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Abstract. In the paper, we improve the Local Binary Pattern Histogram (LBPH)
approach and combine it with Dual-Tree Complex Wavelet Transform (DT-CWT)
to propose a Dual-Tree Complex Wavelet Transform based Local Binary Pattern
Weighted Histogram (DT-CWT based LBPWH) method for palmprint representa-
tion and recognition. The approximate shift invariant property of the DT-CWT and
its good directional selectively in 2D make it a very appealing choice for palmprint
representation. LBPH is a powerful texture description method, which considers
both shape and texture information to represent an image. To enhance the repre-
sentation capability of LBPH, a weight set is computed and assigned to the finial
feature histogram. Here we needn’t construct a palmprint model by a train sam-
ple set, which is not like some methods based on subspace discriminant analysis
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or statistical learning. In the approach, a palmprint image is first decomposed
into multiple subbands by using DT-CWT. After that, each subband in complex
wavelet domain is divided into non-overlapping sub-regions. Then LBPHs are ex-
tracted from each sub-region in each subband, and lastly, all of LBPHs are weighted
and concatenated into a single feature histogram to effectively represent the palm-
print image. A Chi square distance is used to measure the similarity of different
feature histograms and the finial recognition is performed by the nearest neighbor-
hood classifier. A group of optimal parameters is chosen by 20 verification tests
on our palmprint database. In addition, the recognition results on our palmprint
database and the database from the Hong Kong Polytechnic University show the
proposed method outperforms other methods.

Keywords: Biometrics, palmprint recognition, dual-tree complex wavelet trans-
form, local binary pattern, histogram, feature extraction
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1 INTRODUCTION

With the increasing demand for information security and social security, biomet-
ric recognition which uses physiological characteristics of a person to recognize the
identity of a person has taken on more importance. Palmprint recognition, as a rela-
tively new branch of biometric recognition, uses the features of palmprints to identify
a person, that is, principal lines, wrinkles, ridges, minutiae points, singular points
and texture etc. The principal lines and wrinkles in a palmprint convey a large
amount of information that can uniquely identify a person and they can be ob-
tained from a low resolution image. Moreover, the features of a palmprint vary very
little over time and they are difficult or impossible to be fabricated. Thus, palm-
print recognition has received significant attention from research fields and security
applications [1, 2, 3, 4].

Comparing with other biometric recognition technologies, limited work has been
reported on palmprint recognition, despite the importance of palmprint features. In
recent times, some representation approaches have been proposed in the previous
work. These methods can be mainly classified into three types: the methods of
using structure feature, texture feature and algebraic feature, respectively.

The first type includes the recognition approaches of using point feature and
line feature. For instance, Duta [5] defined some points in the principal lines and
extracted these points to realize palmprint recognition. Zhang and Shu [6] proposed
direction projection algorithm to extract datum features and used improved tem-
plate algorithm to extract line features. Both invariant datum features and line
features were used to identify an individual. X.Q. Wu [7] devised a set of directional
line detectors to extract the principal lines and then classified the palmprint by the
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number of these principal lines and the intersections of these principal lines. These
methods demand high quality palmprint images and good feature extraction and
matching algorithms.

The second type uses linear discrimination analysis to extract algebraic features
of palmprints, such as Eigenpalms [8], Fisherpalms [9], ICA [10]. They all inher-
ently suffer from a generalizability problem: a training procedure is unavoidable.
For example, for linear discrimination analysis approaches, in order to seek for the
directions which are advantageous for discrimination to represent the final classifi-
cation, each palmprint image is considered as a point in a high-dimensional image
space to construct a training set to compute the discriminant subspace and extract
algebraic features of palmprints. However, the discriminant subspace is greatly de-
pendent on the training set. Once the training set is subject to change, the whole
training procedure will be repeated. Because of the population explosion and mass
migration movements, the generalizablity problem will give rise to a huge bottleneck
for most real-work palmprint recognition applications.

