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Abstract. Markov chain models are efficient tools for representing stochastic dis-
crete event processes with wide applications in decision and control. A novel ap-
proach to fuzzy-Petri-net reasoning generated solution to initial or another state
in Markov-chain models is proposed. Reasoning is performed by a fuzzy-Petri-net
supervisory controller employing a fuzzy-rule production system design and a fuzzy-
Petri-net reasoning algorithm, which has been developed and implemented in C++.
The reasoning algorithm implements calculation of the degrees of fulfilment for all
the rules and their appropriate assignment to places of Petri net representation
structure. The reasoning process involves firing active transitions and calculat-
ing degrees of fulfilment for the output places, which represent propositions in the
knowledge base, and determining of fuzzy-distributions for output variables as well
as their defuzzified values. Finally, these values are transferred to assign the state
of Markov-chain decision model in terms of transition probabilities.
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1 INTRODUCTION

The synergy of advanced technologies in applied computing, communication, con-
trol, and decision during the last couple of decades has given rise to highly complex,
technological, dynamic systems governed by some composition of time-driven and
event-driven stochastic dynamics and referred to as discrete event systems. Their
features have enhanced applications of Markov chain models and Petri-net models
that complement each other, because they provide a framework for investigation
studies of very many discrete event systems. Although in principle, a Markov chain
model can be always solved, practice has demonstrated that this task is extremely
difficult and steady-state (stationary) solutions in terms of state transition proba-
bilities are sought and practically exploited. Even in the cease when steady-state
solutions are sought there is no systematic way of how the initial state probabili-
ty vector is to be chosen or determined [1]. It is known, on the other hand, that
a Markov-chain decision model represents a discrete-event system in terms of se-
quence of state random values the probabilities of which at a time interval depend
upon the random values at the previous time instant only. The controlling factor
in a Markov chain is the transition probability, which is a conditional probabili-
ty for the system to go to a particular next state given the current state of the
system. In the present study we have explored a possible application of a two-
level decision and control architecture, a supervisory controller that implements
a fuzzy-Petri-net reformulation of Saridis’ organizing intelligent controller [2, 3] fol-
lowing his principle of increasing intelligence with decreasing precision [4]. The
supervisory controller has been constructed as a fuzzy-Petri-net production rule
system [5-7]. Its software implementation in C++ is described in [6] by means
of both programmer’s and user’s view. Petri net formalism provides considerable
advantages when used in hybrid decision and control systems because of its great
power for representation and modeling of parallel and concurrent processes, while
fuzzy system formalism does the same with respect to reasoning by processing the
respective fuzzy-rule inference systems [8-21]. The formalism of Petri nets (PN)
can be used to model fuzzy-rule based systems by simply identifying some ele-
ments (places and transitions) and features (marking function) of Petri-net’s for-
malism with the basic elements of a fuzzy-rule based knowledge base (KB) such
as propositions, degree of truth and implication relationships. The fuzzy-Petri-net
(FPN) formalism employed here has achieved this due to more specific terms such
as association of the KB propositions and places in the FPN through introducing
an appropriately defined bijective function, and association of the KB transitions
and degrees of truth. Furthermore, a formal separation between the representa-
tional scheme (the FPN itself) and the associated discrete dynamic process (data
driven evaluation algorithm) is established, yet it is not included as a part of the
FPN model. A more adequate handling of multi-propositional rules has been in-
troduced and implemented too. Still degrees of truth of the rules remained nu-
merical values, and the chaining is still done at the value level and therefore some
drawbacks have been identified to be present. This model includes the handling
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of true fuzzy production rule system by taking degree of truth of the implication
rules.

2 ON MARKOV CHAIN MODELS OF DISCRETE EVENT SYSTEMS

In the category of discrete-event processes, there may be processes that cause differ-
ent types of changes and usually cause leap changes of states following occurrence
of some event(s). For instance, such are processes of planning and of forecasting
and decision making analysis, which examine structural connections between state-
transitions and event probabilities of the respective sets of attainable states and
admissible events. Through this analysis it is possible to obtain the schedule of
transitions and the basic units of time, which are needed for each transition. Solv-
ing problems like these requires the usage of state-transition and event-probability
matrices embedded in Markov chain models, often a finite discrete-time Markov
chain of events involving respective state transitions [1].

