
Computing and Informatics, Vol. 24, 2005, 391–413

DISTRIBUTIVE JOIN STRATEGY BASED
ON TUPLE INVERSION

Wang-Chan Wong

Computer Information Systems Department

California State University Dominguez Hills

Carson, CA 90747

e-mail: wcwong@csudh.edu

Lubomir F. Bic

Deptartment of Computer Science

University of California

Irvine, CA 92617

e-mail: bic@ics.uci.edu

Manuscript received 5 October 2005; revised 28 September 2005
Communicated by Atsushi Imiya

Abstract. In this paper, we propose a new direction for distributive join oper-
ations. We assume that there will be a scalable distributed computer system in
which many computers (processors) are connected through a communication net-
work that can be in a LAN or as part of the Internet with sufficient bandwidth.
A relational database is then distributed across this network of processors. How-
ever, in our approach, the distribution of the database is very fine-grained and is
based on the Distributed Hash Table (DHT) concept. A tuple of a table is as-
signed to a specific processor by using a fair hash function applied to its key value.
For each joinable attribute, an inverted file list is further generated and distribu-
ted again based on the DHT. This pre-distribution is done when the tuple enters
the system and therefore does not require any distribution of data tuples on the
fly when the join is executed. When a join operation request is broadcast, each

processor performs a local join and the results are sent back to a query processor
which, in turn, merges the join results and returns them to the user. Note that
the distribution of the DHT of the inverted file lists can be either preprocessed or
distributed on the fly. If the lists are preprocessed and distributed, they have to be

392 W.C. Wong, L. F. Bic

maintained. We evaluate our approach by comparing it empirically to two other ap-

proaches: the naive join method and the fully distributed join method. The results
show a significantly higher performance of our method for a wide range of possible
parameters.

Keywords: Distributed hash table (DHT), distributed join, inverted file

1 INTRODUCTION

Processing a query often involves many join operations. The join is the most costly
and time consuming operation in database query processing, and thus a good join
strategy is essential to performance.

A large amount of work has been done to develop efficient algorithms to perform
the join operations in the 1980s and ’90s. The most common types of join strate-
gies that have been studied are grace join, sort-merge join, nested loops join, and
simple hash join [9, 10]. Most of these algorithms were developed and studied in
a uniprocessor environment. With the constant decrease of hardware costs, multi-
processors or multi-computers become readily attainable. Finding efficient parallel
join algorithms has become one of the most important research topics in data en-
gineering. A significant number of parallel join algorithms have been proposed and
studied [5, 20, 17, 16, 19, 14]. These algorithms are mostly the parallel versions of the
traditional joins, such as sort-merge join, nested-loop join or a combination of dif-
ferent hashing techniques. All these studies have shown that hash based algorithms
in most of cases outperform other join algorithms.

In most of these studies, a join operation between two relations R and S is
implemented first by partitioning the relations and distributing them across a num-
ber of processors. The algorithms then adopt a certain traditional join algorithm
(e.g. grace hash join) to perform the join in the local processors concurrently. The
joined results are then merged to yield the final answers. Although the basic idea
and implementation are quite simple, these approaches suffer two major drawbacks.
First, given two joinable tables, the data distribution has to be sequential: each
tuple is hashed on the joinable attribute and distributed to a processor. Local join
operation cannot commence until the data distribution is finished. (At best, the join
operation can be pipelined, but it still is not fully parallel; the size of data transfer is
relatively large and frequent.) In addition to these disadvantages, once the join ope-
ration is completed, the distributed data files, join index files, etc. are discarded.
The approach is therefore wasteful and becomes very expensive for repeated join
operations.

In recent years, the problem of distributed query processing has been revisited
in a different context: peer-to-peer (P2P) file-sharing systems. Distributed Hash
Tables (DHTs) are used to simplify the construction of large-scale distributed sys-
tems without any centralized control or hierarchical organization. It is shown that

Distributive Join Strategy Based on Tuple Inversion 393

DHTs are very effective to locate a particular data item in a P2P network such as
in PIERSearch [13] and Chord [21] and also in other studies [1, 3, 2, 18].

In this paper, we present our concept of a distributed inverted join, which prepro-
cesses data distribution for joinable tables, allows fully parallel local join operations
to be performed at each local site, and minimizes the number of messages and the
size of the data records transferred. In our approach, data distribution is done when
the table is defined and when tuples are being inserted. For instance, given two
joinable tables, tuples of these two tables are first hashed according to their primary
key values and distributed across the processors. When a join operation involving
these keys is invoked (e.g. these keys are in the same domain and are joinable), it
can be performed at the local processors in parallel.

For each possible joinable attribute (e.g. determined by examining their E-R
diagrams, or from user requirements), their inverted files [12] are generated and dis-
tributed across the network. These distributed values may be retained permanently,
which is in contrast to other studies where the joinable values are hashed and used
on the fly, and are discarded afterward. Since all possible joinable values are distri-
buted, they can be done prior to the actual join operation, instead of distributing
the join values during execution of a join operation as in all other studies. Therefore,
the join operations in our approach are more efficient. Our method is very appealing
for the following reasons:

(1) the preprocessing of joinable values improves our join execution time dramati-
cally;

(2) processors can carry out the join on the hashed join value in parallel, eliminating
extensive data transfer among processors; hence, the traffic is minimal;

(3) with the assumption of a fair hashing function, the number of hashed tuples in
each processor is relatively small. Therefore, the local join operation costs are
also minimal.

The organization of this paper is as follows: in Section 2, the past related studies
will be summarized. We present our concept of distributive joins based on tuple
inversion in Section 3. Section 4 describes how update and deletion can be done
using our approach. In Section 5, we analyze the performance of our approach and
compare it to two other approaches. We conclude our paper in Section 6.

