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Abstract. Equivalence checking tools often use a flip-flop matching step to avoid
the state space traversal. Due to sequential optimizations performed during syn-
thesis (merge, replication, redundancy removal, ...) and don’t care conditions, the
matching step can be very complex as well as incomplete. If the matching is in-
complete, even the use of a fast and efficient SAT solver during the combinational
equivalence-checking step may not prevent the failure of this approach. In this pa-
per, we present a flip-flop matching engine, which is able to verify optimized circuits
and handle don’t care conditions.
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1 INTRODUCTION

Equivalence checking proves formally that two given designs are functionally equi-
valent, e.g., an optimized design is functionally equivalent to its earlier version.
Equivalence checking can be applied at different stages during the design process.
Figure 1 shows the role of equivalence checking in a typical flow of modern VLSI
design. During the design process, checking the equivalence of two designs described
at the same or different levels of abstraction is necessary. For example, checking the
functional equivalence of the optimized implementation against the RTL specifica-
tion is critically important in order to guarantee that no error is introduced during
the logic synthesis and optimization process. Similarly, checking the equivalence of
the gate level implementation versus the gate-level model extracted from the layout
can assure that no error is made during the physical design process. In the following
text, the circuit before transformation is called the specification design, the one after
transformation is the implementation design.

Compilation_ RTL
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Equivalence checking

<

\ N Gate level

O \
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Fig. 1. Equivalence checking in the design flow

The method usually used to solve the equivalence-checking problem is called
state traversal. This method constructs the product machine of the specification
and implementation designs (illustrated in Figure 1), computes the reachable states
of the product machine from the reset states and checks that the primary output of
the product machine is always 0 for any input vector and reachable state.

Equivalence checking may be used to verify combinational and sequential de-
signs. Combinational equivalence checking (CEC) is resumed to verify that two
Boolean functions are equivalent. This can be done by using canonical representa-
tions of Boolean functions as BDDs [1] or non canonical ones as AIGs (And Inverter
Graph) [2]. To avoid the problem of BDDs blow-up or the problem of the non cano-
nicity of the AIGs, the state-of-the-art combinational verification methods combine
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Fig. 2. Example of product machine

a powerful base verification algorithm with techniques to exploit the structural si-
milarities of the circuits under verification ([2, 3, 4] or see [5] for an overview).
These similarities typically occur in practical problem instances because of the in-
cremental nature of the design process. The techniques to capture them are based
on functional equivalences, indirect implications, or permissible functions. The uti-
lization of structural similarities has shown to be very important for the efficient
verification of large synthesized circuits. The main problem of these techniques
is that they only consider the equivalence of the function and not the inclusion.
The inclusion checking is needed by the introduction of don’t care conditions used
to represent all the outputs values of a function, which are left unspecified by the
designer.

Conventional algorithms for solving the sequential equivalence-checking (SEC)
problem require a state space traversal of the product machine. Impressive progress
has been made in this area by the introduction of so-called symbolic techniques,
which are based on the application of BDDs to traverse the state space (see e.g. [6]
for an overview). Although these techniques can conceivably handle large circuits
and are still being improved, they cannot be expected to scale well with circuit size
for many types of circuit because of memory explosion.

To overcome the limitations of the symbolic approaches, an algorithm that per-
forms the combinational verification in stages was proposed by Brand [4] in 1993.
This algorithm explores the structural similarity of the two circuits under verifica-
tion (CUVSs) to speed up the verification process and has successfully verified larger
circuits. The idea of this approach is to map the sequential equivalence-checking
problem into a combinational equivalence checking one. This is a two-step approach.
The first step is to find a matching between the flip-flops (FFs) in the specification
and implementation designs. The aim of this step is to find all the potentially
equivalent FFs. The second step often called the proof is to check the equivalence
of the corresponding combinational blocks resulting from the matching by using
combinational formal techniques.
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This verification method is efficient and especially applicable when only com-
binational synthesis techniques are used for optimizations, i.e. when neither the
number nor the input function of the FFs are changed by optimization procedures.
Indeed, if sequential optimizations (e.g. as retiming, replication, merge, redundancy
removal, ...) are performed during synthesis, both the number and the input func-
tion of FFs may change. Thus, the matching step can be complex and may lead to
an incomplete matching, as described in [7]. If the matching is incomplete, even the
use of a fast and efficient BDD/SAT solver during the combinational equivalence-
checking step may not prevent the failure of this approach. Experiments with in-
dustrial tools using this method show that if two combinational blocks are found
to be different, the cause is often an incomplete matching rather than a real bug
in the circuit (false negative problem). It is therefore important to have an efficient
matching technique.

