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Abstract. Missing data creates various problems in analysing and processing data
in databases. In this paper we introduce a new method aimed at approximating

missing data in a database using a combination of genetic algorithms and neu-
ral networks. The proposed method uses genetic algorithm to minimise an error
function derived from an auto-associative neural network. Multi-Layer Perceptron
(MLP) and Radial Basis Function (RBF) networks are employed to train the neural
networks. Our focus also lies on the investigation of using the proposed method in
accurately predicting missing data as the number of missing cases within a single
record increases. It is observed that there is no significant reduction in accuracy of
results as the number of missing cases in a single record increases. It is also found
that results obtained using RBF are superior to MLP.
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1 INTRODUCTION

Inferences made from available data for a certain application depend on the com-
pleteness and quality of the data being used in the analysis. Thus, inferences made
from a complete data are most likely to be more accurate than those made from
incomplete data. Moreover, there are time critical applications which require to es-
timate or approximate the values of some missing variables that have to be supplied
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in relation to the values of other corresponding variables. Such situations may arise
in a system which uses a number of instruments and in some cases one or more
of the sensors used in the system fail. In such situation the values of the sensor
have to be estimated within short time and with great precision and by taking in to
account the values of the other sensors in the system. Approximation of the missing
values in such situations require to estimate the missing value taking into account
the interrelationships that exist between the values of other corresponding variables.

Missing data in a database may arise due to various reasons. It can arise due to
data entry errors, respondents non response to some items during the data collection
process, failure of instruments and to other various reasons. In Table 1 we have
a database consisting of five variables, namely x1, x2, x3, x4, and x5, where the
values for some variables are missing.

x1 x2 x3 x4 x5

25 3.5 ? 5000 −3.5

? 6.9 5.6 ? 0.5

45 3.6 9.5 1500 46.5

27 9.7 ? 3000 ?

Table 1. Table with missing values

Assume we have a database consisting of various records of the five variables;
some of the observations for some variables in various records are not available. How
do we know the values for the missing entries? Are there ways to approximate the
missing data depending on the interrelationships that exist between the variables
in the database? Thus, the aim of this paper is to use neural networks and genetic
algorithms to approximate the missing data in such situations.

2 BACKGROUND

2.1 Missing Data

Missing data creates various problems in many applications which depend on good
access to accurate data. Hence, methods to handle missing data have been an
area of research in statistics, mathematics and other various disciplines [1, 2, 3].
The reasonable way to handle missing data depends upon how data points become
missing. According to [4] there are three types of missing data mechanisms. These
are Missing Completely at Random (MCAR), Missing at Random (MAR) and non-
ignorable. MCAR situation arises if the probability of missing value for variable X
is unrelated to the value X itself or to any other variable in the data set. This
refers to data where the absence of data does not depend on the variable of interest
or any other variable in the data set [3]. MAR arises if the probability of missing
data on a particular variable X depends on other variables, but not on X itself
and the non-ignorable case arises if the probability of missing data X is related
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to the value of X itself even if we control the other variables in the analysis [2].
Depending on the mechanism of missing data, currently various methods are being
used to treat missing data. For a detailed discussion on the various methods used
to handle missing data refer to [2, 3, 4, 5]. The method proposed in this paper is
applicable to situations where the missing data mechanism is either MCAR, MAR
or non-ignorable.

2.2 Neural Networks

A neural network is an information processing paradigm that is inspired by the way
biological nervous systems, like the brain process information [6]. It is a machine
that is designed to model the way in which the brain performs a particular task or
function of interest [7].

A neural network consists of four main parts [7]. These are the processing
units uj, where each uj has a certain activation level aj(t) at any point in time,
weighted interconnections between the various processing units which determine
how the activation of one unit leads to input for another unit, an activation rule
which acts on the set of input signals at a unit to produce a new output signal, and
a learning rule that specifies how to adjust the weights for a given input/output
pair.