The last one includes the methods of using Global Texture Energy(GTE) [11],
Fourier transform [12], fuzzy directional element energy feature [13], Gabor filter [14]
and wavelet transform [15] etc. Though these methods can easily extract texture
features of palmprints, they are not strong enough. In recent years, some statistical
learning methods are used to enhance the representation capability of texture de-
scriptors. For example, X. J. Wang [16] proposed a palmprint identification approach
using boosting local binary pattern histograms to extract and represent the local
features of palmprints. In the method, AdaBoosting algorithm was used to select
sub-windows with more discriminative information for classification. G.Y. Chen [17]
investigated the application of the dual-tree complex wavelet and support vector ma-
chines (SVM) for palmprint classification. By using statistical learning algorithm,
texture features based palmprint classification methods are more effective, but they
are not entirely independent on the training set.

In order to resolve these problems, we improve the Local Binary Pattern His-
togram (LBPH) approach and combine it with Dual-Tree Complex Wavelet Trans-
form (DT-CWT) to propose a dual-tree complex wavelet transform based Local Bi-
nary Pattern Weighted Histogram (DT-CWT based LBPWH) method for palmprint
recognition. In the method, a palmprint image is transformed into complex wavelet
domain by a DT-CWT and a number of decomposition levels of the palmprint image
are obtained. In each decomposition level, there are six subbands in different orien-
tations. To obtain more useful texture information from these subbands, each of
them is divided into multiple non-overlapping sub-regions and sub-histograms are
extracted from each labelled sub-region by a LBP operator independently. Finally,
these sub-histograms are weighted and concatenated into a single feature histogram
to represent the palmprint image. For classification, histogram intersection method
is used to measure the similarity of feature histograms of different palmprint images.
Therefore, a training procedure is unnecessary to construct palmprint model in the
proposed method, that is, the method is entirely independent on the training set.
20 verification tests on our palmprint database are used to choose a group of opti-
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mal parameters for the proposed method. In addition, the recognition results on our
palmprint database and the database from the Hong Kong Polytechnic University
show the proposed method outperforms other methods.

The rest of the paper is organized as follows: A brief description of dual-tree
complex wavelet transform is given in Section 2. Section 3 describes local binary
pattern method and the dual-tree complex wavelet transform based local binary
pattern weighted histogram method in detail. Section 4 reports the experimental
results and analysis. Finally, the conclusion is given in Section 5.

2 DUAL-TREE COMPLEX WAVELET TRANSFORM

Wavelet techniques are successfully applied to various problems in image processing
and pattern recognition. However, a major problem of the common decimated
Discrete Wavelet Transform (DWT) is its lack of shift invariance. This means that
on shifts of the input signal, the wavelet coeflicients vary substantially. However,
the property of shift invariance is very important in invariant pattern recognition.
Because complex wavelet transform does not suffer from the problem, it can be
a simple solution to the shortcoming of DWT. However, traditional formulations of
complex wavelets are seldom used because they generally suffer from either lack of
speed or poor inversion properties [18]. Fortunately, Kingsbury [19, 20] developed
DT-CWT to solve these two fundamental problems while retaining the properties
of nearly shift invariance and directionally selectivity in two and higher dimensions
that complex wavelets provide. Dual-tree complex wavelet transform attains these
properties by replacing the tree structure of the conventional wavelet transform
with a dual tree. He proposed a simple delay of one sample between level 1 filters
in each tree, and then the use of linear-phase filters with alternate odd-length and
even-length; but he pointed out that there are some problems with the odd/even
filter approach. Thus, he proposed a new Q-shift dual-tree [21]; the structure of 1D
Q-shift dual-tree is shown in Figure 1.

In the course of implementation of DT-CWT, there are tow sets of filters used,
the one set of filters at level 1, and the other set of filters at all higher levels. The
filters beyond level 1 have even length but are no longer strictly linear phase and
have a group delay of approximately 1/4. The required delay difference of 1/2
sample is achieved by using the time reverse of the tree and filters in tree b. At each
scale one tree produces the real part of the complex wavelet coefficients, while the
other produces the imaginary parts. Note that dual-tree complex wavelet transform
employs two real DWTs in essence, and complex coefficients only appear when the
two trees are combined. DT-CWT has the following properties:

1. nearly shift invariance;

2. good selectivity and directionality in 2D (or higher dimension) with Gabor-like
filters;

3. perfect reconstruction (PR) using short linear phase filters;
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Fig. 1. The 1D Q-shift dual tree structure [21]

4. limited redundancy, independent of the number of scales, for example, a redun-
dancy factor of only 2™ for m-dimensional signals;

5. efficient order-N computation: only 2™ times the simple real DWT for m-di-
mensional signal.