2 RELATED WORK

We summarize several major studies on parallel join in this section. Note that in
these studies, the underlying computational model has not been changed. These
algorithms are mostly the parallel versions of the traditional join algorithms, such
as sort-merge join, nested-loop or a combination of traditional hashing technique
with modifications to adopt them to a multiprocessor environment.

In [5], a multiprocessor version of grace-hash join, hybrid-hash join, and simple-
hash join were studied in multiprocessor-shared-nothing environment. The archi-

394 W.C. Wong, L. F. Bic

tecture model in this study consists of a group of processors with or without disks,
interconnected by an 80 Mbit/second token ring. Tuples in relations R and S are
distributed horizontally across the disk drives and joins are performed in parallel at
each processor. This study has shown that the performance of the multiprocessor
simple hash join and multiprocessor sort merge were most affected due to primary
memory limitations. The sort-merge performed best with 100% of the relations in
memory and the worst in limited memory situations.

The grace join has two stages for partitioning data. With decreasing primary
keys, the number of buckets increases. The overhead due to overflow is small and the
performance is relatively unaffected. The hybrid hash join has the best performance
in limited memory. In [17], parallel versions of sort-merge join, hash-based sort-
merge join, and multiprocessor hybrid-hash join are pipelined to achieve a more
efficient performance. These algorithms are studied on an architecture that has
a set of clusters linked by an intercluster bus or ring. Each cluster has a set of
processors, a shared memory bank addressable by all the processors in the cluster,
and a set of disk storage units and associated controllers. This study shows that the
two hash based algorithms outperform the sort-merge algorithm if the output tuples
are not required in sorted order. However, in the case when the source relations are
already sorted, or the applications require the output tuples to be sorted on the join
attributes, the sort-merge algorithm may be advantageous. The two hash-based
algorithms have the best performance under a very large single cluster. When the
number of clusters increases their performance worsens due to the communication
among clusters.

In [14], the parallel version of the hash-based nested-loop join, simple hash
join, and hybrid hash join are implemented in a shared memory environment. The
multiprocessor architecture consists of a number of processors, where each processor
shares the common memory with other processors through a global hash table.
A locking mechanism is used to regulate any concurrent writes to this global hash
table. The algorithms are studied under different amounts of available memory,
different relation sizes, and different processors in the system. Among these three
algorithms, the simple hash join algorithm performs worst in most cases. When the
number of processors increases and the amount of memory available increases, its
performance becomes comparable to the other algorithms. The hash based nested
loops perform better when the size of both relations is similar. However, when the
size difference between the two relations widens, the hybrid hash outperforms the
other algorithms.

In recent years, the problem of distributed query processing has been revisited
in a different context: peer-to-peer (P2P) file-sharing systems. In a P2P system,
a program running at each node is equivalent in functionality and each node is
a master and client at any given time. Existing P2P systems can be categorized
into two types:

(1) unstructured P2P networks and

(2) structured P2P networks [18].

Distributive Join Strategy Based on Tuple Inversion 395

An unstructured P2P network connects millions of users dynamically in an ad hoc
fashion and hence creates a giant federated file base in which data objects such
as audio/music files, pictures, animations and videos, do not have global unique
IDs and could have multiple copies co-existing in the same network. Queries are
performed on a set of keywords. Gnutella [11], Kazaa [8] and Morpheus [15] are the
most notable unstructured P2P systems. To do a search on the availability of a file,
a query of certain keywords are processed and queries are carried out in a simple
flooding fashion: a node sends the keywords to its P2P neighbors who forward
the query recursively. The flooding mechanism is based on the so-called “time-
to-live” algorithm that is limited to a finite number of hops. The flooding-based
algorithm is not exhaustive. Therefore, these networks do not guarantee results and
most often miss the results that lie beyond their time-to-live search space. On the
other hand, a structured P2P network is characterized by the fact that each data
item has a unique ID. With a unique global ID, a structured P2P network can be
implemented efficiently using distributed hash tables (DHTs). DHTs are used to
simplify the construction of large-scale distributed systems without any centralized
control or hierarchical organization. There are several structured P2P networks
under development, for example, Tapestry [22], Chord [21] and PIERSearch [13].

While structured P2P network based on DHTs are shown to be scalable in sup-
porting file sharing operations, the data items in the search are mostly unstructured
such as audio/music files, pictures, animations and videos. In this paper, we will
demonstrate how DHTs can be applied in a structured and fixed network (instead of
ad hoc, dynamic unstructured network) to improve the join operation performance
of structured data objects, i.e. in a record-based relational database system.

3 OUR APPROACH

We assume that there are two joinable tables R and S in our study. We use a fine-
grain distribution technique such as the DHT that distributes the original tuples
(according to the key values of R and S) and/or non-key values (the non-key values
and the location of their tuples) across the array of processors. The distribution is
done whenever the need to join is identified, instead of partitioning and distributing
the data files right before the join operation is executed (as in most of the studies
of join operation). We first describe the underlying architecture for our parallel join
strategy and then present our algorithms along with examples in detail.

3.1 The Architecture of our Model

The architecture model used in our studies consists of a group of general-purpose
processors with identical capabilities. These processors are linked through an in-
terconnection network such as a Local Area Network or a P2P network. In this
paper, the analysis is done based on a LAN connectivity. Each processor has its
own local memory and local disk storage. These processors share nothing and com-
municate with one and other through messages across the network. Once the data

396 W.C. Wong, L. F. Bic

files are distributed across the network of processors, the distributed data files and
all other index files are stored in the local disks. It is assumed that the bandwidth
of the network is sufficient to handle the task at hand. We further assume that
there is a central query processor that interfaces with the users, generates broadcast
messages, and collects and assembles results for a finished query.

