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Abstract. Object replication is a well-known technique to improve the accessibility

of the Web sites. It generally offers reduced client latencies and increases a site’s
availability. However, applying replication techniques is not trivial and a large num-
ber of heuristics have been proposed to decide the number of replicas of an object
and their placement in a distributed web server system. This paper presents three
object placement and replication algorithms. The first two heuristics are centralized
in the sense that a central site determines the number of replicas and their place-
ment. Due to the dynamic nature of the Internet traffic and the rapid change in
the access pattern of the World-Wide Web, we also propose a distributed algorithm
where each site relies on some locally collected information to decide what objects
should be replicated at that site. The performance of the proposed algorithms is
evaluated through a simulation study. Also, the performance of the proposed al-
gorithms has been compared with that of three other well-known algorithms and
the results are presented. The simulation results demonstrate the effectiveness and
superiority of the proposed algorithms.

Keywords: Object replication, data replication, Web, distributed web-server sys-
tem, data placement
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1 INTRODUCTION

The recent phenomenal growth in the World Wide Web (the Web) has brought huge
increase in the traffic to the poplar websites that occasionally reaches the limits of
their capacity and consequently causes servers to be overloaded [1]. As a result, end
users either experience poor response time or denial of a service (time-out error)
while accessing these sites. Since these sites have a competitive motivation to offer
better service to their clients, the system administrators are constantly faced with
the need to scale up the site capacity. There are generally two different approaches
to achieving this [2]. The first approach, generally referred to as hardware scale-up, is
the use of powerful server machines with advanced hardware support and optimized
server software. While hardware scale-up relieves short-term pressure, it is neither
a cost-effective nor a long-term solution, considering the steep growth in the clients’
demand curve. Therefore, the issue of scalability and performance may persist with
ever increasing user demand.

The second approach to keep up with ever increasing request load and provide
scaleable services is to deploy a distributed web server system (DWS). A distributed
web server system is any architecture of multiple stand-alone web server hosts that
are interconnected together and act as a logically single server [3]. The incoming
requests are distributed among the server nodes to achieve load balancing. A DWS
approach, generally referred to as scale-out, is not only cost effective and more
robust against hardware failure but it is also easily scalable to meet increased traffic
by adding additional servers when required. In such systems, an object (a web page,
a file, etc.) is requested from multiple clients from different locations. As the DWS
spreads over a MAN or WAN, movement of documents between server nodes is an
expensive operation [2]. Maintaining multiple copies of objects at various locations
in DWS is an approach for improving system performance (e.g. latency, throughput,
availability, hop counts, link cost, and delay etc.) [2, 3, 4].

Web caching attempts to reduce network latency and traffic by storing commonly
requested documents as close to the clients as possible. Since web caching is not
based on the users’ access patterns, the maximum cache hit ratio achievable by any
caching algorithm is bounded under 40% to 50% [5]. A pro-active web server system,
on the other hand, can decide where to place copies of an object in a distributed
web server system. In most existing DWS systems, each server keeps the entire set
of web documents managed by the system. Incoming requests are distributed to the
web server nodes via DNS servers or request dispatchers [6, 7, 8]. Although such
systems are simple to implement but could easily result in uneven load among the
server nodes due to caching of IP addresses on the client side.

To achieve better load balancing as well as to avoid wastage of disk space, one
can replicate part of the documents on multiple server nodes and requests can be
distributed to achieve better performance [9, 10, 11]. However, some rules and algo-
rithms are then needed to determine the number of replicas of each document/object
and their optimal locations in a DWS. Choosing the right number of replicas and
their locations can significantly reduce web access delays and network congestion.
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In addition, it can reduce the server load which may be critical during peak time.
Many popular web sites have already employed replicated server approach which
reflects upon the popularity of this method [12].

Choosing the right number of replicas and their location is a non-trivial and
non-intuitive exercise. It has been shown that deciding how many replicas to create
and where to place them to meat a performance goal is an NP-hard problem [13, 14].
Therefore, all the replica placement approaches proposed in the literature are heuris-
tics that are designed for certain systems and work loads. The object-replication
strategies proposed in the literature can be divided into two categories [14]: centrali-
zed and distributed. In centralized replication, the number of replicas is determined
once and remains fixed for a fixed period of time until some central managing site
executes re-allocation based on the access patterns and load on different sites. In
distributed replication, the decision to replicate is taken locally at a site level in
response to changes in the access pattern.