Due to their ability to derive meaning from complicated data, neural networks
are used to extract patterns and detect trends that are too complex to be noticed
by many other computer techniques. A trained neural network can be considered
as an expert in the category of information it has been given to analyse [6]. This
expert can then be used to provide predictions of given new situations. Because of
their ability to adapt to a non-linear data neural networks are also being used to
model various non-linear applications [7, 8].

The arrangement of neural processing units and their interconnections can have
a profound impact on the processing capabilities of a neural network [7]. Hence,
there are many different connections of how the data flows between the input, hidden
and output layers. The following section details the architecture of the two neural
networks employed in this paper.

2.2.1 Multi-Layer Perceptrons (MLP)

MLP neural networks consist of multiple layers of computational units, usually in-
terconnected in a feed-forward way [7, 8]. A fully connected two layered MLP archi-
tecture was used in the experiment. Each neuron in one layer is directly connected
to the neurons of the subsequent layer. A NETLAB toolbox that runs in MATLAB
discussed in [9] was used to implement the MLP neural network. A two-layered
MLP architecture was used because it had better results and due to the universal
approximation theorem, which states that a two layered architecture is adequate for
MLP [9].
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Figure 1 depicts the architecture of the MLP used in this paper. The parameters
(number of neurons, training cycles, activation function) used to train the neural
network were chosen after training the neural network with different parameters.
Combination of parameters that gave better results were selected for training the
actual neural network. The MLP network contains 14 inputs, a hidden layer with
10 neurons and 14 output units. A linear activation function was used, as it gave
better results. The optimisation technique used for training this architecture was
the Scaled Conjugate Gradient (SCG) method. SCG method was used because it
gave better results and has been found to solve the optimization problems encoun-
tered when training an MLP network more efficiently than the gradient descent and
conjugate gradient methods [10].
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Fig. 1. MLP and RBF architecture used in the experiment

MLP networks apply different learning techniques, the most popular being back-
propagation [7]. In back-propagation the output values are compared with the
correct answer to compute the value of some predefined error-function. The error is
then fed-back through the network. Using this information, the algorithm adjusts
the weights of each connection in order to reduce the value of the error-function by
a small amount. After repeating this process for a number of training cycles the
network converges to some state where the error of the calculations is small. In this
state, the network is said to have learned a certain target function [7].

2.2.2 Radial-Basis Function (RBF)

RBF networks are feed-forward networks trained using a supervised training algo-
rithm [7]. They are typically configured with a single hidden layer of units whose
activation function is selected from a class of functions called basis functions. While
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similar to back propagation in many aspects, radial basis function networks have
several advantages. They usually train much faster than back propagation networks
and less prone to problems with non-stationary inputs due to the behavior of the
radial basis function [10].

Like the MLP a NETLAB toolbox that runs in MATLAB discussed in [9] was
used to implement the RBF architecture. A fully connected two layered RBF archi-
tecture was used in the experiment. Each neuron in one layer is directly connected
to the neurons of the subsequent layer. The network has 14 inputs, 10 neurons
and 14 output units. Thin plate spline function was used as hidden unit activation
function and the SCG was used as network optimization method. The RBF network
used in this research is depicted in Figure 1. Zi’s in Figure 1 represent the non-linear
activation functions.

2.3 Genetic Algorithms

Genetic Algorithms (GAs) are algorithms used to find approximate solutions to
difficult problems through application of the principles of evolutionary biology to
computer science [11, 12]. They use biologically derived techniques such as inheri-
tance, mutation, natural selection, and recombination to approximate an optimal
solution to difficult problems [13, 14].

Genetic algorithms view learning as a competition among a population of evol-
ving candidate problem solutions. A fitness function evaluates each solution to
decide whether it will contribute to the next generation of solutions. Through
operations analogous to gene transfer in sexual reproduction, the algorithm creates
a new population of candidate solutions [14].