3.2 Our Algorithm

Our main concern is to achieve a better performance on distributive join opera-
tions. In our approach, horizontal partitioning of tables based on the primary key
is done in the preprocessing phase. By examining the E-R diagram, or based on
user requirements, joinable non-key attributes are identified. To support better
performance, we build and distribute the inverted files of these non-key attributes.
Note that generating and distributing the inverted files can be done either in the
preprocessing phase or just in time for the join. If they are generated in the pre-
processing phase, they require maintenance. The inverted file list contains only the
non-key value with the physical location of the actual data records. When a join
operation is invoked, no on-the-fly partitioning of relations and distributing of data
records across the network are needed. Only the inverted files and/or local data files
are used to implement the join. Our join strategy can be divided into three major
phases: a preprocessing phase, a joining phase, and a merging phase. We describe
the procedures for these three phases. We focus on the performance improvement
on joins with two tables (e.g. tables R and S). Multi-way join chain will not be
discussed in this paper.

(a) Preprocessing Phase
Consider the procedure in Figure 1. To distribute tuples of table R, we first apply
a hash function, h1, to the primary key of each tuple in R to determine the desti-
nation processor site that the tuple will be distributed to. After the distribution, at
each site j, the tuples of R are stored locally in a file FRj . Every existing table is
distributed in the same fashion. To insert a record into table R, its primary key is
hashed and distributed to the designated processor.

At each local processor j, a hash index file HRj is created by hashing records
from data file FRj using h2. This is illustrated in lines 2–3 of Figure 2. Another hash
function, h3, is applied to each of the joinable non-key attributes of the tuple. The
idea is to generate the inverted file list tuple for each joinable non-key attribute. For
example, the message 〈insertInverted,RNKi, j.a〉 means that it is an insertInverted
message for the ith non-key value RNKi of R; the corresponding primary key index
is in the ath record of the hash index file of R at site j (i.e. HRj). Note that
the ath record number can be expressed as 〈fid, n〉, where fid is the file ID of HRj and
n is the record number offset of the file. The site number j is basically the IP:port
address of the processor. As such, the inverted file list tuple contains the physical
address of the record in the hash index file of the primary key (i.e. ip:port.fid.n,

Distributive Join Strategy Based on Tuple Inversion 397

R is the table to be distributed across the network
P = number of processors;
FRj = files of R at site j after distribution; where 0 < j ≤ P − 1
h1 = hashing primary key PK of a record to processor number between {0..P − 1}

/* data distribution according to the hashed values of primary key of R */

1: for each tuple c in R do
2: begin
3: j := h1(c[PK]);

send message 〈insertRecord, c of R〉 to j;
/* at site j, upon receiving message 〈insertRecord, c of R〉, stored in the
file FRj */

4: FRj := FRj ∪ c;
5: end;

Fig. 1. Distributing data records to processors

FRj = data file of R at site j after distribution; where 0 < j ≤ P − 1
HRj = hash index file of FRj at site j
h2 = hash (local) primary key PK of record of FRj

a = h2(PK), the hashed record number of HRj

h3 = hash (external) non-key NK of record of FRj to distribute the inverted file
list to the processor of {0..P − 1}

N = number of non-key joinable attributes of R
RNKi = inverted file list of the ith non-key attribute of R, where 0 < j ≤ N − 1
b = h3(NK), the hashed processor number
message = 〈insertInverted,RNKi, j.a〉, inverted file list tuple for the ith

non-key of R, where 0 < j ≤ N − 1

for each tuple d in FRj at site j do
insertRecord(d);

procedure insertRecord(d,FRj)
1: begin // at each site j, create hash index file HRj using h2

2: a = h2(d[PK]); //hashed record number in HRj

3: HRj := HRj ∪ d[PK]; // hash index file on PK of FRj

4: for i := 0 to N − 1 do // for each non-key joinable column of d
5: begin
6: message := 〈insertInverted,RNKi, j.a〉; //inverted file list tuple
7: b := h3(d[RNKi]);
8: send message to processor b;
9: end;

Fig. 2. Generating and distributing inverted file list

398 W.C. Wong, L. F. Bic

where ip is the IP address of the processor or device, port is the designated port
for the operation, fid is the file ID of the relational table and n is the logical record
number). Then external hash function h3 is applied to the RNKi and it returns the
processor number, b. Then a message containing the inverted file list tuple is sent
to processor b. This is illustrated in lines 4–9 in Figure 2.

FRNKij = inverted file of the ith Non-Key of R at site j;
HRNKij = hash index file of FRNKij at site j;
At each site j, upon receiving the message 〈insertInverted,RNKi, j.a〉 do:
(1) insert the tuple in FRNKij

(2) hash RNKi into index file HRNKij

Fig. 3. Indexing the inverted file list

Lastly, upon receiving the inverted file list tuples, the non-key attributes are
indexed and stored locally. This is shown in Figure 3. The same process is applied
to all data tables.

At the end of the preprocessing phase, table R and its inverted file lists for
each of its joinable non-key attributes are distributed across the network. Each
processor j can potentially contain the following tables on R:

(1) FRj, the data file of R;

(2) HRj , the hash index file of FRj containing tuples of 〈key value, address of record
in FRj〉;

(3) FRNKij, the file containing the inverted file list tuples of the ith non-key at-
tribute of R in the format 〈non-key value, physical address of record in some
FR〉, and

(4) HRNKij, the hash index file of FRNKij.