The multidimensional DT-CWT is non-separable but is based on a computa-
tionally efficient, separable filter bank (FB). A 2D dual-tree complex wavelet can
be defined as ¥ (z,y) = ¥(x)y(y) associated with the row-column implementa-
tion of the wavelet transform, where v (z) and ¥ (y) are two complex wavelets,
() = () + jtbg(x) and ¥(y) = Un(y) + 72 (y), n(e) and 1,(e) are real wavelet
transforms of upper FB and lower FB, respectively. Then we obtain the following
for the expression [22]:

U(x,y) = [Wn(z) + jibg(2)][Un(y) + jg(y)]

= Un(2)Un(y) — Yo (2)¥g(y) + 5[Ug(2)n(y) + () e (y)]- .

A 2D DT-CWT is oriented and approximately analytic at the cost of being four-
times expansive. It also possesses the full shift-invariant properties of the constituent
1D transforms. The real parts of six oriented complex wavelets of DT-CWT can be
defined as follows:

vi(z,y) = %(%,i(fﬂ,y) —P2(7,y))

(,0¢+3(1', y) = %(wl,i(x> y) - ¢2,z‘(907 y)) (2)
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where i = 1, 2,3 and

V11(7,y) = dn()Yn(y) Va.1(7,y) = bg(w)1hg(y)
VYr2(z,y) = Yn(w)Pn(y) Yaa(z,y) = Vy()dg(y) (3)
Y132, y) = Yn(2)n(y) V2,3(7,Y) = Yg()1hg(y).

The imaginary parts of six oriented complex wavelets of DT-CWT can be defined

as follows:
&i(x,y) = 5 (Wsi(w,y) — vui(z,y))

§iva(z,y) = %(%,i(f’?a y) — Yai(2,y))
where ¢ = 1,2, 3 and

V3.1(2,Y) = dg(x)Un(y) Ya1(z,y) = on(2)y(y)
V3.2(7,y) = Vg()dn(y) Vo (7, y) = Yn()dg(y) (5)
V3,3(2,y) = Vg (2)Yn(y) Va3(z,y) = Yn(2)hg(y).

In Equations (3) and (4), ¢5(e) and ¢,4(e) are the low-pass functions of upper FB
and lower FB, respectively along the first dimension. v, (e) and ,(e) are the high-
pass functions of upper FB and lower FB, respectively along the second dimension.
A 2D DT-CWT produces three subbands in each of spectral quadrants 1 and 2,
giving six subbands of complex coeflicients at each level, which are strongly oriented
at angles of +15° +£45° £75° as shown by their impulse responses in Figure 2 [19)].

(4)

x

7

CWT REAL PART
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Fig. 2. The 2D impulse responses of the dual-tree complex wavelets at level 4
3 DUAL-TREE COMPLEX TRANSFORM BASED LOCAL BINARY
PATTERN WEIGHTED HISTOGRAM METHOD

To further enhance the capability in characterizing different classes of palmprints,
each subband of the DT-CWT can be further encoded. Local binary pattern his-
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Fig. 3. The basic LBP operator

togram is a nonparametric method in nature and is an effective texture descriptor.
It has been applied successfully in texture analysis and recognition [23, 24, 25].

3.1 Local Binary Pattern Histogram

The basic LBP histogram method, introduced by Ojala et al. [26], is defined as
a gray-scale invariant texture measure, derived from a general definition of texture
in a local neighborhood. Firstly, the LBP operator labels the pixels of an image
by thresholding the 3 x 3-neighborhood of each pixel with the center value and the
result as a binary number. Then a decimal number of the binary number is used to
label the center pixel. At last, the histogram of the labels can be used as a texture
descriptor. Figure 3 shows the illustration of the basic LBP operator.