This paper proposes three algorithms for replica placement in a Web environ-
ment. The first two algorithms are centralized in nature and the third one is a dis-
tributed one. For distribution of requests, we take site proximity and access cost
into account. A detailed formulation of the cost models and constraints is presented.
Since most of the requests in web environment are read requests, our formulation is
in the context of read-only requests.

The rest of the paper is organized as follows: Section 2 reviews some existing
work related to object replication in the web. Section 3 describes the centralized
and distributed replications models and the cost function. Section 4 presents two
proposed centralized and one distributed object replication algorithms. Section 5
presents the simulation results and Section 6 concludes the paper.

2 RELATED WORK

There has been a considerable amount of work on Web performance, ranging from
Web workload characterization [15, 16] to developing techniques to enhance web
performance. Two common techniques for enhancing web performance are web
caching and replication [17–19]. Data replication can be viewed as a special kind
of “push-based” caching [20]. Compared with general caching, replication can take
advantage of multicast for update dissemination [21]. Further, replication allows
elegant placement schemes to be developed and employed based on the knowledge
of mid-term and long-term access patterns.

The problem of replica placement in communication networks has been exten-
sively studied in the area of file allocation problem (FAP) [22] and distributed
database allocation problem (DAP) [23, 24]. The FAP can be defined as follows:
given a network of M sites with different storage capacities and N files exhibiting
different read and write frequencies from each site, allocate the files to the sites in
order to maximize/minimize a given cost function subject to a number of constraints
[25]. Both FAP and DAP are modeled as a 0-1 optimization problem and solved
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using various heuristics, such as knapsack solution [26], branch-and-bound [27], and
network flow algorithms [28]. An outdated but useful survey of work related to FAP
can be found in [22]. Most of the previous work on FAP and DAP is based on the
assumption that access patterns are known a priori and remain unchanged. Some
solutions for dynamic environment were also proposed [29–31]. Kwok et al. [32] and
Bisdikian Patel [33] studied the data allocation problem in multimedia database
systems and video server systems, respectively. Many proposed algorithms in this
area try to reduce the volume of data transferred in processing a given set of queries.

Another important data replication problem exists in Content Delivery Networks
(CDN). Unlike FAP and DAP, in a CDN, a unit of replication/allocation is the set
of documents in a website that has registered for some global web hosting service.
In [34], the replica placement problem in CDN is formulated as an uncapacitated
minimum K-median problem. In [35], different heuristics were proposed based on
this K-median formulation to reduce network bandwidth consumption. The authors
of [36] take storage constraint into consideration and reduce the knapsack problem
to replica placement problem in CDNs. Li [12] proposed a suit of algorithms for
determining the location of replica servers within a network. The objective of this
paper is not to determine the placement of objects themselves but to determine
the locations of multiple servers within a network such that the product of distance
between nodes and the traffic traversing the path is minimized.

Wolfson et al. [37] proposed an adaptive data replication algorithm which can
dynamically replicate objects to minimize the network traffic due to “read” and
“write” operations. The proposed algorithm works on a logical tree structure and
requires that communication traverses along the paths of the tree. They showed that
the dynamic replication leads to convergence of the set of nodes that replicate the
object. This, however, does not consider the issue of multiple object replications.
Further, given that most objects in the Internet do not require “write” operation,
the cost function based on “read” and “write” operations might not be ideal for
such an environment.

Bestavros [38] considered the problem of replicating contents of multiple web
sites at a given location. The problem was formulated as a constraint-maximization
problem and the solution was obtained using Lagrange multiplier theorem. However,
the solution does not address the issue of selecting multiple locations through the
network to do replication. In [39], the authors have studied the page migration
problem and presented a deterministic algorithm for deciding on where to migrate
pages in order to minimize its access and migration costs. This study, however,
deals only with page migration assuming that the network has k copies of a page.
In addition, it does not address the problem of adding and deleting replicas to the
system and presents no special algorithm for replica selection. It only assumes that
the reads are done from the nearest replica only.

Tensakhti et al. [14] present two greedy algorithms, a static and a dynamic one,
for replicating objects in a network of web servers arranged in a tree-like structure.
The static algorithm assumes that there is a central server that has a copy of each
object and then a central node determines the number and location of replication to
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minimize a cost function. The dynamic version of the algorithm relies on the usage
statistics collected at each server node. A test is performed periodically at each site
holding replicas to decide whether there should be any deletion of existing replicas,
creation of new replicas, or migration of existing replicas. Optimal place of replica
in trees has also been studied by Kalpakis at el. [4]. They considered the problem of
placing copies of objects in a tree network in order to minimize the cost of serving
read and write requests to objects when the tree nodes have limited storage and
the number of copies permitted is limited. They proposed a dynamic programming
algorithm for finding optimal placement of replicas.