Instead of containing tuples of 〈non-key value, record number of FRNKij〉, by re-
solving the indirection, HRNKij contains tuples of 〈non-key value, physical address
of record in some FR〉. That is, with a non-key value, the physical address of the
data record in the network is always known.

(b) Joining Phase
There are two cases for joining tables R and S. The first case is to join on the
primary key (e.g., the keys of R and S are in the same domain and are joinable).
The second case is when the join involves non-key attributes (primary key joins on
non-key, non-key joins on non-key).

The simplest case is to join on primary keys of these two tables. In this case,
a single message is broadcast to all the processors to do a local join on the keys using
the hash index files of the keys (i.e., HRj andHSj , for the hash index files of tables R

Distributive Join Strategy Based on Tuple Inversion 399

and S at site j). Any traditional join algorithm, such as hash join, nested loop, etc.,
can be applied. If the tuples contain the same join values, they belong to the same
buckets of HRj and HSj . Then the joined tuple 〈join value, addressR, addressS〉 is
returned, where addressR and addressS are physical addresses of the data record of
R and S in FRj and FSj.

When joining with non-key attributes (e.g., join the l attribute of R with the m
attribute of S), each processor j retrieves the corresponding non-key index files
for R and S (e.g. HRNKlj and HSNKmj). Join operations using key and non-key
value are similar. The join, again, yields 〈join value, addressR, addressS〉. Figure 4
describes the procedure.

TR, TS are the hash index file types of either the key or a non-key;
msg := 〈join(R[PK] | R[NKl]), (S[PK] | S[NKm])〉;

// key or non-key l, m of R and S
broadcast msg to all processors;
at processor site j, do:
1: if (R[PK]) then TR := HRj else TR := HRNKlj;

// use either the key or non-key hash index
2: if (S[PK]) then TS := HSj else TS := HRNKSmj ;
3: join TR and TS;
4: return joined tuples in the form of 〈join value, addressR,AddressS〉

Fig. 4. Join operation

(c) Merging Phase
The last phase of the join operation is for the query processor to merge results
returned by each processor and assemble the final answers for the user. The actual
data records indicated in addressR and addressS of the joined tuple are retrieved.
Figure 5 describes the general procedure.

1: for each joined tuple 〈join-value, addressR, addressS〉
2: begin
3: retrieve tuple c at addressR;

retrieve tuple d at addressS;
4: result := result ∪ joined tuple of (c, d);
5: end

Fig. 5. Merging phase

Note that the retrieving and joining are done in a pipeline fashion to achieve
higher parallelism.

400 W.C. Wong, L. F. Bic

4 DELETION AND MODIFICATION

In our method, the joinable non-key inverted file lists are distributed. If these
inverted file lists are to be kept permanently, we need to maintain them when the
database table is modified.

4.1 Deletion of a Tuple

To delete tuples from the database table, we first need to determine where the actual
tuples are located. Messages are then sent to those sites. At each site, upon receiving
the delete messages, we find out where the inverted file lists are distributed. Another
set of messages is sent to delete records of the inverted file lists. The steps are shown
in Figure 6.

D = set of tuples to be deleted in table R
j, k = sites (processors)
N = number of non-key attributes of R
for each d in D do

deleteRecord(d, R);
procedure deleteRecord(d, R)

begin
j := h1(d[PK]); // to determine where the data record is distributed to
send 〈deleteRecord d[PK], R〉 message to processor j;

end;
At each site j
(1) Upon receiving 〈deleteRecord d[PK], R〉

for each non-key value NKi of d, i = 0..N − 1 do
begin

k := h3(d[NKi]); //to determine where the inverted is distributed to
send 〈deleteInverted d[NKi], R〉 to k;
delete d of FRj and update HRj;

end;
(2) Upon receiving 〈deleteInverted d[NKi], R〉, delete records in FNKRi and

its index file HNKRi.

Fig. 6. Deletion procedure

4.2 Modification of a Tuple

An update can be in one of three forms:

(1) tuples identifiable by primary key, for instance, example (a) in Figure 7;

Distributive Join Strategy Based on Tuple Inversion 401

(2) tuples identifiable by a conditional expression over some attributes (key or non-
key), for instance, examples (b) and (c); and finally,

(3) all tuples updated without any condition (example (d)).

(a) Update EMP (b)Update EMP
Set Salary = 1000 Set Salary = 1000
where EID = 100; //key = EID where Name = ’Smith’; //Name is non-key

(c) Update EMP (d)Update EMP
Set Salary = 1000 Set Salary = Salary + 100; //for all employee
where Name = ’Smith’
And Dept = ’Sales’;

Fig. 7. Update Examples in SQL

Updates in our approach are implemented with deletion and insertion. The
basic idea is to identify all the affected data records, delete them, and insert the
new data records with the updated values. Deletion of the data records triggers and
propagates the deletion to all affected inverted file lists. Inserting a new data record
with the updates generates the new inverted file lists. Figures 8 and 9 describe the
update procedures. Further refinement without using the delete and insert approach
is possible but will not be addressed in this paper.

5 EMPIRICAL STUDY

In this section, we compare our method to two other approaches. The first approach
(Case 1) is the naive join method, in which the tables are not distributed. When
a join is invoked, one of the tables is transported entirely to the node of the other
table. Then a local join is performed. This approach sets the upper bound on how
a join could behave in the worst-case scenario. The second approach (Case 2) is
a fully distributed join strategy, in which the join tables R and S are not distributed
to begin with. When the join operation is invoked, they are distributed across the
entire network according to the join attribute values. The partitioned R and S at
each local node are then joined. The results are assembled and returned. This is
the state-of-the-art approach that many commercial database systems are using.