The matching techniques of industrial CAD tools can be divided into two classes:
structural matching and functional one, which are more detailed in Section 3.1.

In this paper, we present a flip-flop matching engine, which is able to produce
a complete matching for large sequential optimized circuits. The first advantage of
this engine is the structural matching algorithm, which is able to produce a complete
matching in more cases than existing techniques. The second advantage is the
redundancy removal engine, which considers complex redundant flip-flops. The third
advantage is the functional matching, which considers don’t care condition.

Our paper proceeds from notations in Section 2. We quickly review the state-
of-the-art of sequential equivalence checking in Section 3. In these sections, we
discuss particularly the problem introduced by don’t care conditions and sequential
optimizations to existing methods. Section 4 explains our matching engine, which
combines functional and structural matching techniques and a redundancy removal
engine. The effectiveness of the proposed method is confirmed by experimental
results on retimed and optimized ISCAS’89 and large industrial benchmarks.

2 NOTATIONS

In this paper, the following notations are used to define a finite state machine (FSMs)

o X ={X;,Xs,...,X,} is the set of primary input.
O ={01,0,,...,0,,} is the set of primary output.
R ={R1, Rs,...,R,} is the set of flip-flops.

A = {A,Ag,...,A,} is a set of transition functions where A; is the input
function of the flip-flop R;.

V = {1, Vs,...,V,} is set of variables associated to the output function of the
flip-flops where V; is the variable associated to the output function of the flip-flop
R;.

A={A1,As, ..., A} is a set of output function where A; is the function of the
output O;.
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These notations are illustrated in Figure 3.
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Fig. 3. Notations used to define FSMs

3 SEQUENTIAL EQUIVALENCE CHECKING
3.1 Matching

In order to solve the problem of the explosion of state traversal techniques, industrial
equivalence checking tools often use a different method. The aim of this method is to
transform the problem of equivalence checking of sequential circuits into a problem
of equivalence checking of combinational circuits. For instance, if it can be assumed
in Figure 4 that A; is equivalent to A3 and A, equivalent to 4 and then, matches
the corresponding FFs R; with R3 and R, with Ry by affecting the same output
variables V; for { Ry, R3} and V, for { Ry, Ry}, the SEC is transformed into a CEC.
Indeed checking with combinational techniques that A; is really equivalent to Asg,
and A, equivalent to A4, and finally that Ay, is also equivalent to Ay, leads to
the verification that the two sequential circuits are equivalent.

The matching techniques of industrial CAD tools can be divided into two classes:
structural matching and functional matching.

Structural matching consists of finding quickly all the FFs; which are potentially
equivalent. Then, combinational formal techniques (proof) are used to check all
assumptions made by this matching (e.g. check if the input function of two matched
FFs is really equivalent). The probability that the assumptions given by structural
matching techniques are correct should be as high as possible in order to avoid the
false negatives problem. Structural matching is usually performed using FFs name
or support comparison. These techniques are able to produce a complete matching
when no sequential optimizations have been performed during synthesis (e.g. when
there is a one-to-one flip-flop correspondence between the two designs). Therefore,
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existing structural matching techniques cannot be applied in cases where sequential
optimizations have been performed during synthesis as shown in Section 3.2.
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Fig. 4. Example of transformation of the SEC into a CEC

Olim

Functional matching consists of finding all FFs, which are equivalent in the
specification and implementation designs. Functional matching techniques based on
induction as [8] and [9] are able to produce a complete matching for optimizations
such as merge, replication or retiming. However due to function representation issues
(BDD blow up), these techniques are not able to match all the FFs in the designs.
The existing combinations of functional and structural matching may not produce
a complete matching, as existing structural techniques are not able to deal with
sequential optimizations. Moreover, existing functional techniques do not consider
don’t care conditions or complex redundancy as stuck at FFs or FFs which become
redundant after don’t care assignment defined in Section 5.3 of this paper.