The work presented here is confined to discrete-time homogeneous Markov chain
that is a stochastic process characterized by finite number of states; Markovian tran-
sitions (possessing Markov memory-less property), and stationary state-transition
probabilities. Thus, a Markov chain is a sequence of random values such as the
one known as a non-repeating random walk. The model of the problem at hand it
suggest assuming an n X n-matrix of probabilities, P, such that

20,3 py<Li=012 . (1)
and thus generating the following array:
gizl—szij,¢=0,1,2,... (2)

P can approximately describe a discrete Markov chain where the states of the chain
are N integers. The element p;; gives the transition probability for the random walk
from state i to state j. The probability that the walk will terminate after state i
is given by g;. As long as the vector g, encompassing all these probabilities, is not
zero the walk will eventually terminate. In fact, a Markov chain is a sequence of
random values, whose probabilities at a next time instant of a given time interval
depend upon the value at the immediately previous time instant (no state memory)
regardless of the time spent in the current state (no age memory):

P Xy = Tpp1| Xi = ap, X1 = 21, ..., Xo = 0] (3)

= P [Xpp1 = 2ppa| Xp = 23]

The governing factor in a Markov chain is the transition probability, which
is a conditional probability for the system to go to a particular new state, given
the current state of the system with the assumption the initial one is known,
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P[Xo =] = qe;, Ye; € E, i € [0, N] with E being a set of admissible events.
For many problems, the Markov chain obtains the much-desired importance sam-
pling meaning fairly efficient estimates can be obtained if the proper transition
probabilities are determined. In terms of stochastic timed automata formalism, in
which E represents the set of admissible events, X the set of attainable states, G(x)
the set of enabled events defined with G(z) C E for all x € X, G = {G;:i € E}
a stochastic clock structure, p = p(a”; x,e,) a state transition probability defined
for all 2,z € X, e, € F such that p = p(z¥; z,e,) = 0 for all ¢, ¢ G(x), and
po = po(x)probability mass function P[X,=2z], z € X of the initial state X,
a Markov chain model is represented as

MSA:(E7X7 7p7p07c) (4)

with e, € G(z) representing the triggering event. In turn, the transition probability
is an aggregate over all enabled events e; € G(x) that may cause the transition from
state € X to state 2' € X, which may depend on time, and it follows according
to the rule of total probability

pe(z’s 2) = P [Xk+1 = SCZ| X = :C] = Z p(z'; 7, ¢;) - ples, v) (5)
e, €G(x)

where p(e;, z) is the probability that event e; occurs at state . Should the state space
be represented by non-negative integers like in a random walk sequence, a Markov
chain emanates from Chapman-Kolmogorov equation

pij(k,k—i-n)ZZpir(k,r)ij(r,k+n),k<r< k+n (6)

allr

for the event P [Xyy1 = j| Xx = 4] conditioned on P [X, = r| with any r such that
k<r<k+n.

It is therefore possible, in terms of an application of the FPS reasoning of
the FPN supervisor that makes membership degrees evaluation largely satisfying
memory-lees property, to assign the finally obtained values for output variables of
the FPN supervisor to take the role of initial state probabilities of the observed
Markov chain model. Thus, as a first step towards the desired resolution, a Markov
chain with obligatory state probabilities, obtained from an expert system with a pur-
pose after its evaluation processing has been completed, has been created. This way,
it is believed, it even becomes possible to apply control actions on events in the
Markov chain models, thus influencing its discrete-event transition evolution. This
is discussed in the two subsequent sections.
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3 ON FUZZY PRODUCTION RULE SYSTEM AND PROCESS OF
FUZZY-PETRI-NET REASONING

Although different conceptualization of fuzzy production rule systems may be found
in the literature, in here a rather generic representation of the rules is considered [5].
Namely, the fuzzy-rules that make up the knowledge base (KB) in a fuzzy-rule
production systems (FPS) are outlined as follows:

Rule R": If X7 IS A7 and...and X7, IS A, (7)
Then X', IS B} and...and X, n, IS BRy, (7).