Later the operator was extended in two aspects [27]. The extended LBP oper-
ator uses neighborhoods of different sizes and shapes to label each pixel by bilinear
interpolation. Because of using circular neighborhood and bilinear interpolation, any
radius and number of pixels are chosen in the neighborhood. For neighborhoods we
will use the notation (N, p) which means N sampling points on a circle of radius
of p. Figure 4 shows some examples of the circularly symmetric neighborhoods. An-
other extension to the original operator uses the certain local binary pattern termed
“uniform patterns”. A LBP is called uniform if it contains at most tow bitwise
transitions or discontinuities from 0 to 1 or vice versa in the circular presentation
of the pattern. The improved operator not only possesses a property of gray-scale
and rotation invariant operator, but also allows for detecting “uniform pattern” at
circular neighborhoods of any quantization of the angular space and at any spatial
resolution. Both the two properties are important for palmprint recognition.

Fig. 4. Circularly symmetric neighbor sets of different (N, p)
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The “uniform pattern” can be denoted as LB Py

N-1
j - ' <
LBP = pZ::O s(gp — Ge), if U(LBPn,) <2

N+1 otherwise (6)
N-1
U(LBPy,) = |s(gn-1— gc) — s(go — ge)| + z 15(9p — 9c) — $(gp—1 — gc)
=

where superscript "2 reflects the use of rotation invariant “uniform” patterns, s(e)
is a sign function, g¢. is the gray value of the center pixel of the local neighborhood
and g,(p = 0,---, N — 1) is the gray value of equally spaced pixels on the circle.
By Equation (6), the value of U(LBPy ) of every pixel in an image is computed to
label the image.

After labeling all of the pixels of the image, a histogram of the labeled image
can be defined as

Hi=Y>H{fi(x,y) =i}  i=0,---,n—1 (7)
z,y

where n is the number of different labels produced by the LBPy4* operator and
IA =1 if A is true, 0 otherwise. This histogram contains information about the
distribution of the local micropatterns, such as edges, spots and flat areas, over the
whole image.

3.2 Dual-Tree Complex Wavelet Transform Based Local Binary Pattern
Weighted Histogram Method

3.2.1 Basic Idea

Because a palmprint image is a low resolution image, instead of directly using the in-
tensity to compute the spatial histogram, a multi-level and multi-direction DT-CWT
is used for the decomposition of a palmprint image. Several decomposition levels of
the palmprint image are obtained, and there are six subbands in each decomposition
level. The value of U(LBPy,) of every magnitude of complex coefficients in these
subbands is computed by a LBP operator to label the subbands. After labeling all of
the magnitudes of complex coefficients in a subband, the subband becomes a labeled
subband. By combining DT-CWT and LBPH methods, the representation power of
the spatial histogram is enhanced greatly.

Moreover, though LBPH method is an effective method for texture representa-
tion, because palm lines in the image are lines with irregular directions and various
depth, it may cause the loss of spatial information to use the feature histogram ex-
tracted from the whole labeled subbands to describe a palmprint. Thus each labeled
subband is divided into multiple non-lapping sub-regions and the corresponding his-
tograms extracted from these sub-regions are called “sub-histograms”.

In addition, when a subband has been divided into multiple sub-regions, it can be
expected that some of the sub-regions contain more information than others in terms
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of distinguish between people. For example, principal lines seem to be an important
cue in palmprint recognition [30]. The sub-regions concluding a part of principal
lines contain more information than the sub-regions without palm lines. Thus,
a weight can be set for each sub-region based on the importance of the information
it contains.

Considering the above factors, an effective palmprint representation and recog-
nition method, DT-CWT based LBPWH, is developed by improving the local binary
pattern method and combining it with the dual-tree complex wavelets transform.
Figure 5 shows the block of proposed method.

