Computing and Informatics, Vol. 28, 2009, 353-367

ADAPTING A HEP APPLICATION
FOR RUNNING ON THE GRID

Wiodzimierz FUNIKA!, Krzysztof KORCYL?, Jan PIECZYKOLAN?
Lukasz SKITAL?, Kazimierz BALOS?, Renata SLOTA!

Krzysztof Guzy3, Lukasz DUTKA?, Jacek KITOWSKI"?
Krzysztof ZIELINSKI!?

Institute of Computer Science AGH !
al. Mickiewicza 30, 30-059 Krakow, Poland

Institute of Nuclear Physics PAN 2
ul. Radzikowskiego 152, 31-342 Krakow, Poland

ACC Cyfronet AGH 3

ul. Nawojki 11, 30-950 Krakow, Poland
e-mail: funika@agh.edu.pl, Krzysztof.Korcyl@ifj.edu.pl

Revised manuscript received 16 May 2008

Abstract. The goal of the EU IST int.eu.grid project is to build middleware fa-
cilities which enable the execution of real-time and interactive applications on the
Grid. Within this research, relevant support for the HEP application is provided by
Virtual Organization, monitoring system, and real-time dispatcher (RTD). These
facilities realize the pilot jobs idea that allows to allocate grid resources in ad-
vance and to analyze events in real time. In the paper we present HEP Virtual
Organization, the details of monitoring, and RTD. We present the way of running
the HEP application using the above facilities to fit into the real-time application
requirements.

Keywords: Interactive application, real-time application, pilot job, virtual organi-
zation, SLA, infrastructure monitoring, application monitoring, grid middleware

354 W. Funika, K. Korcyl, J. Pieczykolan, L. Skital, K. Balos, R. Stota et al.
1 INTRODUCTION

A High Energy Physics application (HEP) poses challenges related to the Grid envi-
ronment, specifically, in case of LHC experiments, their requirements go far beyond
those typically involving storage and computational issues. These requirements are
also much more difficult to meet even than those coming from interactive applica-
tions. This is due to the fact that they become the requirements of real-time-like
applications. The application which handles the LHC experiment has to process
ca. 3500 events per second while each event should be studied within less than
5 seconds. A non-timely response to an event leads to irreversible loss of the data
coming from the real LHC experiment. Taking into account that submission of
jobs to the Grid may take quite an amount of time, the use of the pilot jobs idea
is a proper solution. Just before the experiment starts, jobs are submitted to the
Grid. These jobs allocate resources and establish communication channel. They
start waiting for event data from the experiment. To use this idea, support for the
HEP application is needed.

The goal of the EU IST int.eu.grid project [1] is to build middleware facilities
which enable the execution of real time and interactive applications on the Grid.
Within the research under discussion, to provide relevant support for the HEP ap-
plication, Virtual Organization for HEP (HEP VO), monitoring system (MS), and
real-time dispatcher (RTD) were developed. These facilities realize the pilot jobs
idea that allows to allocate grid resources in advance and to analyze events in real
time, concurrently with on-line communication with an experiment.

In the paper we will present HEP application, HEP VO with its certification
procedure, SLA metrics, and VO management tools, the details of monitoring with
JIMS and OCM-G, as well as the design and implementation of RTD. We will show
the procedure of starting of HEP application with support of the above-mentioned
facilities. We will give the details of co-operation of these facilities within the appli-
cation lifetime to match the real time application requirements.

2 STATE-OF-THE-ART

The issues related to supporting the applications with interactivity-like and real-
time requirements and exploiting grid environments are addressed nowadays by nu-
merous researchers. Most of them refer to building grid-oriented middleware and
applications supporting human users in interacting with a running experiment or
simulation application. For example, the ViroLab project’s [3] Virtual Laboratory
aims to deliver a collaborative platform for e-Science, which is a set of dedicated
tools and servers that form a common space of planning, building, improving and
using in-silico experiments in the virology domain. Other environments refer to the
research on enabling conducting long-running simulations on the grid, which need
a high responsiveness rate and the ability of interactive steering. Such research was
addressed by the CrossGrid project [2]. It was explicitly targeted towards interac-
tive grid applications by providing tool and service support for layered distributed

Adapting a HEP Application for Running on the Grid 355

compute- and data-intensive applications which need nearly real-time response. The
software support involved tools for performance measurements and predictions, code
verification, application specific and grid services: roaming access, scheduling agents,
application and grid monitoring, data access optimization.