Here, the bold presented symbols are the fuzzy propositions and 7", which are defined
as functions of the type [1, 0] — [1, 0], represent linguistic values of the truth-variable
that qualifies the rules.

The set of fuzzy rules, constituting a fuzzy-rule knowledge base in a fuzzy
production rule system, is considered next through its projection onto a Petri-
net (PN) representation structure, the respective bipartite graph N = (T, P, A),
where P = (p1, pa, pr, pxc) is the set of places, T = (t!, ¢ t/,¢/) is the set of transi-
tions, and A C {T x P} U{P x T} is the respective set of directed arcs. For this
purpose, the places of the PN are being identified with the propositions of the KB
by means of the following bijective function :

P — PR,p, — a(pr) =prik=1,... K, (8)

where PR = {pr,} is the set of propositions and K is the number of propositions
in the KB. In the case where a proposition is found several times in different fuzzy
rules of the KB, a different place will be assigned to it for each of these appearances
in the KB.

The meaning of the transitions is more complex and involved to interpret because
of the linking rules. In this work, basically the representation is in terms of union
of two types of transitions: T = TRUTY = {t1,...,tr,trs1,---,tric}. Subset TH
includes the transitions associated with each one of the rules that make up the fuzzy-
rule KB, whereas subset 7C includes the transitions that are associated with the
existence of links between propositions. Hence the input and the output functions
over set T ought to be defined

I:T— ¢(P), (9)

O0:T = ¢(P), (10)

such that these associate to each transition the set of places which constitute its input
and output, respectively. It is these functions that can have a different interpretation
depending on the subset of T in which they are considered:

If t € T% Vp; € Pp; € I(t) <= a(p;) € Antecedent part of R/ (11)
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If /) € TR Vp; € Pp; € O(t)) <= a(p;) € Consequent part of R’ (12)
Ift/ € TC p; € I(t), pr. € O(F) <= a(p;) is linked with a(py) (13)

Therefore a single transition ¢; € T will exist for each of the intermediate variab-
les X; of the fuzzy-rule knowledge base.
In terms of graphs, the representation of the fuzzy Petri-net is defined as follows:

A= J{# xoW)u{I®) xt} (14)

tieT

where also a truth function, f, that assigns to each ## € T the linguistic truth
value associated with the respective rule R’ has been defined as follows:

f:TR =Vt — f(t) =17 (15)

Here, V represents the set of linguistic values of the linguistic truth variable. It
should be noted, in addition, that in this fuzzy Petri-net model the place p; is
immediately reachable from place py if:

3t € T/pp € I(#) and p, € O(H). (16)

The adjacent transitions associated with chains will represent the multiple link si-
tuations: several rules establish inferences over the same variable and one or more
later rules make use of this variable in its (their) antecedent part. In this case,
a transition will be associated with each chain.

4 PROCESS OF FUZZY-PETRI-NET REASONING
IN MARKOV MODEL STATE ESTIMATION

It should be noted that the fundamental notion of executing a fuzzy-rule knowledge
base represented by the respective Petri-net bipartite graph does coincide with is
that of a marked PN model. Marking indicates that the degree of fulfilment (DOF) of
the associated proposition is known, so this proposition can be used in the process
of obtaining new references. It will be necessary for the DOFs of the different
propositions to be available all the time and be handled as appropriate. The latter
required a well defined fulfilment function

g: P —10,1] (17)
be introduced such that it assigns to each place a real value:
9(p) = DOF(a(p)). (18)

In the above PN representation structure, tokens are transferred from some places to
others by means of the activation of transitions, following a basic rule: A transition
t; € T is active (and will fire) if every p; € I(P) has a token.
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When during the process of firing a transition the token of the input places is
removed, the information obtained about the DOF of that propositions is preserved
in the fulfilment function. The firing of an active transition ¢; € T is equivalent
to the application of a rule in the process of evaluating the KB. The activation of
t; € TC is equivalent to knowing (whether it will be through previously performed
inferences or through observation), the DOF of propositions «(p;), Vp; € I(t/). In
this case, the DOF for propositions a(py),Vpr € O(#) is determined not by the
application of rules of the KB, but by essentially the same method as the one used
to determine the DOF of a proposition with observed input distribution values.
Most of the operations participating in this calculation can be carried out a priori,
leading to a significant simplification of the execution process. When all DOF’s of
the antecedent part of a rule are known and it is executed, the marking function
will have tokens placed in all of the input places of the corresponding transition,
activating it and causing it to fire, which will produce new markings generated by
PN marking function.