Our approach (Case 3), discussed in Section 3, is analyzed and compared to
Cases 1 and 2. However, we do not implement the idea of pre-distribution of the
possible inverted file list. In this case, only tables R and S are pre-distributed. The
inverted file lists are to be generated and distributed on the fly. We demonstrate
that even without the pre-distribution of the inverted file lists, our approach still
outperforms Case 2.

402 W.C. Wong, L. F. Bic

msg: 〈update oldA, newA, condition, R〉 where oldA and newA refer to the
old attribute value(s) and new attribute value(s) after the update and the
condition is the update condition

D: set of affected data record addresses
I: set of updated data records to be inserted

At the query processor, upon receiving message 〈update oldA, newA, condition, R〉
if condition is not null then

begin
D := eval(condition);

//evaluate the conditions and return the set of affected data records
I := replace(D, oldA, newA); // generate the updated data records
for each d in D, send message 〈deleteRecordd, R〉;
for each i in I , send message 〈insertRecordi, R〉;

end;
else // condition is null, for all data records in R, update oldA to newA

begin
refresh(oldA, newA,R);

end;
end if;

Fig. 8. Update procedures

5.1 Performance Analysis

For all the cases analyzed, we assume that there are two databases in a local area
network connected by either a regular Ethernet or Fast Ethernet. We also assume
that both databases (R and S) have the same size. Most of the constants and the
parameters described in Figure 10 are based on common timing parameters adopted
by different researchers and can be found in [17]. Based on this information, we
define the cost functions of the above three cases.

Case 1: A Naive Join Approach
In the naive approach, tables are not distributed. When a join is invoked, one of
the two joinable tables (e.g., the smaller one, say table S) will be transported to
the site of the other table, followed by a local join. The time components can be
described as follows

tds = ps× (T READ PAGE+ T SEND PAGE),

where tds is the time to read all pages of table S and sending them to the site of
table R. Then, a hash join is invoked to join both tables and its time is computed

Distributive Join Strategy Based on Tuple Inversion 403

n = number of subconditions;
condition = subcondition1 [and|or] subcondition2 [and|or] . . . subconditionn
listi = data records that satisfy subconditioni;
D = Set of data record physical addresses
I = Set of updated data records

function eval(condition) return D
begin

for each subconditioni in {0..n− 1} do
retrieve data record addresses that satisfiy subconditioni to listi;

resolving the conditional expression list1 [and|or] list2 [and|or] . . . listn−1;
/* e.g. intersection, union of the lists */

return the result of the conditional expression evaluation;
end;

function replace(D, oldA, newA) return I
begin

I is initially empty;
for each d in D do
begin

retrieve data record t of d;
replace oldA with newA in t;
I := I ∪ t;

end;
return I ;

end;

procedure refresh(oldA, newA,R)
begin

deleteRecord(t, R); //Figure 6
replace oldA with newA in t;
insertRecord(t, R); //Figure 2

end;

Fig. 9. Update procedures

as

ths = ps× T READ PAGE + sizeof(S)× (T HASH + T PUT HASH),

where ths is the time to generate the hash table of S by summing up the time to
scan the table, the time to hash the records, and the time to insert them into the
hash table. Similarly, the time to generate the hash table for R is obtained by

thr = pr × T READ PAGE + sizeof(R)× (T HASH + T PUT HASH).

404 W.C. Wong, L. F. Bic

Constants
PAGE SIZE = 32Kbyte – page size
T READ PAGE = 15 – time takes to read a page from disk to memory (ms)
T HASH = 0.003 – time takes to compute the hash function (ms)
T PUT HASH = 0.01 – time takes to put hashed data in memory (ms)
T COMPARE = 0.005 – time takes to compare data when hashing (ms)
T SEND PAGE – time takes to send a page of data through network

25.6ms if the network transmission rate is 10Mbps
2.56ms if the network transmission rate is 100Mbps

Variables
pr – number of pages of R
ps – number of pages of S
phr – number of pages of “hashed” R
phs – number of pages of “hashed” S
tdr – time to distribute R
tds – time to distribute S
thr – time to create hash file of R
ths – time to create hash file of S
tjhrs – time takes to join “hashed” R and “hashed” S
tassemble – time takes to assemble
ttotal – total time
nSites – number of sites in the network
h rec per page – number of hash records that a page contains
selectivity – the selectivity of the join

Variables for Case 3
inverted rec size – inverted record size
FRj , FSj – local tables R and S at site j
PFRj , PFSj – number of pages of FRj , FSj

FRNKxj , FSNKyj – inverted file list of the xth and yth non-key of R and S
PFRNKxj , PFSNKyj – number of pages of FRNKxj , FSNKyj

HRNKxj , HSNKyj – hash index files of FRNKxj, FSNKyj

PHRNKxj – number of pages of HRNKxj

PHSNKyj – number of pages of HSNKyj

tdr j , tds j – time to distribute inverted file list of R and S at site j
tlocalJoin j – time to do local join at site j
tmerge – time to merge

Fig. 10. Empirical study constants and parameters

Distributive Join Strategy Based on Tuple Inversion 405

After the hash tables are created, a hash join is performed. The time to perform
the hash join is

tjhrs = (phr + phs)× T READ PAGE + phr × h rec per page× T COMPARE.

The results of the local join is assembled and returned to the query processor. The
time of assembling is

tassemble = (selectivity× sizeof(R)× sizeof(S))/PAGE SIZE× T SEND PAGE.

The total time to implement this approach is therefore:

ttotal = tds + thr + ths + tjhrs + tassemble (1)

Case 2: Fully Distributed Join at Execution
In this approach, tables R and S are partitioned and distributed across the network.
At each site, a local hash join on the local R and S is performed. The results are
assembled and sent back to the query processor. The total time of the join operation
is calculated using the formula

ttotal = max(tdr, tds) + max(thr, ths) + tjhrs + tassemble (2)

The equation takes the maximum of the times to distribute R and S, and the
maximum of the times to hash both local R and S tables, plus the time to do a local
join and the time to assemble and return the records.