The existing environments do not meet fully the requirements stemming from
the HEP application, since it features two special kinds of requirements. One of
them is related to interactivity which is needed for the human operator to start/stop
event analysis of the real experiment and to decide where the events will be sent
to. On the other side the HEP application should meet the requirements for nearly
real-time responsiveness, which are very important. This is because copies of events
delegated to remote sites are buffered in local storage (just in case the forwarded
data will be lost), and failures to return filtering decisions in time may result in
introducing dead time in the system due to a lack of space for buffering. As the HEP
application produces huge amounts of data, the obligatory requirement to meet the
real-time demand is among others the quality of service provided by the network and
communication protocols. Series of tests were conducted to check various types of
networks and protocols: dedicated lightpath, VPN and WAN switched with various
flavours of TCP/IP [4] and indicated that there were no basic limitations from the
basic infrastructure. Another challenging issue for the HEP application is the size of
the system reaching few thousands of nodes. To assess the scalability of the system,
the HEP application was mapped onto a single grid farm [5]. There, the idea of
pilot job (see later in the text) was introduced and used to assign roles of various
components of the system to machines from the farm. That work demonstrated the
ability of the system to run on a large scale with statically assigned machines and
all components sharing a common file system. In our approach we aim at running
the system on dynamically allocated machines scattered in different remote farms.

3 HEP APPLICATION IN THE GRID ENVIRONMENT
3.1 HEP Application

To support the processing of data coming from the largest particle accelerator — the
Large Hadron Collider (LHC), the ATLAS Trigger and Data Acquisition System
(ATLAS TDAQ) is created. The main task of the ATLAS TDAQ system is to
select interesting events out of 1 Giga interactions per second generated in collisions
at the LHC accelerator and record them on permanent storage with frequency of
0O(300 Hz).

The system is based on two levels of online selection algorithms. The TDAQ
system is logically divided into a fast First Level Trigger (L1), and High Level Trigger
system (HLT) which involves the next two selection stages. The First Level Trigger
(L1) provides an initial reduction of the LHC’s 40 MHz nominal bunch crossing
rate to 75 kHz. Given a mean ATLAS event size of 1.6 MB, this corresponds to
a throughput of ca. 120 GB/s.

356 W. Funika, K. Korcyl, J. Pieczykolan, L. Skital, K. Balos, R. Stota et al.

The first stage of the second level reduces the event rate further to 3.5 kHz,
which corresponds to a total throughput of about 6 GB/s out of the event building
system. The data fragments of events accepted by the first stage of HLT algorithms
are collected by the event building nodes (SFIs) from detector buffers. The resulting
complete event fragments are then sent to the Event Filter Processors (EFPs) for the
last selection stage (i.e. the second stage of HLT). The accepted events (ca. 0.2 KHz,
300 MB/s) are finally sent to the output nodes (SFOs) to be permanently saved on
mass storage.

To enable the filtering of events during the second stage of L2, a need of 1600
EFP nodes (dual-CPU machines) is foreseen. To meet this challenge, we propose to
extend the EFP system by the possibilities of using a Grid infrastructure to allocate
necessary processing power with fast access to get the data processed in real time
(O(1s)).

Each EFP hosts an Event Filter Demon (EFD) instance, which provides the data
flow functionalities, and several Processing Tasks (PTs) in charge of the actual data
processing and event selection. The EFD manages the communication with the SFI
and SFO elements and makes the events available to the PT processes via PT 1/0.
PT runs the EF algorithm in the standard ATLAS off-line framework (Athena).

3.2 Interactive Grid as a Solution

To use a grid environment for filtering events (second stage of L.2), we need to address
two main problems. First, how to delegate computations to the Grid, while avoiding
drastic changes to ATLAS TDAQ); second, how to provide a proper servicing of the
application on the Grid, taking into account its real-time requirements.

