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Abstract. In this paper, we propose a new (t, n) threshold scheme. The scheme
allows a user to divide portions of a secret among the designated group. Any t or
more participants from a designated group of n members can cooperate to recon-
struct the secret while (t−1) or less participants can not. Furthermore, the scheme
provides an efficient mechanism to detect and identify cheaters. From the security
analysis, we conclude that any participant does not have the ability to deceive other
participants to obtain their portion of the secret. Therefore, this scheme is very
practical for a broad spectrum of applications.
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1 INTRODUCTION

Secret sharing is a technique that is used to share a secret among a group of partici-
pants. In real world, there are many applications that require a group of participants
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to share a secret such as launching a nuclear missile, opening a bank vault, authen-
ticating an electronic fund transaction, and others [6]. The simplest way to share
a secret among a group of n participants is dividing the secret into n shadows, with
each participant holding one shadow. When the n participants present their shadows
honestly, the correct secret can be reconstructed. However, if one of the shadow-
holders dies, we can never reconstruct the secret. In order to prevent a shadow from
being lost, destroyed, or modified, a flexible way to share a secret is required.

The (t, n) threshold secret sharing technique not only provides a good solution
to this problem but also fits various practical situations. The main concept of the
(t, n) threshold scheme is to divide the shared secret into n shadows and only more
than t out of n shadow-holders can cooperate to reconstruct the shared secret. All
the possible subsets of a group that includes more than t participants are defined to
be qualified subsets. Therefore, the (t, n) threshold scheme should be able to satisfy
the following properties [8].

1. A dealer distributes the shadows to each participant.

2. The participants from one of the qualified subsets can reconstruct the shared
secret easily using their shadows.

3. The participants from all the other unqualified subsets reveal no knowledge of
the shared secret.

The secret sharing scheme also can be considered to be the key management
process, and all the qualified subsets are called access structures in a cryptosystem.

In 1979, Shamir [11] first proposed a threshold secret sharing scheme. In the
scheme, we assume that all participants will present their shadows honestly when
they cooperate to reconstruct the shared secret. However, in the real world, the
participants may be dishonest. A dishonest shadow-holder may submit false shadows
to deceive other participants during the reconstruction of the shared secret. The
dishonest participant is also called a cheater. By cheating, only the cheater has
a chance to reconstruct the true secret. This is an important issue we have to
concern in the application of the secret sharing technique. Therefore, how to detect
and identify a cheater becomes an important topic in the area of secret sharing.

So far, many works have been published concerning (t, n) threshold secret shar-
ing with cheater detection [2, 3, 13, 14]. In these schemes, we can detect whether
there are cheaters during the reconstruction of a shared secret, but we cannot accu-
rately identify who the cheaters are. In order to deal with this problem and provide
higher reliability, some cheater identification schemes have been proposed [4, 7, 9].
These schemes can exactly identify who is presenting a false shadow. Therefore,
a secret sharing scheme with a cheater identification scheme is more useful than one
with a cheater detection scheme.

In this paper, we propose a (t, n) threshold secret sharing scheme based on
Shamir’s secret sharing concept [11]. Furthermore, our scheme provides a practical
cheaters identification method. The rest of this paper is organized as follows. In
Section 2, the proposed (t, n) threshold secret sharing scheme with cheater identi-
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fication is described. In Section 3, a simple example is presented to illustrate the
scheme. In Section 4, the security of the scheme and the required computations and
communications are analyzed. In Section 5, a brief conclusion of this paper is made.

2 (T,N) THRESHOLD SECRET SHARING SCHEME

FOR IDENTIFYING CHEATERS

Before describing the proposed scheme, some notations are defined first. We as-
sume that U is a set that contains n participants U1, U2, . . . , Un, such that U =
{U1, U2, . . . , Un}, and ID1, ID2, . . . , IDn are the identities of the n participants. Each
member of U shares a secret K and holds a secret shadow Si, where 1 ≤ i ≤ n. Let
Γ be the set that contains all the qualified subsets γ of U , i.e. Γ = {γ1, γ2, . . . , γl}.
The qualified subset γ satisfies |γi| ≥ t, where |x| denotes the number of participants
in γ and t is the threshold value in this system. Therefore, all the qualified subsets
γi’s can reconstruct the shared secret.

The proposed scheme consists of four phases: the shadow generation phase, the
verification phase, the secret reconstruction phase, and the cheater identification
phase. In the shadow generation phase, a dealer generates the shadows and sends
them to all the participants in U to share a secret K. In the verification phase,
each member in U can verify whether the shadows sent by the dealer and the other
members are true or false. When the participants of any qualified subset in Γ give
their approval to show their shadows, the shared secret K can be reconstructed
in the secret reconstruction phase. If the reconstructed secret is not valid, we can
identify in the cheater identification phase who the cheater is. These phases are
described as follows.