The times to partition and distribute the tables are

tdr = pr× (T READ PAGE + T SEND PAGE)

tds = ps× (T READ PAGE+ T SEND PAGE).

At each site, the times to create the local hash files for tables R and S are

thr = phr × T READ PAGE+ h rec per page× (T HASH + T PUT HASH)

ths = phs × T READ PAGE + h rec per page× (T HASH + T PUT HASH).

The time to do the local join at each site is

tjhrs = max(phr, phs) × (T READ PAGE + h rec per page× T COMPARE).

Finally, the average time it takes to assemble together the records is

tassemble = ((selectivity× sizeof(R)× sizeof(S))/PAGE SIZE)

×T SEND PAGE)/nSites.

406 W.C. Wong, L. F. Bic

Case 3: Distributed Join with Tuple Inversion
In our approach, we assume that the databases were already distributed over the
local network. When a join query is posted, the inverted file list of the join at-
tributes are generated and distributed. The time to process the join query has
several components:

1. Create and distribute inverted file lists

Upon receiving the join query, at each site, the following steps are carried out:

(a) create the inverted files FRNKxj and FSNKyj, the inverted files based on FRj

and FSj ;

(b) distribute FRNKxj and FSNKyj;

(c) at each site that receives FRNKxj and FSNKyj , create the hash index file
on FRNKxj and FSNKyj, e.g., HRNKxj , HSNKyj;

2. Process local joins on HRNKxj, HSNKyj , and

3. Merge the results.

The total time to process is

ttotal = the longest time in (1) + the longest time in (2) + merge.

One of the improvements in the proposed method is that we do not send the ac-
tual records through the network to join. The inverted file list has the format
of 〈attribute value, physical address of the data record〉. The physical address takes
the form of ip.fid.n, where ip is the IP address of the site; fid is the file ID in the
file system at this site, and n is the record number offset in fid. Since the inverted
file list record is much smaller than the record itself in size, we can pack more infor-
mation in each memory page, hence shortening the time it takes to send the data
through the network.

The time to create and distribute the xth inverted file list at site j is:

tdr j = PFRj × (T READ PAGE+ T PUT PAGE) // generate FRNKxj

+ PFRNKxj × T SEND PAGE // send pages of FRNKxj

+ PFRNKxj × (T READ PAGE +T PUT PAGE)// create HRNKxj

+ sizeof(FRNKxj)× (T HASH + T PUT HASH);

The value of tds j with the yth inverted file list at site j is obtained in the same
manner.

At each site j, the local join of the xth and yth inverted file list is denoted by
the equation

tlocalJoin j = max(PHRNKxj ,PHSNKyj)× h rec per page× T COMPARE.

After the distribution, hashing, and joining together of the inverted file lists, we
can send the actual records, according to the inverted file lists, which contain the

Distributive Join Strategy Based on Tuple Inversion 407

physical addresses of the actual records, across the network to designated nodes for
the merge. The average merge time of the records is calculated by

tmerge = ((selectivity× (sizeOf(R) + sizeOf(S))/PAGE SIZE)

×(T SEND PAGE + tassemble)

where tassemble is the same as in Case 2.
Finally, the total time is the sum of all the equations from above:

ttotal = max(tdr j , tds j) +max(tlocalJoin j) + tmerge (3)

for all j where 0 ≤ j ≤ nSites− 1.

5.2 Analytical Results

Based on the time functions (Equations (1), (2), and (3) discussed above, we carried
out the empirical studies to examine the performance of the three approaches. To
simplify the computations, we made the following assumptions:

1. both tables R and S are of the same size.

2. distributions of tables R, S and their inverted file lists to each site are uniform.

Therefore, all tables and hash index files at every site are of the same size. We
further assumed that the record size is 256 bytes, bucket size is 128 bytes, and the
hashed record size of the inverted file list is 68 bytes. With these assumptions,
depending on the sizes of tables R and S, the sizes of local tables (FRj, FSj, PFRj,
PFSj , FRNKxj , FSNKyj, etc., as shown in Figure 10 are determined.

Constants: 10 Mbs, 4 Sites, 10% Selectivity

0

200

400

600

800

1000

10 20 30 40 50 60 70 80 90 10
0

Database Size x 1000

ti
m

e
x

10
00

 m
s

Case 3
Case 2
Case 1

Fig. 11. Comparisons among Cases 1, 2, and 3

408 W.C. Wong, L. F. Bic

Study 1. We first compared all three cases in a network of 4 nodes with regular
Ethernet (10Mbs) and a selectivity of 10%, by varying the table sizes. The
results are depicted in Figure 11. It is obvious that the naive method of Case 1
performs worst since it has to transport the entire table from one node to the
other. The number of nodes does not help improve the local join since both
tables will be joined locally within one node. As for Case 2 and our method
(Case 3), the gap between them widens as the table size increases. Case 1
serves as a base line to judge the preliminary performance of Case 2 and Case 3.
Next we concentrate on comparing Case 2 and Case 3 alone, since both showed
a significant improvement over Case 1.