In order to be able to delegate some of the filtering work to remote computers,
we propose changes relating to PT tasks only, i.e. the tasks explicitly involved in
processing. It is not important to induce changes to the EFD daemon along with
communication with SFI i SFO. We propose to split the PT task into two parts:
proxyPT — the part being responsible for the data flow, and remotePT — the part
performing data processing. The proxyPT runs on the same machine as EFD and
implements the PT I/O library to communicate with the EFD.

In case a proper responsiveness of PT tasks is ensured, a challenge is to design
and implement appropriate facilities (grid middleware) that realize the idea of pilot
jobs. These are: Virtual Organization for HEP (HEP VO), monitoring system (MS),
and real-time dispatcher (RTD).

HEP VO supports the preparation and management of a Grid environment in
a two-stage manner: the goal of the first stage is to appropriately certify the sites
on which computations will run, while the second stage will focus on monitoring
a correct functioning of the environment. The control of appropriate operation of the
environment is based on the defined relevant Service Level Agreement (SLA) metrics
obtained with MS providing the monitoring of the environment infrastructure and
the monitoring of the running application.

Adapting a HEP Application for Running on the Grid 357

The monitoring of the infrastructure realized by the JIMS monitoring facility
aims at obtaining performance data on network load needed to assess where and
via which path event data is going to be transferred. The monitoring of the appli-
cation supplying the data on the processor load and memory usage is based on the
functionality of the OCM-G monitoring system.

A key role in the support of the HEP application is played by RTD. It is aimed
at re-distributing the events coming from CERN to the jobs launched by HEP VO
on the Grid. This is a realization of the above-mentioned pilot jobs idea.

In spite of the above challenges, it should be emphasized that delegating compu-
tations to the Grid is a solution, which enables in the long run the utilization of Grid
computation power which is required when conducting such demanding experiments
like HEP applications. The experience and the middleware developed are capable
to provide portability to the Grid for many interactive or real-time applications.

In the following we are presenting in detail the design and implementation of
the above-mentioned facilities, supporting the execution of the HEP application in
the grid environment.

4 HEP VO

HEP VO is responsible for providing the necessary environment to run the HEP
application on the Grid. Available grid resources are carefully checked during the
certification procedure. Next, SLA [7] is signed and resources are included into
a HEP VO. The HEP VO is endowed with a portal [8] which simplifies the usage
and management of VO.

4.1 Certification Procedure and SLA

Since the HEP application requirements are difficult to fulfil each site which is
intended to support the VO has to pass the certification procedure. During this
procedure the site is checked whether it is able to support the application within
a long term. Legal issues are also resolved during the certification, especially, w.r.t.
data privacy.

When being under the certification procedure, the site configures its middle-
ware to support HEP VO and the application software together with monitoring
components are installed. On successful software installation, VO staff can start
performance and stability tests. Site stability and availability is tested by SAM
tests during the certification and the site’s regular operation in HEP VO.

Once the performance tests are done, an SLA document is prepared. This
document includes a description of services provided by the site and assures data
privacy. With the SLA signed, the site can be certified and its resources can be used
during the experiment.

The parties of the SLA document are an experiment owner and a service provi-
der. The signed SLA assures a proper level of services provided by the site, whose

358 W. Funika, K. Korcyl, J. Pieczykolan, L. Skital, K. Balos, R. Stota et al.

fulfilment can be controlled by specially drawn up metrics. The metrics cover the
following areas: performance, availability and connectivity, support and expertise.

Performance metrics characterize the site’s performance w.r.t. computational
power and network bandwidth. The availability and connectivity metrics describe
the site’s ability to faultlessly run the application on the long-term basis and describe
the amount of computational resources which can be consumed by the application.
The support and expertise metrics characterize the site’s staff responsiveness to
reported problems and the site’s administrators effectiveness in problem solving.
HEP VO Management System monitors the realization of SLA metrics.