2.1 The Shadow Generation Phase

Assume that a dealer wants to share a secret K among the n members in U . First,
the dealer specifies the threshold value t freely within the range 1 ≤ t ≤ n. Then
the dealer chooses three system parameters p, q, and g, where p is a large prime,
q is a prime factor of p− 1, and g is a primitive root of the prime number p. That
is, if g is a primitive root of the prime number p, then the numbers g mod P ,
g2 mod p, . . ., gp−1 mod p, are distinct and consist of the integers from 1 through
p−1 in some permutation. The parameters should be chosen to satisfy the standard
ANSI X.930 [1] or FIPS186 [5]. Furthermore, the dealer has to generate the secret
shadow for each participant in U and publish the information. The dealer generates
the shadows and makes the information public as follows.

1. The dealer randomly generates n different polynomials fi’s of degree t− 1, such
that

fi(X) = a(i,0) + a(i,1)X + . . .+ a(i,t−1)X
t−1 mod q, (1)
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where a(i,1), a(i,2), . . ., a(i,t−1) are selected from GF (q) for i = 1, 2, . . . , n, and
the coefficients a(1,0), a(2,0), . . ., a(n,0) have to satisfy

a(1,0) + a(2,0) + . . .+ a(n,0) mod q = K. (2)

Note that all calculations of these polynomials are done in GF (q), so the coef-
ficients a(i,1), a(i,2), . . ., a(i,t−1) and the secret K must be in the range from 1
to q − 1.

2. The dealer sends the polynomial fi(X) to Ui through a secure channel.

3. For each participant Ui in U , the dealer computes

A(i,l) = ga(i,l) mod p, (3)

where l = 0, 1, . . . , t − 1. Then the dealer publishes all the A(i,l)’s in a public
bulletin board.

2.2 The Verification Phase

After receiving the polynomial from the dealer, each participant has to compute the
shadows for the other participants in U . The participant can verify whether the
received shadows are valid. The details of the verification phase are described as
follows.

1. Each participant Ui computes

S(i,j) = fi(IDj) = a(i,0) + a(i,1)IDj + . . .+ a(i,t−1)ID
t−1
j mod q, (4)

where IDj ∈ GF (q), j = 1, 2, . . . , n, and i 6= j.

2. Each participant Ui sends S(i,j) to the other participants Uj ’s in U over a secure
channel. Therefore, each participant Ui can obtain n − 1 shadows S(j,i)’s from
the other participants Uj ’s in U .

3. After receiving the shadows S(j,i)’s, each participant Ui checks whether the fol-
lowing equation holds:

gS(j,i) mod p =

t−1
∏

l=0

A(j,l)
IDl

i mod p. (5)

If the above equation holds, the participant can believe the received shadows
are true.

2.3 The Secret Reconstruction Phase

Assume that the participants U1, U2, . . . , Ur of any qualified subset in Γ want to
cooperate to reconstruct the shared secret K. They can perform the following steps
to determine the shared secret K.
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1. Each actual participant Ui in the qualified subset can compute his/her own
shadow using

S(i,i) = fi(IDi) = a(i,0) + a(i,1)IDi + . . .+ a(i,t−1)ID
t−1
i mod q. (6)

2. According to the computed shadow S(i,i) and the received shadows S(j,i)’s, j =
1, 2, . . . , n, and j 6= i, the actual participant Ui can obtain a value S ′

i by com-
puting the following equation:

S ′
i ≡ f1(IDi) + f2(IDi) + . . .+ fn(IDi) mod q

≡

n
∑

j=1

a(j,0) +

n
∑

j=1

a(j,1)IDi +

n
∑

j=1

a(j,2)ID
2
i + . . .+

n
∑

j=1

a(j,t−1)ID
t−1
i mod q

≡ F (IDi). (7)

3. Each actual participant Ui sends S ′
i to the other participants in the qualified

subset.

4. For each received S ′
j (j ∈ γ; j 6= i), Ui knows t points on the curve F (x)

(IDi, F (IDi)) = (IDi, S
′
i), i ∈ γ.

Each actual participant can apply the Lagrange interpolation formula to deter-
mine the shared secret K from the t different points (IDi, S

′
i), thus

K ≡
∑

i∈γ

(S ′
i × Li) mod q (8)

≡ F (0)

≡ a(1,0) + a(2,0) + . . .+ a(n,0) mod q,

where

Li =
∏

i,j∈γ,j 6=i

−IDj

IDi − IDj

mod q. (9)

2.4 The Cheater Identification Phase

If the reconstructed secret is not correct, each participant can identify who the
cheater is by using the following steps.