LBPWH
Palmprint DT Division |  EXtract Weighted | Construct
Im:e > cwr ™ LBP —m(  Sub- ™ ?“b' »  feature —m= Classification
& histogram stogram histogram
Division Compute
»- the
Weights

Fig. 5. The block of DT-CWT based LBPWH method

3.2.2 Local Binary Pattern Weighted Histogram Method

A labeled subband of DT-CWT of a palmprint image in I*" level and d*" direction
can be denoted as Mlly‘jib(x, ), a histogram of Mlly‘jib(x, y) can be defined as

Hl,d,i:Z[{Mll,?ib(I7y):i}a l:L"'vL7 d:17"'363 7':037’”71 (8)
T,y

Here L is the total number of the levels of DT-CWT, definitions of n and ¢ are the
same as the definition in Equation (7). In the pursuit of more efficient representation,

each M{%(x,y) in the '™ level is divided into m; sub-regions Ry, Ry, ..., Ry, , where
mp = (2;?7&}2), St is the size of the original palmprint image, Sg is the size of these

sub-regions. Then the sub-histogram of the r;4™ region of M{%(x,y) is defined
as

Hiar, = (hiar g0 Mdrats s Mdrgn-1)
hlvdﬂ”l,dﬂ‘ = Z I{Mllfib(x7 y) = Z}: Tid = 17 27 37 s, My (9)

z,YER 4

Different sub-regions in a same subband or different subbands are of different
importance for palmprint representation and recognition. Consequently the sub-
histograms extracted from different sub-regions of M/ (z,y) have different discri-
minative ability. Therefore, in the method, a weight set can be computed by the
magnitudes of DT-CWT and the weights in the set are distributed to different sub-
histograms. A weight of the sub-histogram of the r{% sub-region in the I** level and
d™ direction, Widnr, 4, can be defined as:

Wiar., = Ciq(d, r1.all)b(r1.4ll, d) (10)
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2ty
C = L1 11
N S R o N ()
k=1
b(roall, d) = — b 1) (12)
T Y VL d )
T‘lydE(l,d)
V(l,d,r
q(d, rqll) = 6(7”) (13)
Z V(l7 d> rl,d)
d=1
V(l,d,r4) = Radon(r g, a), 0« = =75° 4+ 30° x (d — 1) (14)

where C; is the whole I level weight, d is the number of the directions of DT-
CWT, «a is the corresponding direction angle of d, V'(I,d, r;4) is the value of Radon
transform of sub-region 7,4 in the subband (I, d) for the angle . b(r;4/l,d) is the
weight of sub-region 7,4 in a same subband (I,d). q(d,r4|l) is the weight of sub-
region 74 in a same level and different subbands. The sketch map of computing
b(riqll, d) and q(d, . 4|l) is shown in Figure 6.

Computingq(d |7, ;.1 7
in different directior . ;>(\

| Computingb(7; , |1,d)
— on subband (1, d)

Fig. 6. The sketch map of computing b(r; |l,d) and ¢(d, 77,4/l)

Wi.ar, , is defined as the product of Cy, b(r 4|1, d) and ¢(d, 1, 4|l). If the value of
b(r14l, d)q(d, r14|l) of some sub-regions is larger than that of other sub-regions, we
can conclude that these sub-regions are more important for recognition, that is, the
sub-histograms extracted from these sub-regions have better discriminative ability.

Then the weighted sub-histogram can be defined as

wHyar , = Wiar Hidr . (15)

Finally, all of the weighted sub-histograms are concatenated to a feature histogram
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vector, K, to represent a palmprint image

K= (wHyy, - wHyymy, wHign, - wHi gy, (16)

le,G-,’ﬂll? Y wH2,1,17 Y wHQ,ﬁ,mga Y wHL,ﬁ,mL)'
3.2.3 Implementation of Proposed Method

In our proposed method, a palmprint image is modeled as a feature histogram vector
by the following steps:

1. A palmprint image is transformed into complex wavelet domain by an N-level
dual-tree complex transform. The palmprint image is decomposed into N levels
and 6N subbands are obtained.

2. Every magnitude of the complex coefficient in each subband is labeled by the
value of U(LBPy,) computed by Equation (6).

3. Each labeled subband is divided into multiple non-overlapping rectangle sub-
regions, and a sub-histogram is extracted from each sub-region.

4. Each subband is also divided into multiple non-overlapping sub-regions as the
same as the corresponding labeled subband, and the weights of different sub-
regions are computed by Equation (10).

5. The weighted sub-histogram of each sub-region is obtained by Equation (15).

6. All of the weighted sub-histograms are connected to form the final feature his-
togram to represent the palmprint image.