The problem of documents replication in extendable geographically distributed
web server systems is addressed by Zhuo et al. [2]. They proposed four heuristics
to determine the placement of replica in a network. In addition, they presented an
algorithm that determines the number of copies of each document to be replicated
depending on its usage and size. In [40] the authors also proposed to replicate a group
of related documents as a unit instead of treating each document as a replication
unit. They also presented an algorithm to determine the group of documents that
have high cohesion, that is, they are generally accessed together by a client in a single
session.

Xu el al. [20] discussed the problems of replication proxy placement in a tree
and data replication placement on the installed proxies given that maximum M
proxies are allowed. The authors proposed algorithms to find the number of proxies
needed, where to install them and the placement of replicas on the installed proxies
to minimize the total data transfer cost in the network. Karlsson et al. [41] developed
a common framework for the evaluation of replica placement algorithms.

Heddaya and Mirdad [42] have presented a dynamic replication protocol for
the web, referred to as the Web Wave. It is a distributed protocol that places
cache copies of immutable documents on the routing tree that connects the cached
documents home site to its clients, thus enabling requests to stumble on cache copies
en route to the home site. This algorithm, however, burdens the routers with the
task of maintaining replica locations and interpreting requests forWeb objects. Sayal
el al. [43] have proposed selection algorithms for replicated Web sites, which allow
clients to select one of the replicated sites which is close to them. However, they do
not address the replica placement problem itself. In [44], the author has surveyed
distributed data management problems including distributed paging, file allocation,
and file migration.

3 THE SYSTEM MODELS

A distributed Web server system consists of many servers interconnected by a com-
munication network. A unit of data to be replicated is referred to as an object. An
object can be a XML/HMTL page, an image file, a relation, etc. Each object is
identified by a unique identifier and may be replicated on a number of sites/servers.
The objects are managed by a group of processes called replicas, executing at replica
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sites. We assume that the network topology can be represented by a graph G(V, E),
in which N = |V | is the number of nodes or vertices, and |E| is the number of
edges (links). Each node in the graph corresponds to a router, a switch or a web
site/server. We assume that out of these N nodes there are n web servers acting
as information providers. Associated with every node v ∈ V is a set of nonnega-
tive weights and each of the weights is associated with one particular web server.
This weight can represent the traffic traversing node v and going to web server i
(i = 1, 2, . . . , n). The traffic includes the web access traffic generated at the local
site that node v is responsible for and, also, the traffic that passes through it on its
way to a target web server. Associated with every edge is a nonnegative distance
(which can be hop count, data transmission rate, or the economic cost of the path
between two nodes).

Like all other similar studies [2, 4, 14, 17, 37], we do not include the individual
clients that send read requests for objects in our model for two reasons. First, clients
are neither information provider nor under the direct control of the distributed web
server system and hence cannot be modeled explicitly [7]. Second, we only have to
know the total number of read requests from all clients to the individual servers for
each object. Each read request is either served locally by the server or it is forwarded
to the server that can satisfy the request. The sequence of nodes that a read request
goes through is called a routing path, denoted by π. The requests are routed up
the tree to the home site (i.e. root of the tree). Note that a route from a client to
a site forms a routing tree along which document requests must follow. Focusing on
a particular sever i, the access traffic from all nodes leading to a server can be best
represented by a tree structure if the transient routing loop is ignored [12, 14, 37].
Therefore, for each web server i, a spanning tree Ti can be constructed rooted at i.
Hence, m spanning trees rooted at m web servers represent the entire network.

3.1 The Object Replication Models

In this paper, we consider two object replication models: centralized and distributed.
In the centralized model, each read request for an object is executed at only one of
the replicas, the best replica. If ℵk is the set of sites that have a replica of object k

and C
i,LCi

k

k denotes the cost of accessing object k that resides at the least cost server
(denoted by LCi

k) from site i, then

• LCi
k = i, if a replica of k is locally available at i

• LCi
k = j such that Ci,j

k is minimum over all j ∈ ℵk, otherwise.

That is, for a given request for an object k at site i, if there is a local replica available,
then the request is serviced locally incurring a cost Ci,i

k , otherwise the request is sent
to site j having a replica of object k with the least access cost.

In the centralized model, there is a central arbitrator that decides on the number
of replicas and their placement. The decision is based on the statistics collected
at each server site. Upon determining the placement of replicas for each object,
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the central arbitrator re-configures the system by adding and/or removing replicas
according to the new placement determined by the arbitrator. The location of each
replica is broadcasted to all the server sites. In addition, each server i keeps the
following information:

• LCi
k: The least cost site with a replica of object k when k is accessed from i.