Constants: 10 Mbs, Database Size = 100,000

0

50

100

150

200

250

300

350

2 6 8 12 16

Number of Sites

ti
m

e
x

10
00

 m
s

Case 2: Selectivity= 5%

Case 2: Selectivity =
10%
Case 3: Selectivity = 5%

Case 3: Selectivity =
10%

Fig. 12. Comparisons on Selectivity for Case 2 and Case 3

Study 2. The next empirical study was to compare Case 2 with our method. We
wanted to see how the network distribution affects performance. In this study,
we held both the network transmission rate of 10Mbs (regular Ethernet) and the
table size of 100 000 records constant. We varied the number of nodes and the
selectivity between 5% and 10%. The results are plotted in Figure 12. There
are four curves in the figure. However, both curves for case 3 are so close to each
other that they cannot be distinguished. The results indicate that selectivity has
more impact on Case 2 than on Case 3. Furthermore, it is obvious that both
methods benefit from increased distribution (i.e., more nodes in the network
that perform the local joins concurrently). However, the increase of distribution
improves the overall performance much significantly in our method (Case 3)
than in Case 2.

Study 3. In this study, we fixed the selectivity to 10% and the network speed at
10Mbs, which represents a typical database environment. We compared both
cases by varying the number of nodes and between two different table sizes. The
results are depicted in Figure 13. The results show that the table size and the

Distributive Join Strategy Based on Tuple Inversion 409

Constants: 10 Mbs, Selectivity = 10%

0

50

100

150

200

250

300

350

2 6 8 12 16

Number of Sites

ti
m

e
x

10
00

 m
s Case 2: Database Size =

50000
Case 2: Database Size =
100000
Case 3: Database Size =
50000
Case 3: Database Size =
100000

Fig. 13. Comparisons on Database Sizes for Case 2 and Case 3

degree of distribution (i.e. number of sites) are significant factors to distinguish
our method from Case 2. As the table size grows, distribution has more impact
on Case 2 than on our method.

Constants: 100 Mbs, Selectivity = 10%

0

20

40

60

80

100

120

2 6 8 12 16

Number of Sites

ti
m

e
x

10
00

 m
s Case 2: Database Size =
50000
Case 2: Database Size =
100000
Case 3: Database Size =
50000
Case 3: Database Size =
100000

Fig. 14. Comparisons on Network Speed for Case 2 and Case 3

Study 4. Finally, we compared Case 2 and Case 3 to examine the effects of net-
work speed. The study is the same as Study 3 except that the network speed
was modified to 100Mbs (as in Fast Ethernet). The results are shown in Fi-
gure 14. While both methods improve over Study 3 in terms of the total time
required to perform the join, our method benefits more from the increase of
distribution than Case 2. However, it also shows that if the degree of distri-

410 W.C. Wong, L. F. Bic

bution is relatively low (e.g., 3 sites), our method could perform worse than
Case 2.

5.3 Discussions

The above empirical studies demonstrated that our method performs much better
than both Cases 1 and 2. One reason is the apparent advantage of pre-distributing
the tables before a join is invoked. The second reason is that our method distributes
the tuple inversion list in a very fine-grained manner. It takes advantage of the
distribution more than Case 2. The only situation where our method may not be
desirable is when the degree of distribution is relatively low (e.g., 3 sites) and the
network speed is high. In this case, our method suffers more overhead to send the
inverted lists and retrieve the resulting tuples, and there is not enough distribution
to benefit from.

6 CONCLUDING REMARKS

It is obvious that join performance can be improved if we distribute database tables
as they are created and as records are entered from the applications. However, pre-
distribution may have a problem because a join may not involve the attributes that
a given pre-distribution is based on (e.g., non-key joins). In this paper, we presented
a practical and effective strategy to fully utilize the availability of massive distributed
database tables. Our method is based on tuple inversion, in which the inverted lists
of the join attribute values are distributed to the nodes across the network. Local
joins on these inverted lists are then performed. The results are then assembled and
returned. We further identified the cost components of our method and carried out
an empirical study to compare the performance of our method to two other methods.
The empirical studies indicate that our method utilizes the increase of distribution
more effectively than the other methods and, in general, our method outperforms
them with a significant margin. Obviously, maintaining the distributed inverted file
list adds overhead to the performance in general. However, the maintenance cost is
subject to the update ratio of the application and is a tradeoff between the cost of
join retrievals and database updates.

Our work is significantly different from a typical DHT-based file sharing P2P
system in the following manner:

1. We are concerned mainly with structured, record-based relational database sys-
tems rather than unstructured file objects such as audio/music, pictures, ani-
mations and videos.

2. In our system, there exists only one single source of records instead of multiple
occurrences of files as in a P2P system.

3. The underlying network in our approach is fixed instead of an ad hoc and dy-
namic structure as in P2P.

Distributive Join Strategy Based on Tuple Inversion 411

4. We apply DHT at two levels to improve the join performance. The first level
DHT, similar to most P2P DHT implementations, is applied to distribute tup-
les of relational tables to the processors. At a second level, for each non-key
attribute, a second DHT is applied to distribute the inverted list of the first
DHT. Join operations on non-key attributes are done locally at each node on
the non-key attribute of the inverted file list generated by the second level DHT
without the need of distributing records throughout the network.

The motivation for this work is based on the fact that, as a rule of thumb, the
selectivity of a typical join operation is around 10% to 15% on the average. It makes
a lot of sense to distribute the inverted file list DHT instead of all the records.

With the rapid improvement of the Internet connectivity and bandwidth, we
believe that our approach will work equally well in a P2P network. Assuming there
are a large number of processors in a P2P network, the DHTs can be kept in main
memory since each processor needs to maintain a relatively small portion of the
DHTs. It has shown that a main memory database (MMDB) performs well since it
reduces the disk I/Os [4, 20, 6, 7]. Of course, other issues, such as fault tolerance
and recovery, will still need to be addressed.

REFERENCES

[1] Arcangeli, J. P.—Hameurlain, A.—Migeon, F.—Morvan, F.: An Adaptive
Hash Algorithm using Mobile Agents. Proceedings Net. ObjectDays 2002, Erfurt,
Germany, Oct. 8, 2002.