The initial marking map M in the PN representation of the KB of the fuzzy
production rule system can be defined as follows:

M :p—{0,1}, p; = M(p;) = {0,if g(p;) is unknown; and 1, otherwise}. (19)

The marking mapping function makes explicit the requirement that the DOF of
a set of propositions must be known before an evaluation of the KB can be carried
out. From a given marking map M, the firing of a transition # may produce a new
marking map M*. The evolution of the marking mappings of a PN, hence of a FPN
too, is represented by the respective transition function, tzpy, defined as follows:

tppy = M x T — M, (M, t) — M* (20)

M* =10, if pi € I(#); 1,4f p; € O('); and M(p;) otherwise}. (21)

In mapping function (20-21), M represents the set of all possible marking maps of
the PN and FPN model, respectively. The process of executing a KB can be un-
derstood as the “propagation” of possibility distributions through the KB, via im-
plication operations (which permit “propagating” distributions from the antecedent
part of a rule to the consequent part of the same rule) and via links (which “con-
nect” the consequent part of one or several rules to the antecedent part of other(s)).
This evaluation process is carried out following a certain order, which determines
at any moment in time the rule(s) that may be applied. The process finishes with
the operation of aggregating all the possibility distributions inferred for each output
variable into a single final possibility distribution.

Without loss of generality, for a fuzzy-rule KB consisting of only two chained
rules, R® and R, which are linked by one of fuzzy-set defined antecendents, to this
end by making use of the above defined bijective function the related places and
propositions are obtained:

P={p,  mr=1,...,M,+N,, r=5T} (22)
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PR=ypr =X, IS A 7 mr<M;”X ISB ... mr>DMs} (23)

Furthermore, given the relative simplicity of the KB, the transitions for the rules
and links are obtained as follows:

T = {t°,1"} (24)

T¢ = {t}. (25)
In the sequel, the focus is on the process of obtaining the DOF that corresponds to
proposition a(p{) from the DOF of a(p},,,,), i.e. g(p]) from g(p},.,). Then it is
observed that
1_7;7 = Ts(g(pilﬁ»l) A bi,i)vi =1....1 (26)
where B} = {bj;} is the possibility distribution associated with linguistic value B}
in proposition a(pj;,,1). The DOF will be

9(p7) = VI (g(Pirs1) AT Aall; (27)

a{i is the possibility distribution of linguistic value in propositions.

Let now the more general case of FKB be observed in which several rules
R',..., R® perform inference over a variable, and the same variable is in the an-
tecedent part of at least one later rule RT. Typically, one obtains

R':1F X! IS Al AND...THEN X}, ., IS B! AND...(r")

R*:IF X7 IS A7 AND...THEN X3, , IS B} AND...(7?
R%:1IF X7 IS A7 AND...THEN X} /s,, IS B AND...(7%) (28)
R":1F X{ IS AT AND...THEN Xj;s., IS B] AND...(r")
with the linking relationship

X11u1+1 = X1%/12+1 == Xszsﬂ = XlT' (29)

Following a procedure that is analogous to the previous one we will obtain the DOF
for proposition pri:

g(plT) = V[V[Ts(g(p§\43+1) A biz)] A alT,i]- (30)

Now it is possible to outline the actual reasoning algorithm. Basically, it com-
prises a two-stage computing process: the stage of defining the marking function,
and that of producing the DOFs of the corresponding propositions and firing of the
active transitions. These stages are sequentially repeated until there are no more
active transitions; at this moment the inference process will be ended. Finally, an
aggregation-assignment of a single possibility distribution to each output variable is
performed.