• LCi,j
k : The cost of accessing object k at site i from site j on π.

• f i,j
k : The access frequency of object k at site i from site j on π.

• ℵk: The set of sites that have a replica of object k.

The traffic frequency, f i,j
k , is the number of read requests for a certain period of

time t issued at site i for object k that resides at site j. This frequency includes the
number of requests received by site i from the individual clients and the requests
for object k passing through it in their way to j from other servers [4]. This traffic
can easily be monitored and recorded by using the existing technologies [4, 6].

A number of methods has been proposed to calculate cost (latency) of accessing
an object from a server [13, 14]. We calculate the latency as follows: each replica site
j maintains a count c of the total number of requests it receives in a time period t.
The arrival rate, λ, at the replica is given by λ = c/t. Assuming that each replica site
has an exponential service time with an average service rate of µ, then the time T ,
a request will spend at the replica site (waiting+processing time) is the well-known
M/M/1 queuing result T = 1/(µ− λ) [13]. Periodically, each replica site computes
its T and broadcasts it to all the sites in its tree. Upon receiving this value from
site j, site i would add to it the average latency involved in receiving data from j
and broadcast this new value to its neighbors other than j. The latency will reach
all the sites in a recursive way. The added communication cost can be obtained by
having each site periodically query its neighbors and determining this cost.

In the distributed model, there is no central arbitrator. Similar to centralized
model, for a given request for an object k at site i, if there is a local replica available,
then the request is serviced locally incurring a cost Ci,i

k , otherwise the request is sent
to site j having a replica of object k with the least access cost. After every time
period t, each server makes the decision about acquiring or deleting a copy of an
object based on the local statistics.

3.2 The Cost Model

Determining an optimal replication involves generating new allocations and deter-
mining their goodness. The evaluation is done in terms of an objective function
subject to system constraints. The designation of an objective function reflects the
view of goodness of object replication with respect to system design goals. It is not
feasible to completely describe a system with just one objective function; instead,
the objective function should only capture the critical aspects of the system design.
Also, the form and the parameters of the objective function should be proper. That
is, if the objective function indicates that an allocation is better than the other one
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then the actual measurements should concur. Keeping in mind these considerations,
we develop the objective function for object replication problem as follows.

Suppose that the vertices of G issue read requests for an object and copies of
that object can be stored at multiple vertices of G. Let there be total n sites (web
servers) and m objects. Let f i,j

k be the number of read requests for a certain period
of time t issued at site i for object k to site j on π. Given a request for an object k
at site i, if there is a local replica available, then the request is serviced locally with
a cost Ci,i

k , otherwise the request is sent to site j having a least access cost replica

of object k with a cost C
i,LCi

k

k as explained earlier. If X is an n ×m matrix whose
entry xik = 1 if object k is stored at site i and xik = 0 otherwise, then the cost of
serving requests for object k (1 ≤ k ≤ m) at site i (1 ≤ i ≤ n) is given by

TCi
k = (1− xik)f

i,LCi

k

k C
i,LCi

k

k + xikf
i,i
k Ci,i

k (1)

The cost of serving requests for all the objects at site i is given by

TC =
k=m
∑

k=1

TCi
k =

k=m
∑

k=1

[

(1− xik)f
i,LCi

k

k C
i,LCi

k

k + xikf
i,i
k Ci,i

k

]

. (2)

Hence, the cumulative cost over the whole network for all the objects can be writ-
ten as

CC(X) =
n
∑

i=1

m
∑

k=1

[

(1− xik)f
i,LCi

k

k C
i,LCi

k

k + xikf
i,i
k Ci,i

k

]

. (3)

Now, the replica placement problem can be defined as a 0-1 decision problem to
find X that minimizes (3) under certain constraints. That is, we want to

minimizeCC(X) = min
n
∑

i=1

m
∑

k=1

[

(1− xik)f
i,LCi

k

k C
i,LCi

k

k + xikf
i,i
k Ci,i

k

]

. (4)

Subject to
n
∑

i=1

xik ≥ 1 for all 1 ≤ k ≤ m (5)

m
∑

k=1

xiksk ≤ TSi for all 1 ≤ i ≤ m (6)

xik ∈ {0, 1}, for all i, j. (7)

The first constraint specifies that each object should have at least one copy. If
sk denotes size of object k and TSi is the total storage capacity of site i, then the
second constraint specifies that the total size of all the objects replicated at node i
should not exceed its storage capacity.