4.2 Management System

HEP VO Management System has been created to simplify the VO usage and mana-
gement. The system is designed to support three different user groups during their
interaction with HEP VO. These groups are: VO Managers, Experiment Operators,
and Site Managers. Each group has its own profile with a different view on the
system, limited to relevant functionalities.

VO Manager has access to all management functionalities. He/she supervises
the certification procedure and can change a site status according to its performance
during the procedure. The site status can also be changed during a regular site
operation. A site’s operation within HEP VO can be suspended in case of problems.
VO Manager is also responsible for the preparation of application software which
can be run by an experiment operator. He/she prepares job submission profiles for
all available application versions.

Experiment Operator can submit a bunch of grid jobs with a selected submission
profile. He can also request more resources by submission of additional grid jobs or
release resources by stopping running jobs. During the experiment run, information
about submitted grid jobs is presented to the Experiment Operator. Each grid
operation, like job submission or job cancellation requires a valid proxy certificate.
Therefore each experiment operator needs to provide a valid proxy using his/her
local account on HEP management node.

Using the portal, Site Manager registers the site in HEP VO and starts the certi-
fication procedure. During regular site operation he/she has access to job monitoring
data.

On the one side, SLA is a document being a pre-requisite to be signed; on the
other side, proper metrics related to SLA are monitored by HEP VO Management
System, to notify the site and VO managers about all the improper behaviour cases
occurred.

5 MONITORING FACILITIES

The monitoring facilities intended to provide RTD with monitoring data comprise
two systems, each meant to serve for different elements of the whole system: JIMS
targeting network load parameters and OCM-G - local resources usage.

Adapting a HEP Application for Running on the Grid 359
5.1 Network Monitoring

As the main monitoring component for the HEP application we have chosen JIMS —
the JMX-based Infrastructure Monitoring System. It is equipped with a specia-
lized interface following the WS-Management standard (a standard protocol for
managing resources through the web) [9]. Built on top of JMX (Java Management
Extensions) [10, 11], JIMS is a flexible framework that allows deployment of many
differentiated modules, like modules for monitoring grid infrastructure as well as
modules facilitating the discovery of monitored nodes within the cluster and the
grid. Moreover, JIMS communication layer is also composed of modules, e.g. JSR
262 connector — a Web Services connector for JMX technology [9] implementing
the aforementioned WS-Management standard. In int.eu.grid, the JIMS system
was enhanced with P2P capabilities based on Global Discovery Protocol [12]. GDS
(Global Discovery Service) module allows JIMS agents to discover all the agents run-
ning within the grid. Having the list of discovered agents, another module — JIMS
Gateway — allows connecting to any other agent from one arbitrarily chosen agent.
In our case this is the agent that is selected and configured in Real-Time Dispatcher
(RTD), which collects the monitoring information from one point of attachment with
the JIMS monitoring system via WS-Management protocol. For the purposes of the
HEP application, the JIMS system comprises two types of monitoring components.
The first one is the Network Monitoring module, monitoring the available bandwidth
using the algorithm of measuring dispersion between pairs of packets [13]. The con-
cept of available bandwidth monitoring is used by the senders/receivers components
of JIMS agents, communicating with each other in order to measure the available
possible bandwidth between HEP application in CERN and the computing resources
in clusters all over the Europe (IFCA, CYFRONET, etc.).

5.2 Local Resources Monitoring

The second monitoring component — OCM-G — is represented by a proxy module al-
lowing the Dispatcher to obtain information about computing infrastructure utiliza-
tion. The module exploits OMIS-Compliant Monitoring System for the Grid [14, 15]
to realise its monitoring functionality. It acts as a bridge between OCM-G and JIMS
system [16]. Since JIMS uses JMX MBeans to implement monitoring modules, a new
MBean was created for this purpose. The MBean provides information like a load
average value for a given worker node (i.e. the number of jobs in the run queue or
waiting for disk I/O averaged over 1, 5, and 15 minutes), an amount of available
host’s main memory and an amount of remaining swap space. When the one of the
MBean’s operations is called, the the proper request is constructed and sent to the
OCM-G system. Upon an OCM-G’s reply arrival, the reply is processed, if needed,
and returned as the operation result. For collecting monitoring information, OCM-G
uses monitors running on worker nodes. The MBean itself runs in the JIMS agent
launched on a chosen host of Grid site (probably Computing Element). With help
of the JIMS infrastructure the data from all sites can be supplied to the Dispatcher.