Assume that I P and OP represent the sets that group input and output places,
respectively. Then the outline of the reasoning algorithm is as follows:
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Step 1. Initially, only the DOF's of the propositions that operate on input variables
are assumed, that is, those associated with input places, are known. Therefore
the initial marking function will be:

M(p;) =140, if p; ¢ IP; and 1, if p; € IP. (31)
Step 2. We fire the active transitions. Let ¢/ be any active transition; that is,
t € T\Vpp € I(t), M(py) = 1. (32)

In fact, the transition function tppy = M x T — M, as defined with (21),
defines the successive marking functions as processing the algorithm evolves. In
turn, the corresponding DOFs are obtained as follows:

If 9 €T" g(pi) = Ag(p), Vpi € O(t) (33)

1f ¥ €T g(pi) = V{Ir™(9(p)o ™ tprpil }, Yps € O(#). (34)
Step 3. Go back to step 2, while:

Step 4. For each output variable X, its associated possibility distribution B = {b,},
i=1,...,1,is found
by = V{7 (g(pp))o" 7" (], ) (36)

with the set Py of places associated with propositions
Px =p, € Pla(p;,) ="X 1S B} (37)
in which inferences over X are carried out.

The next set of simulation results is given for the purpose of illustration of the
above-described fuzzy-Petri-net reasoning process and the kind of results that may
be obtained. These are obtained via reasoning with the following five-rule fuzzy-rule
knowledge base involving seven fuzzy membership grades as given bellow:

R°:IF X1 = LP\0.12 AND X6 = SP\0.10 THEN X2 = ZO,
= dof(A00) = 0.64; dof(A01) = 0.70

R':1F X1 = LN\0.06 AND X3 = SN\0.12 THEN X2 = ZO,
= dof(A10) = 0.82; dof(A11) = 0.64

R?:IF X2 = SN\0.07 AND X5 = LN\0.20 THEN X7 = ZO,
= dof(A20) = 0.79; dof(A21) = 0.40
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R®:IF X2 = SN\0.15 AND X5 = SN\0.25 THEN X4 = ZO,
= dof(A30) = 0.55; dof(A31) = 0.25

R':1TF X4 = SP\0.05 AND X3 = SN\0.20 THEN X7 = ZO,
= dof(A40) = 0.85; dof(A41) = 0.40.

The resulting fuzzy-Petri-net chaining is depicted in Figure 1 whereas the com-
puted aggregate fuzzy distribution is presented in Figure 2. Final values will depend,
of course, on the method of defuzzification employed as indicated with the numerical
results in Figure 2.

Fig. 1. Graphical representation of the fuzzy-Petri-net structure with calculated DOF's of
propositions (places) representing the rule chaining in the course of inference reasoning

Defuzzyfication yields:
0.415 — with weight method
0.340 — with height method

4
t
0 1

Fig. 2. Graphical presentation of the resulting membership grade function for the output
variable and two cases of numerically resulting singleton to assign state probability
in Markov chain
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5 CONCLUSION

The controlling factor in a Markov chain model is the transition probability that
is a conditional probability for the system to go to a particular new state, given
the current state of the system. It was shown in this paper that distribution values
obtained from the fuzzy-Petri-net reasoning system can be assigned to probabilities
of the states, in particular for unique definition of the initial state of the Markov
chain model, which makes it solvable. Albeit it is believed that a similar procedure
may be developed to assign state transition probabilities, this case is not well un-
derstood and it is a task for future research. To some extent, this may serve the
purpose of controlling the feasible events in Markov chain models. In was shown in
this work that by making use of the complementing formalism of Petri-net bipartite
graphs, a model of fuzzy-rule production system as a model for inference and con-
clusion chaining can be constructed. Furthermore, this system is compatible with
well-structured algorithms for data-driven execution of fuzzy-rule knowledge bases.
This process is based on a FKB execution approach through the compositional rule
of inference, so that most of the computational load is put to the design stage, and
not to execution stage. This allows the complexity of the execution algorithms to
remain independent of the discretization of the discourse universes over which the
linguistic variables to be manipulated in the fuzzy production systems are defined.
Despite the fact that the analysis of the whole process and the description of the
algorithms is carried out for a sup-min compositional rule of inference, the same
results are valid for the sup-prod rule, although with less flexibility in the definition
of the linguistic truth values that qualify the rules. We have also used the Petri
net formalism in order to obtain a formal structure that permits the definition of
algorithms for carrying out inferences in different situations.
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