3.2 Don’t Care and Sequential Optimizations Problems

In this section, we illustrate how don’t care condition and sequential optimizations
such as merge, replication, redundancy removal are the cause of false negatives
problems because existing structural and functional matching methods are not able
to deal with them.

3.2.1 Don’t Care Problem

The main problem of the previous functional matching and combinational verifi-
cation approaches is that they only consider the equivalence of the function and
not the inclusion. To understand why the inclusion checking is needed, let us con-
sider the example in Figure 5. This figure illustrates the specification of a ROM
instance, where the output value is not specified by the designer for the input value
{X1,X2} = {0,1} and {X3, X2} = {1,0}. Figure 6 describes a different possible
implementation of the ROM, which can be obtained after synthesis. This example
clearly shows that checking only the equivalence of A, with A;,, for any implemen-
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tation designs leads to a false negative. To solve this problem, it is needed to check
that Aj,, is included in Agp.

Specification

ROM example

Address width: 2

Data width: 1

Inputs: 0: X1, 1:X2
Outputs: 0: O1

data:

00->1

11->0

default -> X (don’t care)

Fig. 5. Description of a ROM instance

Possible implementation 1

X1 P .
%2 >_-—D Olim

Possible implementation 2

X1
X2 Olim

Fig. 6. Different possible implementation of the ROM

3.3 Merge and Replication

FF's in the specification design can be merged into a single one in the implementation
design when they have the same input function as long as no timing degradation
is observed. Replication of FFs is typically applied when the fanout of a FF is too
large. To improve the delay, the FFs are replicated on their fanout network. For
equivalence checking tools, these optimizations may introduce the false negatives
problem. For instance, in Figure 7, the FF R; and Ry in the specification design
have been merged into a single one Rj3 in the implementation design. In this case,
existing structural matching techniques as name based matching match R; with Rs
and leave Ry unmatched because no FF with the same name is present in the
implementation design. This produces automatically a false negative when checking
the equivalence of the output O, with the output Os;y,. The same problem may
occur for optimization such as replication.
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In Figure 7, functional matching can match Ry, Ry and R3 together because they
have all the same input function. This leads to verify the two designs equivalent
after checking that the output functions are also equivalent. However, as functional
techniques need to compute the input function of the FFs to match them, they
may not be able to produce a complete matching because of function representation
issue. Moreover, in Figure 8, where the FF R; has been merged with the FF R, after
the synthesis tool assigned the don’t care variable Dc; to 0, the existing functional
techniques are not able to match R;, Rs and Rj3 together because they do not
consider don’t care condition.

X1 D>—
X2 p—o

Name matching
X1 p— vl
Olim
X2 p—
O2im

Fig. 7. Example of merge of FFs

Specification

Olsp
X1p—
X2 p—ri
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X3p—
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Implementation
X1Pp—
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X2p—]
0O2im

Fig. 8. Example of merge of FF after don’t care assignment
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3.3.1 Redundancy Removal

It is possible to distinguish several types of redundant FFs, which can be removed
by the synthesis tools. A non-exhaustive list could be: constant input FF, “stuck
at” FF, non-observable FF, constant input FF after don’t care variables assignment.

Definition 1 (Redundant FF). A FF R; of a circuit C is called a redundant FF, if
the observable input-output behavior of C' is invariant after removing R; from the
circuit.

Definition 2 (Constant input FF). A constant input FF is a FF with a constant
input function (0 or 1) at any clock cycle.

Definition 3 (“Stuck at” FF). A FF R; is a “stuck at” 0 (resp. 1) iff:

1. 3t/VT > t, i(t) = 0 (resp. 1)
2. A(t) is a function of V;.

Definition 4 (Non-observable FF). An FF R; of a circuit C' is called a non-observ-
able FF, if the observable output behavior of C' is independent of the value of R;,
for all possible states and all possible input combinations of C.