4 OBJECT PLACEMENT ALGORITHMS

The replica placement problem described in the previous section is reduced to find-
ing 0-1 assignment of the matrixX that minimizes the cost function subject to a set
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of constraints. The time complexity of this type of problems is exponential. In the
next sub-section, we present our proposed centralized object replication algorithms.

4.1 Centralized Object Placement Algorithms

For our first algorithm, we convert our model into a state-space search problem and
then introduce the use of algorithm A∗ from artificial intelligence theory. Before
explaining the algorithm, we define the following terms.

Definition 1. We say that an assignment X is incomplete if not all the objects
and their replicas are assigned under assignment X. Otherwise, X is a complete

assignment.

Definition 2. A state is defined by a list of n sets (S1, S2, . . . , Sn) where Si contains
the objects assigned to site i.

The state-space search tree is built as follows:

1. First of all, we determine the number of replicas for each object according to its
popularity and the available storage space using the density algorithm proposed
in [2]. The algorithm first defines the density of each object as access rate of that
object divided by its size. The larger the object’s density, the more replicas it
should have. Each replica of an object is identified by a unique replica number.
If there are m objects and each object i has ri replicas, then total number of
objects to be replicated is given by R =

∑m
i=1 ri.

2. Arrange the replicas in non-increasing order of their density. This is to make
sure that the objects having higher density value are replicated first to the
best available sites. The reason for ordering the objects with respect to their
density value is that the objects which are heavily accessed by the clients and
have relatively smaller size are considered first for allocation and would have
a greater chance of being allocated to the best site without violating the con-
straints. A similar ordering heuristic has been used in [45] and it was shown
that this heuristic produces better quality solution and converges faster than
other ordering heuristics.

3. The root node has a state (Ø,Ø, . . . ,Ø) indicating that none of the objects has
been assigned to any server.

4. At each subsequent level, nodes are expanded by assigning next replica in the
sorted list to every server to generate n nodes of the next level. This procedure
ends when all the objects have been assigned.

Note that in a state-space search tree, all the internal nodes correspond to
incomplete assignments and all the leaf nodes correspond to complete assignments.
Our goal is to find a leaf node in the tree with an assignment X such that CC given
by (3) is minimum.
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Definition 3. In the state-space search tree, if state of a node corresponding to an
assignment violates any of the constraints, then the node is called an invalid node.
Otherwise the node is called a valid node.

For object replication problem, the state-space search tree can be trimmed down
due to the existence of invalid nodes. Algorithm A∗ searches a subtree of the entire
state space search tree to find a path from the root node to a goal/leaf node. It uses
a heuristic evaluation function f(v) to order nodes for expansion. At each iteration
(step 3 of the algorithm), we select a node v with the minimum f(v) value. If node v
is not a leaf node (i.e. node v corresponds to an incomplete assignment), then it is
expanded by assigning next replica in the sorted list to every server to generate n
nodes of the next level. However, if v is a leaf node (i.e. it corresponds to a complete
assignment), then v is accepted as a solution and no further expansion is required.
The heuristic evaluation function f(v) which is used to order the nodes is defined as

f(v) = g(v) + h(v) (8)

where g(v) is the path cost from root node to node v, and h(v) is an estimation of
the minimum cost path from node v to a leaf/goal node. If node v corresponds to
an incomplete assignment with s replicas (out of total n replicas) already assigned,
then g(v) is defined as

g(v) = CC(Xs
v) (9)

CC(v) =
n
∑

i=1

s
∑

k=1

[

(1− xik)f
i,LCi

k

k C
i,LCi

k

k + xikf
i,i
k Ci,i

k

]

(10)

which is a form of (3) when X is substituted by Xs
v (Xs

v denotes the partial assign-
ment matrix of replicas at node v when only s replicas out of total n have been
allocated to node v). This gives the path cost from the root node to node v. We
define h(v) for a node v corresponding to a replica assignment 1, 2, . . . , s as

h(v) =
R
∑

k=s+1

min(f i,i
k Ci,i

k ). (11)

Note that in (11) minimum has to be taken by assigning each of the remain-
ing replicas to one of the n sites without violating any constraint. The proposed
algorithm is given in Figure 1.

Note that the worst case time complexity of the algorithm is exponential. Also,
the function f(v) is quite complicated and involves a large number of computations.
Furthermore, the number of replicas for each object has to be known. Thus, the
algorithm is suitable only for relatively small systems with known number of replicas
for each object. Therefore, there is a need for efficient heuristics to find suboptimal
allocations in a reasonable computational time.