7. Chi square statistic x?(K'K?) is used to measure the similarity of two feature
histograms.

8. Finally, a nearest neighbor classifier is used for palmprint classification.

3.2.4 Comparison of Gabor Wavelet Transform
and Dual-Tree Complex Wavelet Transform

The properties of DT-CWT, especially nearly shift-invariant and directional selec-
tivity, make it become a very attractive choice for palmprint representation and
recognition. Gabor wavelet transform is an effective method for feature extraction
of palmprint, and it is frequently applied in palmprint identification [1, 14, 28]. But,
the 2D DT-CWT has one advantage over Gabor wavelet transform: the DT-CWT
has a smaller redundancy for an image and needs less storage space.

For example, we can compare Gabor wavelet transform with DT-CWT for
a palmprint image with the size of 128 x 128. Figure 7 shows the subbands of
Gabor wavelet transform and DT-CWT for the palmprint image. Form Figure 7,
we can find that the magnitudes of DT-CWT in the subbands are similar with that
of Gabor transform. However, the redundancy of 2D DT-CWT is 4 (22, m = 2),
while Gabor transform with four levels and six directions produces twenty-four sub-
bands with the size 128128, that is, the redundancy of Gabor wavelet transform
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(a)

(b)

Fig. 7. Comparison of the magnitudes of Gabor wavelet transform and DT-CWT. a) is
a palmprint image from our database. b) is the subbands of DT-CWT from level 1
to level 4 in the same six directions. ¢) is the subbands of Gabor wavelet transform
in 4 frequency scales and 6 equal directions.

is 24. In addition, a 2D DT-CWT with the same number of levels and directions
also produces 24 subbands, but their sizes are 64 x 64, 32 x 32, 16 x 16 and 8 x 8
in the different levels from 1 to 4, respectively, which are much smaller than that of
Gabor wavelet transform. Thus, less storage spaces are needed and higher execution
speed of the application system is obtained. Thus, CT-DWT is a good candidate to
replace Gabor transform in palmprint representation and recognition.

4 EXPERIMENTAL RESULTS
4.1 Experimental Data

In this paper, we develop a scanner-based device to capture palm images. The
scanner is a Fujitsu fi-60F high speed flatbed scanner, and it is enclosed in an organic
glass box. The device is used to capture images of both hands from 150 individuals.
The device has not fixed pegs to restrict the palm movement, rotation and stretch.
It only uses two bars in each side of the box to avoid the hand removing the scanning
area. Ten images are captured from each hand of a person. The palm images are
292 x 413 pixels with the resolution of 72 dpi in 8-bit gray levels. The center part of
each palm is extracted and stored as palmprint images of size 128x128. The total
of 3000 palmprint images (150 x 2 x 10) form our palmprint database. Figure 8
shows the palmprint capture device, one palm image captured by the device and
a palmprint image extracted from the palm image in our database.

4.2 Parameter Selection and Performance Test

In the proposed method, there are some parameters that need to be chosen to
optimize the performance of the algorithm. They are the size of the sub-regionSg,
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(b) (c)

Fig. 8. Palmprint capture device, a palm image and its palmprint image in our database

the number of sampling points N and the circle of radius p of the LBPy , operator,
and the number of levels of DT-CWT n. Here, n decides the number of subbands,
that is to say, a palmprint image is decomposed into 6n subbands by using n-level
DT-CWT. To obtain best parameters for the proposed method, five different sets of
parameters listed in Table 1 are used to test the performance of the proposed method.
Four groups of parameters are included in each set of parameters. For example, for
n = 4, the palmprint image is first decomposed by using 4-level DT-CWT, and
24 subbands are obtained. After that, LBP operator with parameter of (N, p) is
applied to label these 24 subbands. All subband images are then partitioned into
several non-overlapping sub-regions of size Sg, and the weighted histograms of these
sub-regions are obtained and connected to form the global feature of the palmprint.

In total, 20 verification tests are carried out for testing these parameters in our
palmprint database. For every verification test, the total number of matchings is
8997000. 27000 of them are correct matchings and the rest of them are incorrect
matchings. The performance of different groups of parameters is presented by ROC
curves. Figures 9a)—e) show the ROC curves generated by our method with different
parameters, and Table 2 summarizes the equal error rate (EER) of the corresponding
20 different parameters groups.