Examples of “stuck at 0” and non-observable FF are given in Figures 9 and 10,

respectively.
0 B
X1 >_|

Fig. 9. Example of “stuck at 0” FF

Olsp

X1

Olsp
X2

Fig. 10. R; is a non-observable FF

Definition 5 (Full don’t care FF). A FF R; is a full don’t care FF if and only if
the support of its input function A; contains only don’t care variables.
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Definition 6 (Partial don’t care FF). A FF R; is a partial 0 (resp. 1) don’t care FF
if only if there is at least one assignment of the don’t care variables, which makes A;
equal to 0 (resp. 1)

An example of full don’t care FF is given in Figure 11 In this figure, the FF R;
may become a constant input 1 FF for the following assignment of the don’t care
variables {Decy, Deo} = {1,1}.

An example of partial 0 don’t care FF is given in Figure 12. In this figure, the
FF R; may become a constant input 0 FF for the following assignment of the don’t
care variables {Dc¢; } = {0}.

Dcl
Dc2

X1

Fig. 11. Example of full don’t care FF

X1

Dcl Osp

X2

Fig. 12. Example of partial 0 don’t care FF

Redundant FF's are removed and the redundancy value is propagated during the
synthesis. Therefore, the redundant FF in the specification design does not have any
match (functional or structural) in the implementation design. Structural matching
techniques are not able to deal with redundant FFs and often produce false negatives
problems. Existing functional matching handle only constant input FFs. Therefore,
these techniques are not able to deal with “stuck at”, non-observable, full or partial
don’t care FFs and produce false negatives if these kinds of redundant FFs have been
removed during synthesis. In order to solve this problem, we propose a redundancy
removal engine, which is part of our matching engine and is able to deal with all
redundant FF defined bellow.

3.4 Conclusion

We have seen in the previous section that sequential optimizations may change the
number or the input function of FFs and thus are a real bottleneck for existing
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structural and functional matching techniques. This is the main reason why indus-
trial equivalence checking tools often produce false negatives if the design has been
sequentially optimized. We present in the next sections techniques developed for
solving this problem and how they are implemented in our matching engine.

4 OUR MATCHING ENGINE FLOW

Our matching engine flow is presented in Figure 13. The matching step is a fix
point algorithm. This algorithm combines a functional matching technique with
a redundancy removal engine and a structural matching technique. This engine is
also detailed in [10, 11] and [12].

The functional matching is based on the induction algorithm proposed in [9].
However, to perform the matching, the method in [9] considers only the equivalence
of the input functions of the flip-flops and not the inclusion. Consequently, this
method cannot produce a complete matching for designs with don’t care conditions.
In order to solve this problem, this method has been improved by checking the
inclusion of the functions.

The redundancy removal engine proposed in [13] is used to complete the func-
tional matching. To be able to find complex redundancy such as stuck at flip-flops,
this engine uses BDD representation and induction techniques.

Finally, our structural matching is used to match the flip-flops, which have
not been matched by functional matching because of function representation issues
(BDD blow-up). In order to handle sequential optimizations, the structural match-
ing technique is not based on name or support comparison only. This matching
uses a combination of techniques using AIG, simulation and support comparison.
For instance, if the synthesis tool merges two flip-flops into a single one, then our
structural matching can match in most of the case the three flip-flops. It is known
that the existing structural techniques are not able to match the flip-flops in this
case.

Matching

— Functional Matching [—
I [ |
: —| Redundancy Removal Engine | :

i | Structural Matching — |

| L Swewral S

Combinational equivalence checking

Fig. 13. Our matching engine flow
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5 MATCHING STEP
5.1 Inclusion Checking

The first step to check the inclusion of two functions of the designs under verification
is to represent the specification designs using don’t care variables. The example of
Figure 5 can be represented by the circuit in Figure 14. In this circuit, two don’t
care variables, Dc; and Dcy, are used to specify the output value unspecified for
the input value {X;, X2} = {0,1} and {X;, X5} = {1,0}. The don’t care variables
are assigned during synthesis to a constant (0 or 1) or even to a function. In the
following text, the set of don’t care variables is noted Dc = {Dcy, Des, ..., Deg}.