Our second algorithm (algorithm 2) is a greedy algorithm that proceeds as fol-
lows: for each site i, we assign an object k to site i such that putting a copy of k
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Step 1. Arrange the replicas in non-increasing order of their density.

Step 2. Put root node r = (Ø,Ø, . . . ,Ø) on a list called OPEN and set f(r) = 0.
Step 3. Repeat

Find a node v in the list OPEN with a minimum f value.
If v is not a leaf node then

Expand node v by assigning the next replica in the list to each
of the n sites to generate n successor nodes of node v.
Move all the valid nodes to list OPEN and calculate their f values
according to (8), (10) and (11)

Endif
Until node v is a leaf node

Step 4. Return the assignment associated with node v as a solution.

Fig. 1. The proposed algorithm 1

at i has the maximum unit profit provided no constraints are violated. The profit
is calculated as:

P i
k =































(

f
i,LCi

k

k C
i,LCi

k

k − f i,i
k Ci,i

k

)

/sk if at least one replica of object k

has already been assigned,

(

f
i,WCi

k

k C
i,WCi

k

k − f i,i
k Ci,i

k

)

/sk otherwise.

(12)

Note that equation (12) gives unit profit that is obtained when object k is

replicated at site i. The first term (f
i,LCi

k

k C
i,LCi

k

k ) is the current total cost of accessing
object k that resides at the least cost site (LCi

k) by site i. The second term f i,i
k Ci,i

k

is the cost of accessing the object if a local copy is made (note that the second
term will not be zero since we consider that accessing a local copy incurs processing
cost). Equation (12) is based on an optimistic heuristic [46] and gives the expected
profit of storing a replica at site i. The profit is calculated by taking the difference
between the local access cost and the cost of accessing the object from a least cost
site, denoted by WCi

k, where a replica of i may be placed.
We keep putting the copies of objects at i as explained before until the remaining

capacity at site i is enough to hold the smallest object that has not been assigned
to i. Note that this algorithm does not guarantee that each object will be allocated
to at least one site since heavily accessed objects may get higher number of copies
leaving not enough space for less frequently accessed objects. Therefore, as the last
step of the greedy algorithm, we perform an adjustment operation if all of the objects
have not been allocated. The adjustment operation is carried out by a branch-and-
bound algorithm that adds unallocated objects to suitable sites by removing some
of the replicas. The branch-and-bound algorithm works on the principle that an
unallocated object can only be allocated if one or more already allocated objects are
deleted from a node. Since deleting any of the already allocated nodes will increase
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the total cost, therefore reducing the loss of these deletions will result in a better
allocation.

Let Ki and ξ be set of objects that have been allocated to site i and set of
objects that has not been allocated to any site, respectively. If ξ 6= Ø, then B&B
must be executed. The main steps of the B&B algorithm are described in Figure 2.

Step 1. Find k ∈ ξ that has the highest density.
Step 2. Generate n branches by making forced allocation of object k on each site

i (i.e. xik = 1). This generates n sub-problems, one for each site.
Order the sub-problems in descending profit values given by equation (12).

Step 3. Solve the first sub-problem, maintaining for other sites the previously obtained
allocation. The sub problem is solved as follows:
Order the objects allocated to site i increasing the value of P i

k. Delete
the objects one by one subject to the constraints until addition of object k
at site does not violate any of the constraints. Calculate the net loss
of all deletions made so far.

Step 4. If replication of object k at site i violates any of the constraints, undo step 3,
close the branch and go to step 7.

Step 5. If all the objects are allocated then end else go to step 1.
Step 6. If the net loss is less than incumbent (initially a large number) then store this

allocation as a candidate solution and update incumbent to net loss else close
the branch. Intuitively, a branch is closed when all of its sub-branches are
closed.

Step 7. If all branches are closed then terminate the algorithm with candidate
allocation as a solution, else go to step 3.

Fig. 2. The proposed B&B algorithm

The ordering criteria for deciding which object should be considered first and at
which site it should be allocated first (step 1 and 2) are based on a simple heuristic
that a heavily required object should be allocated first at a site where its usage
requirements are high. This may help in early production of a good feasible solution
which, in turn, makes the bound test more efficient by early fathoming of branches
that do not lead to a better solution [46].