The three most important aspects of using genetic algorithms are [11, 15]:

• Definition of the objective function.

• Definition and implementation of the genetic representation, and

• Definition and implementation of the genetic operators.

GAs have been proved to be successful in optimization problems such as wire
routing, scheduling, adaptive control, game playing, cognitive modeling, transporta-
tion problems, traveling salesman problems, optimal control problems, and database
query optimization [11].

The following pseudo-code from [11] illustrates the high level description of the
genetic algorithm employed in the experiment. P (t) represents the population at
generation t.

procedure genetic algorithm

begin

t← 0

initialise P (t)

evaluate P (t)
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while(not termination condition) do

begin

t← 0

select P (t) from P (t− 1)

alter P (t)

evaluate P (t)

end

end

Algorithm 1: Structure of genetic algorithm [11]

The MATLAB implementation of genetic algorithm described in [15] has been
used to implement the genetic algorithm. After executing the program with different
genetic operators, optimal operators that gave the best results were selected to be
used in conducting the experiment.

3 METHOD

The neural network was trained to recall to itself (predict its input vector). Mathe-
matically the neural network can be written as

~Y = f( ~X, ~W ) (1)

where ~Y is the output vector, ~X the input vector and ~W the vector of weights. Since
the network is trained to predict its own input vector, the input vector ~X will be
approximately equal to output vector ~Y ( ~X ≈ ~Y ).

In reality the input vector ~X and output vector ~Y will not always be perfectly
the same hence, we will have an error function expressed as the difference between
the input and output vector. Thus, the error can be formulated as

e = ~X − ~Y . (2)

Substituting the value of ~Y from (1) into (2) we get

e = ~X − f( ~X, ~W ). (3)

We want the error to be minimum and non-negative. Hence, the error function can
be rewritten as the square of Equation (3)

e = ( ~X − f( ~X, ~W ))2. (4)

In the case of missing data, some of the values for the input vector ~X are not
available. Hence, we can categorize the input vector ( ~X) elements into ~X known
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represented by ( ~Xk) and ~X unknown represented by ( ~Xu). Rewriting Equation (4)

in terms of ~Xk and ~Xu we have
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To approximate the missing input values, Equation (5) is minimized using ge-
netic algorithm. Genetic algorithm was chosen because it finds the global optimum
solution. Since a genetic algorithm always finds the maximum value, the negative
of Equation (5) was supplied to the GA as a fitness function. Thus, the final error
function minimized using the genetic algorithm is
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Figure 2 depicts the graphical representation of proposed model. The error function
is derived from the input and output vector obtained from the trained neural net-
work. The error function is then minimized using genetic algorithm to approximate
the missing variables in the error function.
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Fig. 2. Schematic representation of the proposed model

4 RESULTS AND DISCUSSION

An MLP and RBF with 10 neurons, 14 inputs and 14 outputs was trained on the
data obtained from South African Breweries (SAB). A total of 198 training inputs
were provided for each network architecture. Each element of the database was
removed and approximated using the model.

Cases of 1, 2, 3, 4, and 5 missing values in a single record were examined to
investigate the accuracy of the approximated values as the number of missing cases
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within a single record increases. To asses the accuracy of the values approximated
using the model the standard error and correlation coefficient were calculated for
each missing case.

We have used the following terms to measure the modeling quality: (i) Stan-
dard error (Se) and (ii) Correlation coefficient (r). For a given data x1, x2, . . . , xn

and corresponding approximated values x̂1, x̂2, . . . , x̂n the Standard error (Se) is
computed as

Se =

√
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√

n
∑
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2

n
(7)

and the correlation coefficient (r) is computed as
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The error (Se) estimates the capability of the model to predict the known data
set, and the correlation coefficient (r) measures the degree of relationship between
the actual data and corresponding approximated values using the model. It always
ranges between −1 and 1. A positive value indicates a direct relationship between
the actual missing data and its approximated value using the model.