The second step is to check the inclusion of the specification and implementation
circuit. For this purpose, the definition 5.1.1 can be used.

Definition 7 (Inclusion of function). A function G(Xi, Xs,...,X,) of the imple-
mentation design is included in a function FI(Xy, Xs, ..., Xy, Dey, Dey, ..., Dey) of
the specification design (noted G C F') if and only if (VX;)(3D¢;)/(F < G).

Specification Representation
ROM example X1 —ib_
Address width: 2 X2 =
Data width: 1
Inputs: 0: X1, 1:X2 Representation Olsp
Outputs: 0: O1 ! —D
data: ‘
00->1
11->0
default -> X (don't care) e
0d
L

Fig. 14. A possible representation of the ROM of Figure 5 using don’t care variables

An algorithm to verify the inclusion of two functions is shown in Figure 15. This
algorithm considers the XOR function of the two functions to check. If the XOR
function is equal to 0, the two functions are equivalent. Otherwise the smoothing
operation regarding the don’t care variables (Dc¢;) is applied on the BDD repre-
senting the XNOR function of the two functions under verification. The smoothing
operation Smooth(F, Dc) is equivalent to (3Dc F') which is equivalent to Fp.V F—p,
where Fp. and F—p. are the positive and negative cofactor of the function F'| re-
spectively, regarding the variables Dc. If the result of the smoothing operation is
equal to 1, the two functions are included; in the other case the two functions are
checked different.
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CheckiInclusion(BDDXor){
if (BDDXor == 0)
return EQUIVALENT,;
BDDXnor = - BDDXaor;
BDD = BDDSmooth(BDDXnor, Dci);
if (BDD == BDD_ONE)
return (INCLUDED);
else
return(DIFFERENT); }

Fig. 15. Algorithm to check the inclusion of two functions

5.2 Functional Matching

The purpose of functional matching is to find all functional equivalent FFs of the
product machine. In this section, we present our partitioning technique used to find
all functional equivalents, included or inverted FFs of a design. Our algorithm is
outlined in Figure 16. The algorithm starts with one equivalence class (Fy) for the
FF matching, containing all FFs with initial state value “1” and “0” in positive
and negative phases, respectively (step 1). During each iteration, if the next-state
functions of members of an equivalence class differ, the class is partitioned (step 2).
The main difference from previous approaches is that two functions A; and A,
differ in our algorithm if A; is not included in As. This process is repeated until
a fixed point is reached (step 3). The algorithm terminates after at most p iterations,
where p is the total number of FFs of the product machine and thus the maximum
number of equivalence classes in any FF correspondence.

Figure 17 gives two sequential circuits under comparison in order to show an
example demonstrating our functional FFs matching algorithm. Figures 18 and 19
illustrate the different refinement stages of the equivalence classes. As shown in
Figure 18, initially all FFs are assigned to a single equivalence class with phases
matching their initial state values. A single new variable v is then created to com-
pute the set of next-state functions in the first iteration. This variable is used
positively for {Rs, R3, Rs, R¢} and negatively for { Ry, Ry, R} reflecting their phase
in the class. The resulting next-state functions show A; = =As5; Ay = Ag C Ay
and Ay = A;. Accordingly, the initial equivalence class is then split into three parts
and the process is repeated with new variables vy, vy, vz for the 3 classes as illus-
trated in Figure 18. The following iteration does not change the partitioning, which
causes the algorithm to terminate and return the resulting functional FFs matching
as shown in Figure 19.

One way to speed up the process is to notice that each input function of the FFs
does not need to be re-computed at each fixpoint iteration. For example, the input
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Fig. 16. Our functional matching algorithm
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Fig. 18. First iteration of our functional matching in the example of Figure 17
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PO, V

P3, V3 P3,V3

Iteration 2

Fig. 19. Second iteration of our functional matching in the example of Figure 17

functions of FFs depending only on the primary inputs do not change. Moreover,
when a new class is created, only the input functions of the FFs present in the
transitive fan out (TFO) of the FFs in the new class need to be computed, other
functions remain the same. Another improvement consists not in starting with only
one class, but using random simulation to create more classes. The experimental
results show that these improvements greatly reduce the CPU time.