1. After reconstructing the shared secret K, the participants can check whether
the reconstructed secret is true by using the following equation:

gK ≡

n
∏

i=1

A(i,0) mod p (10)

≡ ga(1,0)+a(2,0)+...+a(t,0) mod p
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2. If the above equation holds, we believe that all the participants are honest.
Otherwise, each participant can verify the received S ′

i by using the following
equation:

gS
′

i ≡

n
∏

j=1

A(j,0) ×

n
∏

j=1

AIDi

(j,1) × . . .×

n
∏

j=1

A
IDt−1

i

(j,t−1) mod p. (11)

If the verification does not pass, it means that the participant Ui did not present
a true S ′

i, i.e. Ui is dishonest. Therefore, we can accurately identify the cheater
in this case.

3 A SIMPLE EXAMPLE

In this section, we give a simple example to illustrate the proposed scheme. Con-
sider (3, 5) threshold scheme in which 3 out of 5 participants can reconstruct the
secret. Assume that a dealer selects p = 73, q = 72, and g = 7 and he/she wants to
share the secret K = 27 among the 5 participants U1, U2, U3, U4, and U5 with the
unique identities 1, 2, 3, 4, and 5, respectively.

In the shadow generation phase, the dealer randomly generates 5 polynomials,

f1(X) = 5 + 11X + 8X2 mod 72,

f2(X) = 4 + 3X + 26X2 mod 72,

f3(X) = 6 + 9X + 14X2 mod 72,

f4(X) = 7 + 19X + 6X2 mod 72, and

f5(X) = 5 + 22X + 2X2 mod 72,

where the shared secret K = 5+4+6+7+5 = 27. The dealer delivers f1(X), f2(X),
. . ., f5(X) to U1, U2, . . . , U5, respectively. Then, using Equation (2), the dealer
computes the public information such that A(1,0) = 17, A(1,1) = 52, A(1,2) = 64,
A(2,0) = 65, A(2,1) = 51, A(2,2) = 49, A(3,0) = 46, A(3,1) = 10, A(3,2) = 24, A(4,0) = 30,
A(4,1) = 43, A(4,2) = 46, A(5,0) = 17, A(5,1) = 3, and A(5,2) = 49. He/She publishes
these parameters in a public bulletin board.

In the verification phase, U1 computes and sends S(1,2) = f1(2), S(1,3) = f1(3),
S(1,4) = f1(4), and S(1,5) = f1(5) to U2, U3, U4, and U5, respectively. U2 computes
and sends S(2,1) = f2(1), S(2,3) = f2(3), S(2,4) = f2(4), and S(2,5) = f2(5) to U1,
U3, U4, and U5, respectively. U3 computes and sends S(3,1) = f3(1), S(3,2) = f3(2),
S(3,4) = f3(4), and S(3,5) = f3(5) to U1, U2, U4, and U5, respectively. U4 computes
and sends S(4,1) = f4(1), S(4,2) = f4(2), S(4,3) = f4(3), and S(4,5) = f4(5) to U1,
U2, U3, and U5, respectively. U5 computes and sends S(5,1) = f5(1), S(5,2) = f5(2),
S(5,3) = f5(3), and S(5,4) = f5(4) to U1, U2, U3, and U4, respectively. After receiving
the shadows from the other participants, each participant Ui checks whether the
received shadows are valid by using Equation (4), such as
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gS(1,2) ≡ A(1,0) × AID2

(1,1) × A
ID2

2

(1,2) mod p

≡ 17× 522 × 642
2

mod 73

≡ 759 mod 73

≡ 52,

and so on.
If all the verifications pass, the participants can cooperate to reconstruct the

shared secret. Now, suppose that U1, U2, and U3 want to cooperate to reconstruct
the secret K. Using the received S(2,1), S(3,1), S(4,1), and S(5,1), U1 can compute S ′

1

from Equation (6). Similarly, U2 can compute S ′
2 and U3 can compute S ′

3. After
that, U1 sends S

′
1 to U2 and U3; U2 sends S

′
2 to U1 and U3; U3 sends S

′
3 to U1 and U2.

After receiving S ′
2 and S ′

3, U1 can reconstruct the secret by computing

K ≡ (S ′
1 × L1) + (S ′

2 × L2) + (S ′
3 × L3) mod q

≡ (3× 3) + (19× 69) + (3× 1) mod 72

≡ 27.

