, all type g = 0 agents can exist
without any disturbance. The existence of intruders in the system causes problems
with executing tasks of type g=0 agents which die after some time periods. bad

agents still remain in the system that is blocked by those bad agents.
In the case of system with agent with division profile mechanisms: in the en-

vironment last 18 actions undertaken by every agent are stored. After 18 actions
have been undertaken by every agent, detectors of length l = 5 are constructed.
Agents use their division profile mechanisms to calculate which neighboring agent
they want to eliminate. Agents demand to eliminate the neighbors which have the
maximum of detector’s matchings. Agents present their demands to the environ-
ment with the number of matchings. The environment counts matchings in the
demands presented and eliminates agents as it was presented in the description of
division profile mechanisms. The constant OU is set up to 300.

As proved by the results presented in Figure 5, after detectors were constructed,
intruders were distinguished due to the division profile mechanisms. Simultaneously,



366 K. Cetnarowicz, G. Rojek

Fig. 5. The system without intruders, intruders inside the system, intruders inside the
system with agents with built-in division profile

the distinguished agents were deleted; this allows type g = 0 agents to function
freely. More details of the functioning division profile mechanisms in this test were
presented in [4].

8.2 Results: Intruders Penetrating the Environment

Mobile intruders were simulated – bad agents which can get to the agent system.
Initially there are 40 type g = 0 agents. After 20 constant time periods new agents
get into the system. In every time period one intruder is getting into the system;
this process occurs to 80th time period, thus 60 type g = 1 agents are getting. Two
cases were simulated:

• agents without any security mechanisms;

• all agents equipped in division profile mechanisms with parameters h = 18, l = 5,
OU = 300 (mobile agents are also equipped in division profile mechanisms) –
after 18 actions have been undertaken by every agent, detectors are constructed,
so after this had happened the agents can distinguish bad and good agents.

The system was simulated to 300 time periods and 10 simulations were per-
formed. The diagram in Figure 6 shows the average numbers of agents in separate
time periods.

Knowing that all mobile agents are bad, it seems that all getting agents should
be immediately eliminated. This is not true, because agents distinguish bad agent
on the basis of behavior estimation. It is possible to evaluate agents which have



Ethically-Social Approach to Computer Security Problem 367

Fig. 6. The system with mobile intruders penetrating the system, agents without or with
build-in division profile

presented behavior – have undertaken 18 actions required by division profile mecha-
nisms. Every new bad agent getting to the system is destroyed after it has presented
its behavior – has undertaken 18 actions. Because agents undertake one action in
one constant time period ∆t, every new bad agent is killed after 18 constant time
periods ∆t of its functioning.

8.3 Results: Heterogeneous Acting Intruders

Tests with type g = 1 agents which act in more heterogeneous way as in previously
presented tests were made as well. Bad agents perform two of several possible
operations (like type g = 0 agents), but one of these operations is mostly undertaken.
Type g = 1 agents perform one operation in 90 per cent of all cases and perform
another operation in 10 per cent of all cases (type g = 0 agents perform one operation
in 50 per cent of all cases and perform another operation in 10 per cent of all cases).
Two cases were simulated:

• agents without any security mechanisms;

• all agents equipped in division profile mechanisms with parameters h = 18,
l = 5, OU = 300.

The system was simulated to 300 time periods and 10 simulations were performed.
The diagram in Figure 7 shows the average numbers of agents in separate time
periods.

The existence of heterogeneous acting intruders causes problems with executing
tasks of type g = 0 agents. The problems are similar to those presented for intruders
that perform only one action. As verified by the results presented in Figure 7,
distinguishing of bad agents is not so rapid as in the case of homogeneous acting
intruders. This effect is caused by the heterogeneity of actions which form the
behavior of intruders. It can happen for some time periods that the behavior of



368 K. Cetnarowicz, G. Rojek

Fig. 7. The system with heterogeneous acting intruders, agents without or with built-in

division profile

heterogeneous intruder is very similar to that of type g = 0 agent. This effect is
intensified by the random mechanism of decision making about performed actions.
Intruders are distinguished in time periods in which their last 18 undertaken actions
are different enough from the actions undertaken by type g = 0 agents (h = 18).
After all bad agents were distinguished and deleted, all type g = 0 agents function
freely.

9 CONCLUSION

This article presents the concept of using the mechanisms acting in societies, which
permit the functioning of an individual facing a danger coming from other members
of the society. It is proposed to equip every computer resource with such mecha-
nisms, which provide safety of the system and its components without centrally
acting tools of an administrator. Such mechanisms should also enable dynamic
adaptation to newly arising threats. The security solutions presented form new
security paradigms which could be stated as follows:

• equip all system resources (e.g. agents, programs) with security mechanisms,

• security mechanisms should be based on activity observation rather than looking
for some fragments of code (signatures),

• design the environment of computer system in such a way so as to support
security mechanisms with which system’s resources are equipped.