360 W. Funika, K. Korcyl, J. Pieczykolan, L. Skital, K. Balos, R. Stota et al.

The OCM-G’s monitor on a worker node is started together with a remote process-
ing task and stopped when the remote processing task is stopped, too. Thus we
save resources and this is the main reason why we use the OCM-G system instead
of JIMS agent which is capable of providing the same monitoring information but
is not so lightweight.

6 REAL-TIME DISPATCHER
6.1 The Concept of RTD

In order to facilitate the process of delegating computations from a particular ap-
plication to available grid resources, RTD [17, 18] uses the master-worker paradigm.
In our case the role of master is played by the HEP application.

Via HEP VO Management System the experiment operator creates a pool of jobs
called worker processes (on the sites that have passed the certification procedure;
their number is subject to changes depending on meeting the SLA metrics). These
processes register within RTD and wait until RTD passes them a request from the
application. When the application needs additional computational power it sends
a request for worker(s) to RTD. This additional computational power is chosen from
those workers which are currently registered in RTD. The pool of jobs is created with
a safety margin but if there is a need of more resources, the operator can launch
additional jobs which can register in RTD, thus increasing the amount of available
resources.

The application request for additional computational power contains the appli-
cation hostname and the port on which it is listening for a TCP connection from
a worker process, which will be assigned by the RTD. When the RTD receives an
application’s request, it uses the monitoring facilities (see Section 5) to find the
most optimal worker (based on the currently available bandwidth and computa-
tional power of currently available free workers) and passes to it the hostname and
port on which the application is listening. Then the worker connects to the appli-
cation and is ready to serve its requests. At this point, the role of RTD is finished.
Passing data, carrying out computation and returning the results is accomplished
directly via the created connection between the master and the workers.

6.2 RTD Architecture

The RTD architecture assumes its modular construction (cf. Figure 1), with the
following modules:

Frontend Interface — the module responsible for the gateway interface to the sys-
tem.

Backend Interface — the module responsible for communication with the worker
running on the computing nodes on the grid.

Adapting a HEP Application for Running on the Grid 361

Resource Manager with Resource Registry — the module responsible for ma-
naging available workers.

Engine — the module that implements task dispatching.

Monitor — the module responsible for gathering data from the monitoring facilities
concerning the state of computing nodes within sites in order to supply RTD
with information required for optimal selection of the available worker.

In order to increase the reliability and efficiency of the RTD, its modules are
constructed in a way that allows placing them on separate cluster nodes. Such
a construction of the system is useful for the multiplication of module instances and
balancing their load, as well as taking over the assignments of a damaged instance.

I_ Real-Time Dispatcher
I 9[Frontend Interface I

<5
I Engine I
<
Resource Resource
Registry Manager
9 <5

—{ Backend Interface I

Grid Monitoring

System Monitor

The Grid

Fig. 1. High-Level Design of the Real-Time Dispatcher architecture

6.3 RTD Use Cases

Two main actors and one secondary actor interact with the systems. They are:
Master — represents the application that requests a need for computing power and
delegates the computation to the grid environment.

Worker — a worker process running on the computational node in the grid envi-
ronment, containing the computing algorithm and expecting input data.

Monitoring (secondary) — a grid monitoring system, provides data concerning
the state of grid nodes.

Two main use cases have been identified as presented below.