From Table 2 we can find that the mean value of the EERs in the first parameters
set (0.4075%) is smaller than that of other parameters sets (0.7325 %, 1.275%,
1.0275 %, 1.8925 %). Hence, the proposed method with 4-level DT-CWT is better
than the method with 3-level and with 2-level. It is because using 4-level DT-CWT
in our method can obtain more subbands and useful information in the palmprint
image.

In addition, we can also find that, in the situation of having the same number
of levels, the EERs of the proposed method with 8 x 8 sub-regions are smaller than
that of the method with 16 x 16 sub-regions.

According to Figure 9, it can be found that the ROC curves of (16, 2) in Figure
9a), b), d) and e) are below that of (8, 1), (8, 2) and (16, 3). Thus, the circular
neighborhood (16, 2) has an appropriate radius and the number of sampling points
to represent the local information. Because the EER of the proposed method with
4 levels, the 8 x 8 sub-regions and (16, 2) circular neighborhood is 0.06 %, which
is smaller than that of other 19 groups of parameters, the group of parameters is
chosen to be used in the proposed method.
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Fig. 9. Verification test results. a)-e) are the ROC curves of the proposed method with
parameters sets 1, 2, 3, 4 and 5, respectively.
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Set Group n (N,p) Sk Set Group n (N,p) Sk
1 1 4 (8, 1) 8% 8 4 13 2 (8,1 8 x 8
2 4 (8,2) 8% 8 14 2 (8,2 8 x 8
3 4 (16, 2) 8§ x 8 15 2 (16, 2) 8 x 8
4 4 (16, 3) 8§ x 8 16 2 (16, 3) 8§ x 8
2 5 3 (81 8§ x 8 5 17 2 (8,1 16 x 16
6 3 (8,2 8§ x 8 18 2 (8,2 16 x 16
7 3 (16,2) 8§ x 8 19 2 (16,2) 16 x 16
8 3 (16, 3) 8§ x 8 20 2 (16,3) 16 x 16
3 9 3 (81 16 x 16
10 3 (8,2 16 x 16
11 3 (16,2) 16x 16
12 3 (16,3) 16x 16
Table 1. The sets of parameters used to verification test
Set  Group EER Mean EER Set  Group EER Mean EER
1 1 0.6 % 0.4075 % 4 13 1.02% 1.0275 %
2 0.83% 14 1.1%
3 0.06% 15 0.64%
4 0.14% 16 1.35%
2 5 0.92% 0.7325 % 5 17 2.62% 1.8925 %
6 1.31% 18 2.16%
7 01% 19 1.36%
8 06% 20 1.43%
3 9 218% 1.275%
10 1.62%
11 0.7%
12 0.6%

Table 2. The EER of the proposed method based on different parameters

4.3 Comparisons with Other Methods

4.3.1 Accuracy Test

In the experiment, the proposed method is tested on our palmprint database (DBI)
and on the palmprint database from the Hong Kong Polytechnic University (DBII),
respectively. DBII contains 100 different palms, and each has six samples collected
in two sessions. Figure 10 shows a palm image and a palmprint image extracted
form the palm image. The results of the proposed method on both databases are
compared with the results of boosting LBP method [16], DT-CWT method [17],
Local Gabor Binary Pattern Histogram Sequence (LGBPHS) method [29] and DT-
CWT based LBPH (LCBPH) method, and these results are reported in Table 3.
Compared with the results of different methods on DBI and DBII, it can be
found that the results of all of methods on DBI are better than the results on
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Fig. 10. A palm image and an extracted palmprint image in DBII

Methods  [17] [16] [29] LCBPH Our method
DBI 98% 96.5% 98.67%  98.5% 99.67 %
DBII 97% 97T%  98.25% 98 % 99.25 %

Table 3. Recognition rates of different methods on DBI and DBII

DBII except the result of the boosting LBP method. It may be because a more
symmetrical light is provided by our palmprint capture device and a better quality
palmprint image is obtained (Figures 8, 10). But, our capture device has not fixed
pegs, and thus the location precision during the extraction of palmprint image and
consequently the recognition rate of the boosting LBP method are affected directly.
Hence the recognition rate of the method on DBI (96.5 %) is slightly lower than that
of the method on DBII (97 %).