4.2 Distributed Object Placement Algorithm

The algorithms presented in the previous section are centralized in the sense that
a central arbitrator collects all the necessary statistics, determines the placement of
the objects, and reconfigures the system in accordance with the newly determined
allocation. This might involve removing/deleting replicas and adding or migrating
replicas by the central arbitrator. Also, all the servers need to send the locally
collected statistics to the central arbitrator whenever a new allocation is to be de-
termined and hence causes extra network load. Nevertheless, the centralized object
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replication model is useful when the number of servers and the statistics to be sent
to the central arbitrator is small and the reallocation is determined at off-peak time.
On the other hand, in the distributed model, there is no central arbitrator. Rather,
each site determines for itself which objects it should add/remove based on the
current replica placement and locally collected statistics as described in Section 3.1.

Our proposed distributed object replication algorithm is a polynomial time
greedy algorithm where each site keeps the replicas of those objects that are locally
evaluated to be the best replicas. Assume that X (an n×m matrix) represents the
current object replication. Initially X can be determined either by placing a sin-
gle copy of each object to a randomly selected server or by using a simple greedy
algorithm [34, 36]. After every time period t, each site i determines which objects
it should add/remove based on the current replica placement and locally collected
statistics using the following proposed algorithm. If there is only one replica of an
object k that resides at site i, then this replica is not considered for deletion. For
all other objects, the algorithm calculates the unit profit of adding/removing the
replicas. The profit of keeping a replica of object k at site i is calculated by taking
the difference of cost of accessing the object from the least cost site LCi

k 6= i (i.e.
the cost of accessing the object if the local replica is removed and it is accessed from
a least cost server) and the present cost of accessing the replica locally, as explained
in Section 4.1. Similarly, the profit of adding a local replica is calculated by taking
the difference between the present cost of accessing the replica from the least cost
site and the cost of accessing the replica if a replica is kept locally. The algorithm
then sorts all the objects in descending values of their profit and replicates top n
objects which it can accommodate without violating the constraints. The complete
algorithm is given in Figure 3.

Step 1. for each object k.
If server i is the only server having a replica of object k then

profitk = a max number
else

profitk =

∣

∣

∣

∣

(
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i,LCi

k
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i,LCi

k

k − f i,i
k Ci,i

k

)

/sk

∣

∣

∣

∣

// LCi
k 6= i

Step 2. Sort all the objects in descending order of their profit values.
Step 3. Replicate the objects from the sorted list (obtained at step 2) one by one until

there is no space available on server i.

Fig. 3. The proposed distributed algorithm (algorithm 3)

5 EXPERIMENTAL RESULTS

This section presents some performance measures obtained by simulation of the
proposed algorithms. Since the object replication algorithm is NP -complete, com-
puting the exact (optimal) solution is too computationally intensive to be useful in
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practice. Similarly to other studies, we compare the performance of our algorithms
with two well-known algorithms proposed in the literature.

We have run several simulation trials. In each simulation run, we model the web
as a set of trees having 100–600 sites. The total objects to be replicated were 2 000
in all the simulation runs. We use different object sizes which follow a normal
distribution. The average object size is taken as 10KB and maximum size was
taken as 100KB. About 64% objects sizes were in the range of 2KB and 16KB.
The storage capacity of a server was set randomly in such a way that total storage
of all the servers was enough to hold at least one copy of each object at one of the
servers. In each trial, we run the replica placement algorithms for 200 000 requests
for different objects. The number of requests for different objects from all the
clients to the individual servers was generated randomly and different statistics was
collected as described in Section 3.1.

During a simulation run, each site keeps a count c of the total number of requests
it received for an object. The latencies are updated periodically for each replica using
the formula T = 1/(µ− λ) where λ is the average arrival rate and µ is the average
service rate. Exponential service time is assumed with an average service rate of
100 transactions/second. The value of T is propagated to the clients in the shortest
path spanning tree. The cost (latency) at different sites is computed as discussed
in Section 3.1. At the end of every 20 000 requests, the mean latency required to
service all the 20 000 requests is calculated and used as a performance measure of the
simulated algorithms. Note that the communication cost depends on the bandwidth
of the link between two sites. The bandwidth of a link was selected randomly from
{52 kbps, 256 kbps, 100Mbps,1Gbps}.