Register Worker. This use case covers the registration of a worker running on
a computing node. Its goal is to register the worker in the Resource Manager

362 W. Funika, K. Korcyl, J. Pieczykolan, L. Skital, K. Balos, R. Stota et al.

Backend ResourceManager
i |
| |
]]
]]
]]
Worker ! !
N]]
i HELLO ! !
» | |
: I I
! ACK ! !
¢]]
i READY ! !
— REGISTER !
i ACK |

|

Fig. 2. Register Worker sequence diagram

RTDClient TD GRID Monitoring Worker

-

|

I

|

|

|

I

|

Master :
1 I
| PROVIDE_WORKER i
i DISPATCH !
! L GET_WORKER_STATS ! :
] 1 |
! ! ! CONNECT !
I | F A
| i ACK i i i
: Ko 1 ! |
! 1 1 SERVICE 1 1
: K : : !
| WORKER_READY I ! ! :
N 1 1 | 1
! | 1 | 1

Fig. 3. Require Worker sequence diagram

module and make it available for the RTD for further assignment to the master.
The initiator is the worker itself, the registration procedure is part of worker
initialization. The sequence diagram with the scenario of this use case is shown
in Figure 2.

Require Worker. This use case covers the request to assign a worker to a master.
The goal is to select the optimal worker and pass to it some information necessary
to establish a connection to the master in order to serve the client application
requests. The initiator is the master. The sequence diagram with the scenario
of this use case is shown in Figure 3.

7 CONCLUSIONS

The solution presented in this paper was designed for the HEP event processing
problem, which poses some rigorous time requirements for data processing. Usually,
large delays in the event processing end up in the overloading of the queues holding

Adapting a HEP Application for Running on the Grid 363

the data coming from the trigger. We find the achieved solution very flexible and
adaptable for other problems, not only those described in the paper.

In a natural consequence, the developed architectural approach is capable of
solving all the problems connected with generation of large amounts of short data
processing tasks having no relations to each other. In such a scenario, the time
of going through the grid infrastructure might be much longer than the processing
itself. Moreover, contemporary grid infrastructures, especially resource brokers, are
not prepared for processing thousands of jobs per second. They were designed
for long-run jobs. The facilities (middleware) described in this paper are able to
work with any typical grid infrastructure and provide computer power being able to
process thousands of small jobs without flooding the whole grid environment. This
is enabled owing to the intelligent pre-allocation of computer processing resources
in advance and continuous management of currently available resources, supported
by advanced monitoring information coming just from the processing nodes. We
find similar problems in many domains including medicine, astrophysics, flood crisis
decision team support, and many others.

Apart from it, we find this solution applicable to other problems including those
exploiting the so called “wasted computer power”. By this term we understand free
CPU cycles lost by improperly written grid jobs. Owing to the advanced monitoring
sensors installed together with jobs allocated to worker nodes across the grid we can
provide the architecture intelligently exploiting available free processor cycles on
the grid. By simple reconfiguration of job queues at grid sites capable to provide
wasted computer power to handle a particular computational problem, we can pre-
allocate the free CPU cycles to some other jobs, controlled by the dispatcher. It is
able to intelligently inject a very short processing request to those processors which
are unoccupied at the moment because they are not processing any grid job or the
executing job is waiting for some external results.

We find the problems of effective exploitation of “wasted computer power” still
up to date and we see many applications especially in the medical domain being
able to appropriately consume available resources which cannot be exploited in the
traditional way by most of the grid infrastructure.

Acknowledgement

The research is partly supported by the EU IST 031857 int.eu.grid project with
the related SPUB-M grant, the AGH grant 11.11.120.777, and the Cyfronet
grant 500-08.

REFERENCES

[1] The EU IST int.eu.grid web page http://www.interactive-grid.eu/.

[2] BUBAK, M..-MALAWSKI, M.-ZAJAC, K.: The CrossGrid Architecture: Applica-
tions, Tools, and Grid Services. In: Rivera, F.F., et al. (Eds.), Proceedings of

364

8]

[4]

[5]

(6]

(7]

8]

[9]

W. Funika, K. Korcyl, J. Pieczykolan, L. Skital, K. Balos, R. Slota et al.

Grid Computing, First European Across Grids Conference, Santiago de Compostela,
Spain, February 2003, Lecture Notes in Computer Science, No. 2970, Springer, 2004,
pp. 309-316, http://www.eu-crossgrid.org.