However, due to function representation issue (BDD blow-up), our method can-
not in practice match all the FFs in the two designs under verification. Thus,
a structural matching is combined with our functional matching technique in order
to solve this problem.

5.3 Structural Matching

One major problem of existing structural techniques is that they are not able to
handle sequential optimizations. Indeed, in case of optimizations, existing struc-
tural matching are often incomplete and lead to false negatives problem. In order
to solve this problem for an important set of designs, our structural matching al-
gorithm combines several structural methods to be as complete as possible in case
of sequential optimizations. The structural methods used are simulation, name and
support matching.

Structural techniques only give the assumption that the input function of two
FFs is equivalent or included. In order to avoid false negatives problems, this as-
sumption should be correct. The combination of different structural techniques pro-
duces more correct assumptions that existing structural matching technique based
only on name or support matching.

Moreover, in order to decrease the use of structural matching as much as pos-
sible, we combine our structural matching algorithm with our functional matching
algorithm in a fixpoint algorithm as illustrated in Figure 20. Indeed, matching FFs
with a structural technique may lead to new functional matching. All FFs matched
with our structural technique need then to be proved with classical combinational
techniques.
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| Functional matching |<—

| Structural matching |

l Y es
|New matching ? I—

No

Fig. 20. Combination of our structural and functional matching algorithms

5.4 Redundancy Removal Engine

Synthesis tools can remove redundant FF's from the design under conception. In this
case, the redundant FFs of the specification design do not have any correspondent
FFs (equivalent or included FFs) in the implementation design. The use of matching
algorithms, which only try to find a match between the FFs, is therefore not efficient
in order to handle such optimizations. Our matching engine as illustrated in Figure
13 integrates a redundancy removal engine in order to find redundant FFs, removed
them from the specification design and propagated the redundancy value. The
redundancy removal engine algorithm is illustrated in Figure 21.

The algorithm is based on two fixpoint algorithms. The first is used to handle
all constant, “stuck at” FFs, the second one to find all non-observable FFs. Fixpoint
algorithms are needed since every time a FF is removed from the design, new FFs
can become redundant. Two fixpoints are needed because removing constant, “stuck
at” FFs does not result in new non-observable FFs, and removing non-observable
FF's does not result in new constant or “stuck at” FFs.

Void RemoveRedFFs(Netlist *nl) {
While (fixpointl) {

RemoveConstFFs(nl);
RemoveStuckAtFFs(nl);
}
While(fixpoint2) {
RemoveNonObsFFs(nl);
}

}

Fig. 21. Our redundancy removal engine algorithm
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5.4.1 Removing Constant FF's

To detect constant input FFs, the input function of some candidate FFs is computed
using BDD representation. All FFs with input function equals to bdd_zero or bdd_one
are constant input FFs. Constant propagation through the FFs is then done and
the FFs are removed. The candidate FFs come from a random simulation. This
reduces the number of BDDs to compute.

5.4.2 Removing “stuck at” FFs

The algorithm to detect “stuck at” FFs is based on an induction technique. The
algorithm is presented in Figure 22. First the initial state of the FF is considered.
If the initial state of the FF is O (resp. 1), it is supposed that the input of the FFs
is equal to 0 (resp. 1) at time 7. Then, the input function of the FF is computed at
time 7"+ 1, if the input function of the FF is still equal to 0 (resp. 1) at this time,
the FF is considered as a stuck at 0 FF. The FF is then removed and the value of
the redundancy 0 (resp. 1) is propagated.

RemoveSuckAtFFs(Netlist *nl) {

If (init_state(Ri) = = 0) {
4i(T)=0;
Compute(di (T+1));
If ((4i (T+1)==0){

Remove(Ri);
Propagate(0);
}

}

If (init_state(Ri) = = 1) {
4i(T)=1
Compute(di (T+1));
If ((4i (T+1) ==1){

Remove(Ri);
Propagate(1);

}

Fig. 22. Algorithm to remove “stuck at” FFs

5.4.3 Removing Non-Observable FF's

To remove non-observable FFs, our algorithm check if the output variable V; of
a candidate FF R; is present in the function of all FFs and primary output in their
transitive fanout. This can be done using AIG (“And Inverter Graph”) or BDD
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representation. If the variable is not present in the AIG of the FFs and primary
output in the transitive fanout of the candidate FF, R; is a non-observable FF.
If the variable is present is the AIG, no conclusion can be made and the BDD
representation is needed. This algorithm can be very time consuming because of the
BDDs complexity. However the use of simulation techniques on the BDDs shows that
the time can be decreased considerably, an average gain of 80 % has been achieved.