We studied the performance of our three proposed algorithms and compared it
with that of random allocation algorithm [34], simple greedy algorithm [14], and
Max-router fan-out algorithm [35]. The random algorithm stores replicas at ran-
domly selected nodes subject to system constraints. The number of replicas for
each object was determined by density algorithm [2]. We pick one replica at a time
with uniform probability and one node also with uniform probability; and store that
replica at that node. If the node already has a replica of that object or allocation
of replica at that node violates any of the constraints then another node is selected
randomly until the replica is placed at a node. Since the object placement problem
is an NP -complete and hence optimal solution cannot be obtained for large prob-
lems in a reasonable amount of time, the random algorithm provides a good basic
on which we can determine how good a heuristic performs than that of a simple
random algorithm. The simple greedy algorithm and its variations are the most
commonly used approaches and hence a comparison with it also provides an indica-
tion of goodness of a heuristic. The Max-router fan-out algorithm is based on the
assumption that the nodes with large number of fan-out are eventually the closest
to all other nodes and therefore they are a better choice for replica location [35].

Figure 4 shows the average latency for all the simulation runs for different tree
sizes. The minimum and maximum latencies for various system configurations for
different algorithms are shown in Table 1. Figure 4 shows that the average latency
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decreases for all the algorithms as the number of sites increases in the system. This
is because of the fact that as the number of sites increases, more replicas of an
object can be placed. Also, note that the average performance of algorithm 2 and
algorithm 3 is comparable demonstrating the effectiveness of the distributed algo-
rithm for larger tree sizes. Algorithm 1 performs better than all the algorithms.
The performance of the random algorithm was worst of all the algorithms, as ex-
pected. However, Max-router fan-out algorithm performed, on average, better than
the greedy algorithm and worse than the three proposed algorithms. It was also ob-
served that algorithm 1 and algorithm 2 were able to find the same solution for 58%
of the runs, whereas algorithm 3 was a little inferior to them. It was also observed
that in 21.5% of cases, all the algorithms (except the random one) found the so-
lutions of the same quality in terms of the value of the cost function. There were
only 3.5% of cases when the max-router fan-out produced solution better than al-
gorithm 3. Algorithm 1 and algorithm 2 were always able to find solutions which
were either equal or better than all the other algorithms in terms of the value of
the cost function. However, the running time of algorithm 1 was noted to be much
higher than the rest of the algorithms. In fact, in some cases, the running time
of algorithm 1 was more than 100 times greater than those of algorithm 2 and
algorithm 3.

Figure 5 shows the average performance of the algorithms for all the system
configurations. It is evident from the results that the proposed algorithms perform,
on average, better than the greedy, random and max-router fan-out algorithms.

We also studied the effect of replica replacement to establish the fact that re-
placement is beneficial when there is a change in the object access pattern from
different sites. Figure 6 shows the results obtained in our simulation. For each
tree, we ran the simulation for a number of times, each time changing the access
patterns randomly. Then we calculated the average latency without changing the
object placement and replication. We determined the new object placement and
reconfigured the system according to the new placement determined by each algo-
rithm and calculated the average improvement in latency. Figure 7 clearly shows
that there has been improvement after system reconfiguration. Algorithm 1 again
outperforms algorithm 2 and algorithm 3, whereas the performance of algorithms 2
and 3 is comparable on the average.

# of Algorithm 1 Algorithm 2 Algorithm 3 Greedy Random Max fan-out
sites Min Max Min Max Min Max Min Max Min Max Min Max

100 237 298 265 335 255 338 277 410 350 543 337 396

200 239 280 239 306 229 305 242 379 330 485 221 357

300 210 225 215 250 219 252 236 310 305 420 210 289

400 185 217 185 230 199 247 190 285 270 405 185 267

500 170 215 170 228 182 249 195 255 260 375 197 239

600 155 180 165 205 165 217 185 238 205 318 157 213

Table 1. Maximum and minimum latencies (in msec) for some simulation cases
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Fig. 4. Mean latency for different tree sizes

Fig. 5. Average latency for all simulation runs

Fig. 6. Latency improvement obtained for different tree sizes
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Fig. 7. Average latency improvement obtained by different algorithms

6 CONCLUSIONS

Object replication on a cluster of web servers is a promising technique to achieving
better performance. However, one needs to determine the number of replicas of each
object and their locations in a distributed web server system. Choosing the right
number of replicas and their locations is a non-trivial problem. In this paper, we
presented three new algorithms for object replication in a distributed web-server
environment. The first two algorithms are centralized in the sense that a central
site determines the replica placement in a graph to minimize a cost function sub-
ject to the capacity constraints of the sites. The third algorithm is a distributed
algorithm and hence does not need a central site for determining object placement.
Taken each algorithm individually, simulation results show that each algorithm im-
proves the latency of the transactions performed at different sites as the number of
sites is increased. A comparison of the proposed algorithms with greedy, random
and max-router fan-out algorithms demonstrates the superiority of the proposed
algorithms.
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