[2] Cates, J.: Robust and Efficient Data Management for a Distributed Hash Table,
Master Thesis. Dept. of Electrical Engineering and Computer Science, MIT, June
2003.

[3] Considine, J.: Cluster-based Optimizations for Distributed Hash Tables. Technical
Report 2002-031, Computer Science Dept, Boston University, November, 2002.

[4] Dewitt, D. J., et al.: Implementation Techniques for Main Memory Database Sys-
tem. Proceedings of SIGMOD 84, Boston, June 1984, 1–8.

[5] Dewitt, D. J.,—Gerber, R.: Multiprocessor Hashed-Based John Algorithms. Pro-
ceedings of VLDB 85, Stockholm, Aug. 1985, pp. 151–164.

[6] Garcia-Molina, H.—Lipton, R. J.—Valdes, J.: A Massive Memory Machine.
IEEE Transactions on Computers, Vol. c-33, 1984, No. 5, pp. 391–399.

[7] Garcia-Molina, H.—Salem, K.: Main Memory Database Systems: An Overview.
Trans. on Knowledge and Data Engineering, Vol. 4, 1992, No. 6, pp. 509–516.

[8] Kazaa: How Peer-to-Peer and Kazaa Media Desktop Work. http://www.kazaa.com/
us/help/guide-aboutp2p.htm.

[9] Kim, W.: Global Optimization an SQL-Like Nested Query. ACM Trans. Database
System. Vol. 7, No. 3, pp. 443–469.

412 W.C. Wong, L. F. Bic

[10] Kim, W.: Global Optimization of Relational Queries: A First Step. In Query Pro-

cessing in Database Systems, W. Kim, D. Reiner, and D. Batory, Eds. Springer, New
York.

[11] Klingberg, T.—Manfredi, R.: RFC-Gnutella.

http://rfc-gnutella.sourceforge.net.

[12] Knuth, D.: The Art of Computer Programming. Vol. 3. Addison-Wesley, 1972.

[13] Loo, B. T.—Hellerstein, J.—Huebsch, R.—Shenker, S.—Stoica, I.:, En-
hancing P2P File-Sharing with an Internet-Scale Query Processor. Proceedings of
the 30th VLDB, Toronto, 2004.

[14] Lu, H.—Tan, K. L.—Shan, M.C.: Hashed-Based Join Algorithms for Multi-
processor Computers with Shared Memory. Proceedings of VLDB 90, Australia,
Aug. 1990.

[15] Morpheus: http://www.morpheus.com/index.html.

[16] Qadah, G. Z.—Irani, K.B.: The Join Algorithms on a Shared-Memory Multipro-
cessor Database Machine. IEEE Trans. Software Engineering. Vol. 14, 1988, No. 11,
pp. 1668–1683.

[17] Richardson, J. P.—Lu, H.—Mikkilineni, K.: Design and Evaluation of Parallel
Pipelined Join Algorithms. Proceeding of SIGMOD 87, San Francisco, May 1987,
pp. 399–409.

[18] Sarshar, N.—Boykin, P.O.—Roychowdhury, V.: Percolation Search in Power
Law Networks: Making Unstructured Peer-to-Peer Networks Scalable. Proceedings of
the 4th IEEE International Conference on Peer-to-Peer Computing, Use of Computers
at the Edge of Networks, August 2004, Zurich, Switzerland.

[19] Schneider, D.A.—Dewitt, D. J.: A Performance Evaluation of Four parallel
Join Algorithms in a Shared-Nothing Multiprocessor Environment. Proceedings SIG-
MOD ’89, Portland, Oregon, June 1989, pp. 110–121.

[20] Shapiro, L.D.: Join Processing in Database Systems with Large Main Memories,
ACM Trans. Database System., Vol. 11, 1986, No. 3, pp. 239–264.

[21] Stoica, I.—Morris, R.—Karger, D.—Kaashoek, M.—Balakrishnan, H.:
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications, SIG-
COMM 01, San Diego, 2001.

[22] Zhao, B.—Kubiatowicz, J. D.—Joseph, A.: Tapestry: An Infrastructure for
Fault-Tolerant Wide-Area Location and Routing, Tech Report CSD-01-1141, UC
Berkeley, April, 2001. Conference, KR ’89, Toronto, May 1989, pp. 276–288.

Distributive Join Strategy Based on Tuple Inversion 413

Wang-Chan Wong received his Ph.D. and M. Sc. in computer

science, and M. Sc. in business administration from University
of California at Irvine. He also received a B.B.A. (Hon) from
the Chinese University of Hong Kong. He was a tenured full
professor of computer science at California State University; he
is currently with the Computer Information Systems of the same
campus. He is the founder and president of KBQuest Group,
a global IT service provider with offices in the US, Hong Kong
and Shanghai, China. His research interests are in database
systems, object technology, software engineering, performance

evaluation, distributed computing systems, and eCommerce. Current research projects
include eCommerce, Peer-to-Peer collaborative work, bio- medical informatics and know-
ledge management systems.

Lubomir F. Bi
 received his M. Sc. degree in computer science
from the Technical University Darmstadt, Germany, in 1976 and
his Ph.D. in information and computer science from the Univer-
sity of California, Irvine, in 1979. He is currently Professor and
Co-Chair of the Computer Science Department at the Univer-
sity of California, Irvine. His primary research interests lie in
the areas of parallel and distributed computing. Currently he is
co-directing the Messengers Project, which explores the use of
self-migrating threads to simplify the programming of computa-
tionally intensive applications and to improve their performance
in distributed computer environments.