Scoor, P.M.A.—BOUCHER, C.—BUBAK, M.—HOEKSTRA, A.—PLASZCZAK,
P.—PosTtHUMUS, A.—VAN DE VIJVER, D.: VIROLAB — A Virtual Laboratory for
Decision Support in Viral Diseases Treatment. In: M. Bubak, M. Tura3a, K. Wiatr
(Eds.), Proceedings of Cracow Grid Workshop — CGW ’05, November 20-23, 2005,
ACC-Cyfronet UST, 2006, Krakéw, pp. 33, http://www.virolab.org.

BEE, C.—BoLD, T. et al.: On the Potential Use of Remote Computing Farms in
the ATLAS TDAQ System. In: Real Time Conference, 2005, 14" TEEE-NPSS, June
4-10, 2005, Stockholm.

ForTI, A.—GARITAONANDIA, H.—MASIK, J.—WHEELER, S.—WENGLER, T.:
Using the Grid to Test the ATLAS Trigger and Data Acquisition System at Large
Scale. In: IEEE TNS on Nuclear Science, Vol. 54, October 2007, No. 5, pp. 1767-1772.
SKITAL, L.—DutkaA, L.—KorcyL, K.—JaNusz, M.—StoTA, R.—KITOWSKI,
J.: Virtual Organization approach for running HEP applications in Grid Environ-
ment. In: Proc. Cracow Grid Workshop (CGW ’06), October 15-18, 2006, Cracow
(Poland), 2007.

SKITAL, L.—JANuUSsz, M.—SLoTA, R.—KiTowski, J.: Service Level Agreement
Metrics for Real-Time Applications on the Grid. In: R. Wyrzykowski (ed.), Proc.
PPAM 2007, Seventh International Conference on Parallel Processing and Applied
Mathematics, Gdansk, Poland, September 9-12, 2007, LNCS, Springer (to appear).
SKITAL, L.—SroTA, R.—JANUSZ, M.—KITOWSKI, J.: Management of Virtual Or-
ganisation for demanding applications in the Grid Environment. In: Proc. CGW ’07,
October 15-17, Krakow, Poland, 2008 (to appear).

DENISE, J.-F.—FucHs, D.: Java Management Extensions (JMX) Interoperation
With Non Java Technologies. 2007, http://java.sun.com/javase/technologies/
core/mntr-mgmt/-javamanagement/JSR262 Interop.pdf.

Sun Microsystems. Java Management Extensions (JMX) Specification. version 1.4.
JSR 160, Santa Clara, CA, 2006, http://jcp.org/en/jsr/detail?id=160
(jmx-14-mrel3-spec.pdf).

Sun Microsystems. Java Management Extensions Instrumentation and Agent Spec-
ification, v. 1.2, JSR 003, Santa Clara, CA, 2002, http://jcp.org/en/jsr/
detail?id=3 (jmx1.2-spec.pdf).

Woitas, K.—WASILEWSKI, L.—BAL0S, K.—ZIELINSKI, K.: Discovery Service for
JMX-Enabled Monitoring System. JIMS Case Study. In: Proc. CGW ’05 Workshop,
ACC Cyfronet AGH, Krakéw, 2006, pp. 148-157.

DovroLis, C.—RAMANATHAN, P.—MOORE, D.: What Do Packet Dispersion Tech-
niques Measure? INFOCOM, 2001, pp. 905-914.

BaLis, B.—BuUBAK, B.—FUNIKA, M.—WISMULLER, R.—RADECKI, M.—
SzZEPIENIEC, T.—ARODZ, T.—KURDZIEL, M.: Grid Environment for On-Line Ap-
plication Monitoring and Performance Analysis. In: Scientific Pogramming, Vol. 12,
2004, No. 4, pp. 239251, http://grid.cyfronet.pl/ocmg.

Adapting a HEP Application for Running on the Grid 365

(15]

Lupwic, T.—WISMULLER, R.—SUNDERAM, V.—BODE, A.: OMIS — On-Line
Monitoring Interface Specification (Version 2.0). Shaker Verlag, Aachen, Vol. 9, LRR-
TUM Research Report Series, 1997, http://wwwbode.in.tum.de/~omis/0OMIS/
Version-2.0/version-2.0.ps.gz.