In this paper, security mechanisms with immunological approach were presented
which fulfil the above security paradigms. All these security mechanisms were called
a division profile. The conception presented was simulated, and the results obtained
confirm the effectiveness of this solution. The simulation enables to anticipate how
the described mechanisms will function in the real world of computer systems.



Ethically-Social Approach to Computer Security Problem 369

Security mechanisms designed on the basis of the presented conception have
such advantages as detection of previously unseen danger activities, detection based
on activity observation, and decentralized detection.

REFERENCES

[1] CERT Coordination Center: Overview of Attack Trends. Carnegie Mellon University,
available on: www.cert.org, 2002.

[2] Cetnarowicz, K.: M-Agent Architecture Based Method of Development of Multi-
agent Systems. Proc. of the 8th Joint EPS-APS International Conference on Physics

Computing, ACC Cyfronet, Krakow, 1996.

[3] Cetnarowicz, K.—Nawarecki, E.—Żabińska, M.: M-Agent Architecture and

Its Application to the Agent Oriented Technology. Proc. of the DAIMAS ’97, St. Pe-
tersburg, 1997.

[4] Cetnarowicz, K.—Rojek, G.: Unfavourable Beahvior Detection with the Im-

munological Approach. Proceedings of the XXVth International Autumn Colloquium
ASIS 2003, MARQ, Ostrava, 2003, pp. 41–46.

[5] Cetnarowicz, K.—Rojek, G.—Werszowiec-Plazowski, J.—Suwara, M.:
Utilization of Ethical and Social Mechanisms in Maintenance of Computer Resources’
Security. Proceedings of the Agent Day 2002, Belfort, 2002.

[6] Forrest, S.—Perelson, A. S.—Allen, L.—Cherukuri, R.: Self-Nonself Dis-
crimination in a Computer. In Proc. of the 1994 IEEE Symposium on Research in Se-
curity and Privacy, IEEE Computer Society Press, Los Alamitos, 1994, pp. 202–212.

[7] Forrest, S.—Perelson, A. S.—Allen, L.—Cherukuri, R.: A Change-
Detection Algoritm Inspired by the Immune System. IEEE Transactions on software
Engineering, IEEE Computer Society Press, Los Alamitos, 1995.

[8] Gibbs, W.W.: How to Survive in Dangerous World? Świat nauki, Wydawnictwo
Prószyńska i s-ka, 2002, in Polish.

[9] Hofmeyr, S. A.—Forrest, S.: Architecture for an Artificial Immune System. Evo-
lutionary Computation, Vol. 7, 2002, No. 1, pp. 45–68.

[10] Kagal, L.—Undercoffer, J.—Perich, F.—Joshi, A.—Finin, T.—Yesha,

Y.: Vigil: Providing Trust for Enhanced Security in Pervasive Systems. Uni-
versity of Maryland, Baltimore County, available on: citeseer.ist.psu.edu/

kagal02vigil.html, 2001.

[11] Kim, J.—Bentley, P.: Negative Selection within an Artificial Immune System
for Network Intrusion Detection. The 14th Annual Fall Symposium of the Korean
Information Processing Society, Seoul, October 13–14 2000.

[12] Ossowska, M.: Moral norms. Wydawnictwo Naukowe PWN, Warszawa, 2000, in
Polish.

[13] Ricken, F.: General Ethics. Wydawnictwo ANTYK – Marek Derewiecki, Kety, 2001,
in Polish.

[14] Schetina, E.—Green, K.—Carlson, J.: Security in Network. Wydawnictwo
HELION, Gliwice, 2002, in Polish.



370 K. Cetnarowicz, G. Rojek

Krzysztof Cetnarowi
z received M. Sc. in electrical engineer-

ing at the Faculty of Electrotechnics, Automatics and Electronics
of the AGH – University of Science and Technology of Cracow
in 1971. In 1976 he graduated in mathematics at the Faculty
of Mathematics, Physics and Chemistry of the Jagiellonian Uni-
versity in Cracow. In 1977 he obtained the Ph.D. degree at the
Faculty of Electrotechnics, Automatics and Electronics of the
Stanislaw Staszic AGH – University of Science and Technology
of Cracow. He is professor at the Institute of Computer Science
at the AGH – University of Science and Technology of Cracow.

He is the author of patents and more than 60 papers in computer science (multi-agent
systems, artificial intelligence, evolution of multi-agent systems, image processing, simu-
lation).

Gabriel Rojek received the M. Sc. in computer science at the
Faculty of Electrotechnics, Automatics, Computer Sciences and
Electronics of the AGH – University of Science and Technology
of Cracow in 1999. In 2004 he obtained the Ph.D. degree at
the Faculty of Electrotechnics, Automatics, Computer Sciences
and Electronics of the Stanislaw Staszic AGH – University of
Science and Technology of Cracow. He works in the Department
of Computer Science in Industry at AGH University of Science
and Technology. He is the author of papers in computer science
in the field of multi-agent systems and computer security.