Similarly, U2 and U3 can also compute the shared secret K by using Equation (7).
U1, U2, and U3 can verify the validity of the reconstructed secret by using Equa-
tion (9):

gK ≡ A(1,0) × A(2,0) × A(3,0) × A(4,0) × A(5,0) mod p. (12)

If the verification holds, U1, U2, and U3 accept the reconstructed secret as valid.
Otherwise, at least one participant among U1, U2, and U3 has presented a false S ′

i

to cheat the others. Similarly, to verify the shadow generated in Step 3 of the
verification phase, we can use Equation (10) to check the validity of S ′

i. If the
verification does not pass, that means Ui is dishonest. Therefore, the cheater can
be identified.

4 DISCUSSIONS

In this section, we shall examine the security of our proposed scheme. In addition,
we shall also discuss the required computational and communicational overheads in
our proposed scheme.

4.1 Security Analysis

In this section, we shall examine the security of our new scheme. The most impor-
tant property of the (t, n) threshold secret sharing scheme is that only t or more
participants can cooperate to reconstruct the shared secret. That means we have
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to guarantee that t − 1 or less participants cannot reconstruct the shared secret.
In our proposed scheme, we apply the Lagrange interpolating polynomial to share
the secret among a set of members. If the degree of the polynomial is t − 1, that
means we require t or more shadows for the reconstruction of the original polyno-
mial. This ensures that we need t or more participants to reconstruct the shared
secret F (0) = K.

In the following, we will show that any t − 1 participants cannot recover the
secret K.

In our scheme, the solutions for
∑n

j=1 a(j,0),
∑n

j=1 a(j,1), . . .,
∑n

j=1 a(j,t−1) can be
computed by the matrix form as follows:











1 ID1 ID2
1 . . . IDt−1

1

1 ID2 ID2
2 . . . IDt−1

2
...

...
. . .

...
1 IDt ID2

t . . . IDt−1
t





















∑n

j=1 a(j,0)
∑n

j=1 a(j,1)
...

∑n

j=1 a(j,t−1)











=











S ′
1

S ′
2
...
S ′
t











.

The coefficient matrix











1 ID1 ID2
1 . . . IDt−1

1

1 ID2 ID2
2 . . . IDt−1

2
...

...
. . .

...
1 IDt ID2

t . . . IDt−1
t











is called Vandermonde matrix and the determinant of the matrix is non-zero. Thus,
the coefficients (

∑n

j=1 a(j,0),
∑n

j=1 a(j,1), . . .,
∑n

j=1 a(j,t−1)) have a unique solution
over the field Zq.

If the t− 1 participants U1, U2, . . ., Ut−1, attempts to recover the secret K, they
obtain a system of t− 1 linear equations with t unknowns such as

S ′
1 =

n
∑

j=1

a(j,0) +

(

n
∑

j=1

a(j,1)

)

ID1 +

(

n
∑

j=1

a(j,2)

)

ID2
1

+ . . .+

(

n
∑

j=1

a(j,t−1)

)

IDt−1
1 mod q

S ′
2 =

n
∑

j=1

a(j,0) +

(

n
∑

j=1

a(j,1)

)

ID2 +

(

n
∑

j=1

a(j,2)

)

ID2
2

+ . . .+

(

n
∑

j=1

a(j,t−1)

)

IDt−1
2 mod q

...

(13)
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S ′
t−1 =

n
∑

j=1

a(j,0) +

(

n
∑

j=1

a(j,1)

)

IDt−1 +

(

n
∑

j=1

a(j,2)

)

ID2
t−1

+ . . .+

(

n
∑

j=1

a(j,t−1)

)

IDt−1
t−1 mod q.

Suppose that they hypothesize a value S0 for the key and let F (0) = S0 be
the tth equation. Thus, the coefficient matrix of t equations with t unknowns will
be a unique solution. Therefore, for each hypothesized value S0, there is a unique
polynomial F ′(x) such that

S ′
i = F ′(IDi),

for i = 1, 2, . . . , t − 1, and such that S0 = F ′(0). Thus, no information of the key
can be ruled out [12].

To prevent cheating, our proposed scheme provides a cheater detection and
identification method. When a dishonest participant modifies his/her own shadow
and offers it, as if it were kept intact, for the reconstruction of the shared secret, it
must pass the test in the cheater identification phase. However, the action will be
detected in Step 1 and be identified in Step 2 of the cheater identification phase.
The dishonest participant will fail the test in the cheater identification phase.

Furthermore, the coefficients a(i,0)’s of the polynomial fi(X) is critical to the
security of the scheme. Since the shared secret K equals the sum of all coefficients
a(i,0)’s, if they are compromised, anyone can easily derive the shared secretK. There-
fore, we must ensure that coefficients a(i,0) can never be derived from other ways,
such as using the public information A(i,0) to obtain it.