In addition, for a same database, we can find that LCBPH method can obtain
better recognition rate (98.5%), which is higher than that of DT-CWT method
(98 %) and boosting LBP (96.5 %) on DBI. The same is true on the DBII. Hence,
the performance of the combining DT-CWT and LBP operator is better than that
of only using one of the tools.

Though DT-CWT is similar to Gabor wavelet transform and can save the storage
spaces (see Section 3.2.4), from Table 3 we can find that the LGBPHS method can
obtain a better accuracy than the LCBPH method. It is because the redundancy
of Gabor wavelet transform is larger than that of DT-CWT, it can get more useful
information for identification, which is missing with DT-CWT.

However, a high accuracy of 99.67 % is obtained by the proposed method on DBI.
In our method, different weights are computed and assigned to different histograms
extracted from different sub-regions to enhance the discriminative ability of the
final feature histogram vector. Therefore, our method possesses the advantage of
DT-CWT based LBPH method and gets better performance than LGBPHS.

4.3.2 Speed Test

Speed is another factor in determining the efficiency of an algorithm. The proposed
approach and other four methods are implemented using Matlab 7.3 on a personal
computer with Intel Pentium processor (2.8 GHz). Table 4 lists the average execution
time of different methods. In the table, Ty is the average execution time for training
per palmprint image, defined as the ratio of the execution time for training to the
number of palmprint images in the train set. Ty is the average execution time for
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feature extraction and matchings. T is the total execution time for recognition.
D is the times of repetitive training. Because a training procedure is included in
the methods proposed by Wang[16] and Chen [17], the average execution time for
training per palmprint image Ty must be worked out as a part of the total execution
time of the two methods. It can be found from Table 4 that the total execution
time of LCBPH method is less than that of LGBPHS method. It means that the
execution speed of DT-CWT is faster than that of Gabor wavelet transform. In our
method, time has to be taken to compute the weight for the histograms, so the total
execution time of our method is more than that of DT-CWT method. Even so, the
total execution time of our method is 0.96 second, which is fast enough for real-time
verification.

In addition, DT-CWT method and boosting LBP method spend little time to
extract and match features, but, increasing as the times of repetitive training D,
the total execution time of the two methods will be further increased. However,
for the above two methods, once the train set is changed, the repetitive training
procedure is inevitable. When the training procedure is repeated twice, the total
execution time of the DT-CWT method is summed to 1.43 second, which is more
by 0.47 second than that of our method. Thus, considering the various factors, our
method applied in palmprint recognition gives satisfying performance.

Time [17] [16] [29] LCBPH Our method
Ty 0.52s 0.12s - - -
Ts 0.39s 0.48s 1.13s 0.85s 0.96s
T  (0.39+052%D)s (0.48+0.12+D)s 1.13s  0.85s 0.965

Table 4. Execution time of different methods on DBI

5 CONCLUSIONS

The paper reports a dual-tree wavelet transform based local binary patter weighted
histogram method for palmprint recognition. The method combines two effective
texture analysis tools to represent and recognze palmprints. Moreover, using the lo-
cal directional characteristics and significance of different sub-regions of palmprint
to compute a weight set to improve the discriminative ability of the final histogram
vector. On the basis of the above work, a training procedure is unnecessary to
construct palmprint model in our approach, that is, the method is entirely inde-
pendent on the training set. Verification tests on our palmprint database are used
to choose a group of optimal parameters for the proposed method. The proposed
method with these appropriate parameters is used to perform accuracy test on our
palmprint database and the palmprint database from the Hong Kong Polytechnic
University, and the experimental results are compared with those of other methods.
In addition, a speed test is designed to discuss the cost of implementation of the
proposed method. The experimental results demonstrate that the proposed ap-
proach can give a better performance. In summary, the dual-tree wavelet transform
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based local binary patter weighted histogram method is an effective approach for
palmprint recognition.
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