Funika, W.—Guzy, K.: Integration of OCM-G into the JIMS Infrastructure for the
Monitoring of HEP Application. In: M. Bubak, M. Turala, K. Wiatr (Eds.), Proc.
Cracow '07 Grid Workshop, October 15-18, 2007, Cracow, Poland, ACC Cyfronet
AGH, 2008 (to appear).

PieczykoLaN, J.—DutkA, L.—KRyzA, B.—KorcyYL, K.—KIiTOWSKI, J.: Data
Dispatcher for Real Time Applications in Grid Environment. In: Proc. 7** Int. Conf.
Computational Science — ICCS 2007, Beijing, China, May 2007, adtn’l CD, pp. 47-54.
PieczykoraN, J.—DutkaA, L.—KorcyL, K.—KiTtowski, J.: Data Dispatcher
for Interactive and Data-Streaming Applications Using Grid Environment. In:
R. Tadeusiewicz, A. Ligeza, M. Szymkat (Eds.), Proc. of CMS 07 Conference (Com-
puter Methods and Systems), November 21-23, 2007, Krakow, Oprogramowanie
Naukowo-Techniczne, 2007, pp. 339-344.

Wlodzimierz FUNIKA works at the Institute of Computer Sci-
ence of the AGH University of Science and Technology in Krakow
(Poland). His main research interests are in distributed program-
ming, tools construction, performance analysis and visualization.
Previously involved in the EU IST CrossGrid, CoreGRID, K-
WI{Grid, int.eu.grid projects, currently in the EU IST ViroLab,
GREDIA projects.

Jacek KITOWSKI is Full Professor of computer science, Head
of the Computer Systems Group at the Institute of Computer
Science of the AGH-UST in Cracow (Poland), and the Aca-
demic Computer Centre CYFRONET-AGH. His topics of in-
terest include large-scale computations, multiprocessor architec-
tures, Grid services and Grid storage systems, knowledge engi-
neering. Previously involved in the EU IST CrossGrid, Pellu-
cid, KW{Grid, and int.eu.grid projects, currently in the EU IST
GREDIA project.

366 W. Funika, K. Korcyl, J. Pieczykolan, E£. Skital, K. Balos, R. Stota et al.

Krzysztof KORCYL since graduation from the AGH-UST in
Krakow employed at the PAN Institute of Nuclear Physics, has
been developing instrumentation for high energy physics experi-
ments. Contributed to the TDAQ system of Dephi at LEP. Cur-
rently he is involved in the design and modelling of the TDAQ
system for ATLAS experiment on LHC.

Kazimierz BALOS received his Ph. D. in computer science from
the AGH-UST in Krakow, Poland, in 2007. His Ph.D. thesis
concerns self-confiurable and adaptable services for the moni-
toring of infrastructure and applications in a grid environment.
Involved in national (KBN) and EU projects (CrossGrid, Int.Eu.
Grid, Ambient Networks). Interests: monitoring and manage-
ment of distributed systems, SOA-based systems, Web 2.0/3.0.

Jan PIECZYKOLAN graduated from the AGH-UST in Cracow,
Poland. He has been working with Grid Technologies for the last
4 years in the scope of such EU-IST projects as K-Wf Grid and
int.eu.grid, especially in the scope of Grid Middleware. Worked
at ACC Cyfronet AGH in Cracow as scientific researcher within
the EU IST int.eu.grid project.

Renata St.OTA works at the Institute of Computer Science
of the AGH Uni-versity of Science and Technology in Krakow,
Poland. Her topics of interest include distributed systems, Grid
environments, data management and storage systems, know-
ledge engineering. Previously involved in the EU IST Cross-
Grid, Pellucid, K-W{Grid, and int.eu.grid projects. Currently
participates in the EU IST GREDIA project.

Adapting a HEP Application for Running on the Grid 367

Krzysztof ZIELINSKI is Full Professor and Head of the Institute
of Computer Science at AGH-UST. His interests concern dis-
tributed computing, object-oriented and component distributed
systems engineering, mobile technology, and networked multi-
media. He is the author of over 130 papers in this area. In the
years 1988-90 he worked in the Olivetti Research Lab., Cam-
bridge (UK), and at Cambridge Computer Laboratory.