If an adversary attempts to determine the coefficients a(i,0) from the public infor-
mation A(i,0), he/she has to solve the discrete logarithm problem to find the unique
exponent a(i,0), such that ga(i,0) ≡ A(i,0)(mod p). However, the discrete logarithm
problem cannot be solved in polynomial-time. Currently, there is still no algorithm
which can solve this problem efficiently. In other words, the existing algorithms for
computing discrete logarithms are very time consuming such as exhaustive search
for all possible values ga(i,0) in O(p).

4.2 Required Computational and Communicational Overheads

Considering the shadow generation phase in the proposed (t, n) secret sharing sche-
me, the dealer has to generate n polynomials of degree t − 1 and transmit them
to the n members in U . Each transmitted polynomial contains t coefficients a(i,1),
a(i,2), . . ., a(i,t−1), the binary value of {a(i,1), a(i,2), . . ., a(i,t−1)} is between 1 and q−1.
That is, the size of each coefficient must be less or equal to log2(q). Therefore, the
amount of the transmitted bits for each polynomial is t⌈log2(q)⌉ bits. Furthermore,
the dealer has to compute A(i,l) = ga(i,l) mod p for all 1 ≤ i ≤ n and 0 ≤ l ≤ t − 1
and publish them to public bulletin board.
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In total, the following computations are required in the shadow generation phase:

• n polynomial generations, and

• nt modular exponential computations.

Furthermore, the following communications are required:

• transmitting n polynomials required nt⌈log2(q)⌉ bits, and

• broadcasting A(i,l).

In the verification phase, each participant Ui has to compute and transmit S(i,j)

to other (n−1) members in U , each participant requires n−1 polynomial computa-
tions and (n− 1)⌈log2(q)⌉ bit transmissions. After receiving S(i,j) for all 1 ≤ j ≤ n,
i 6= j, Ui, Ui has to confirm the validity of S(i,j) by checking whether or not
gS(j,i) mod p satisfies Equation (5). Each Ui performs the verification n − 1 times
and each verification requires t modular exponential computations and t−1 modular
multiplications.

In total, each Ui requires the following computations in this phase:

• n− 1 polynomial computations,

• (n− 1)t modular exponential computations, and

• (n− 1)(t− 1) modular multiplications.

And, the communication is

• (n− 1)⌈log2(q)⌉ bits.

In the secret reconstruction phase, each actual participant Ui computes S(i,i)

and S ′
i by using Equations (6) and (7), respectively. It requires 1 polynomial com-

putation and (n− 1) modular additions. Then, each actual participant Ui transmits
S ′
i (⌈log2(q)⌉ bits) to the other participants in the qualified subset. Finally, each Ui

in γ can recover the secret K by using Equation (8). It requires t(t − 1) modular
multiplications and t− 1 modular additions.

The total computations for each participant in γ in the secret reconstruction
phase are listed below:

• 1 polynomial computation,

• t(t− 1) modular multiplications, and

• (n− 1) + (t− 1) modular additions.

And, the communication is

• (t− 1)⌈log2(q)⌉ bits.

In the cheater identification phase, each participant Ui performs Equation (10)
to check the validity of the recovered secret K. It requires 1 modular exponential
computation and n−1 modular multiplications. Furthermore, the actual participant
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can perform Equation (11) to verify the validity of the received S ′
i. It requires

n(t− 1)+ 1 modular exponential computations and nt− 1 modular multiplications.
The information rate is used to measure the efficiency of secret sharing scheme.

The information rate for Ui ∈ U is ρi =
H(K)
H(Si)

, where H(K) is the entropy of the

secret K and H(Si) is the entropy of the share assigned to Ui. The perfect secret
sharing scheme is that the length of the secret equals the length of the share held
by a participant, so ρi = 1 [10]. In our scheme, each participant holds a polynomial,
which contains t coefficients, and n− 1 shadows S(j,i)’s from the other participants
Uj ’s in U . The secret K, the coefficients a(i,1), a(i,2), . . ., a(i,t−1), and the shadows
S(i,j)’s are all in GF (q). Therefore, the information rate of our scheme is ρ = 1

t+n−1
.

5 CONCLUSIONS

In this paper, we presented a novel and secure (t, n) threshold secret sharing scheme
with cheater identification. In summary, our scheme possesses the following three
desirable features. They are (1) a flexible choice of the threshold value t, (2) a gua-
rantee that t or more participants can reconstruct the shared secret, but t − 1 or
less cannot, and (3) identification of cheaters.
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