The results of the correlation and standard error measures obtained from the
experiment are given in Table 2 and 3, respectively. The results are also depicted
in Figure 3 and 4 for easy comparison between the results found by MLP and RBF.
The results show that the models approximation to the missing data was highly
accurate. There seems to be less significant difference among the approximations
obtained for the different number of missing cases within a single record.

Approximations obtained using RBF in all the missing cases are better than
the corresponding values found using MLP. A sample of the actual missing data
and its approximated values using the model for the 14 variables used in the model
are presented in Tables 4 and 5, and in Figures 5 and 6. The results show that
the models approximated the value of the missing data to be similar to the actual
values. It can also be observed that the estimates found for 1, 2, 3, 4, and 5 missing
cases are not significantly different from each other.

Number of Missing
Value

1 2 3 4 5

MLP 0.94 0.939 0.939 0.933 0.938

RBF 0.968 0.969 0.970 0.970 0.968

Table 2. Correlation coefficient
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Fig. 3. Correlation coefficient MLP vs. RBF
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Fig. 4. Standard error MLP vs. RBF
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Fig. 5. Actual vs. approximated values using RBF
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Fig. 6. Actual vs. approximated values using MLP
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Number of Missing
Value

1 2 3 4 5

MLP 16.62 16.77 16.8 16.31 16.4

RBF 11.89 11.92 11.80 11.92 12.02

Table 3. Standard error

Number of missing values in a record
Data 1 2 3 4 5

4.28 4.54 4.54 4.53 4.47 4.07

7.5 6.86 6.79 6.41 6.80 6.52

17 15.50 15.10 15.8 15.5 15.0

23.8 21.20 20.90 21.3 21.0 22.0

71 59.20 59.20 59.0 58.5 58.4

0.1 0.18 0.17 0.17 0.05 0.02

75 79.90 81.1 80.3 80.3 81.2

1.8 2.48 2.41 1.81 2.54 2.21

0.4 0.10 0.104 0.72 0.22 0.72

0.2 0.58 0.06 0.02 0.11 0.159

40 38.10 37.8 38.4 37.2 38.0

5.7 6.64 6.66 6.96 5.82 5.67

24 22.10 22.4 22.3 23.0 23.2

2.9 3.23 3.86 3.74 3.83 3.97

Table 4. Actual and approximated values using MLP

Number of missing values in a record
Data 1 2 3 4 5

4.28 4.21 4.20 4.12 4.25 4.13

7.5 7.89 8.79 8.71 8.21 8.65

17 16.96 17.16 16.04 12.48 15.95

23.8 20.74 21.25 20.60 18.88 21.43

71 68.11 55.83 83.21 81.46 59.78

0.1 0.06 0.04 0.05 0.05 0.08

75 83.92 74.84 75.96 78.79 75.70

1.8 1.00 1.14 2.15 1.73 2.01

0.4 0.70 0.71 0.76 0.55 0.71

0.2 0.10 0.10 0.09 0.16 0.11

40 56.45 57.73 61.73 62.16 62.65

5.7 9.79 9.30 10.43 9.33 6.54

24 22.40 22.52 27.81 36.79 34.45

2.9 3.31 3.48 2.87 3.98 3.50

Table 5. Actual and approximated values using RBF
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5 CONCLUSION

Neural networks and genetic algorithms are proposed to predict missing data in
a database. An auto-associative neural network is trained to predict its own input.
An error function is derived as the square of the difference of the output vector
from the trained neural network and the input vector. Since some of the input
vectors are missing, the error function was expressed in terms of the known and
unknown components of the input vector. Genetic algorithm is used to approximate
the missing values in the input vector that best minimise the error function. RBF
and MLP neural networks are used to train the neural network. It is found that
the model approximates the missing values with higher accuracy and there was no
significant reduction in accuracy as the number of missing data within a single record
increases. It is also observed that results found using RBF are better than MLP.
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