5.4.4 Coupling with the Matching Engine

In this section, we illustrated on an example how our redundancy removal engine is
coupled with our matching engine on a fixpoint algorithm. The two designs under
verification are represented in Figure 23. In the specification design, the synthesis
tool has removed the framed part because it has been found redundant. Therefore,
only two FFs (Rs and Ry) remain in the implementation design.

Fig. 23. Example of application of our matching engine

The first step of our algorithm is to run our functional matching algorithm.
This results to match Ry, Ry and R; together. All other FFs remain unmatched as
illustrated in Figure 24.

The second step of the algorithm is to run our redundancy removal engine. The
first iteration of this engine removes R3 because it is a “Stuck at” 0 FF as illustrated
in Figure 25. The second iteration removes R4 because it is a constant 0 FF as
shown in Figure 26. The third iteration removes R5 because it is a “stuck at” 0 FF
as illustrated in Figure 27. At the next iteration the fixpoint is reached (no more
redundant FF have been found).

The third step of the algorithm is to run our functional matching again. This
results to match Rg and Rg together as illustrated in Figure 28.
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X2 X3
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Fig. 24. First step of our matching engine (functional matching match R;, Ry and Ry
together)

Fig. 25. First iteration of the redundancy removal engine (Rj3 is removed)

After the third step, it can be concluded that the outputs of the two designs
under verification are equivalent.

6 EXPERIMENTAL RESULTS

This section reports the experimental results of our procedure on circuits synthe-
sized and sequentially optimized using Synplify Pro 7.3 tool (www.synplicity.com).
We use a corporate BDD package for the functional matching. All tests are per-
formed using a Dell Precision 833 Mhz workstation with a memory limit of 1 Gb. We
compare our method with the last VIS version on ISCAS89 circuits (Table 1), and
with an industrial sequential equivalence-checking tool on some industrial designs
(Table 2). For all tests, we have reported the matching (complete/incomplete), the
rate of matched FFs by the functional and non-functional part of the procedure, the
CPU time and whether the test is proved. The time limit has been set to 1 hour
for the comparison with VIS on the ISACS89 benchmarks. For the comparison with
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X3

X1 ._'Osp

Fig. 26. Second iteration of the redundancy removal engine (R4 is removed)

0
X1 | _} o

Fig. 27. Third iteration of the redundancy removal engine (Rs is removed)

the industrial tool, the time limit has been set to 3 days. Note that VIS runs out of
time for industrial circuits.

Table 1 shows that our procedure passes quickly 24 tests over 25, VIS passes only
17 tests. The average rate of FFs matched functionally is 91 % and structurally 9 %.
The circuit S38584 does not pass with our procedure because we cannot produce
a completion for this test due to function representation issues (BDD blow-up).

0 V2
X1 V1 | _} Osp

V1

Fig. 28. Third iteration of our matching engine (functional matching match Rg and Rg
together)
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Circuit #FFs VIS Our procedure
orig./opt | Time | Pass | Time | Pass | Matching | FM | NFM
(s) (s) (%) | (%)
5208 8/12 0.8 Yes 0.9 Yes | Complete | 100 0
5298 14/29 3.2 Yes 0.9 Yes | Complete | 100 0
S344 15/27 18 Yes 1.4 Yes | Complete | 100 0
S382 21/24 24 Yes 0.9 Yes | Complete | 100 0
S386 6/6 10 Yes 0.9 Yes | Complete | 100 0
5420 16,/20 82 Yes 0.9 Yes | Complete | 100 0
S444 21/29 15 Yes 1.4 Yes | Complete | 100 0
S510 6/12 2932 | Yes 1.5 Yes | Complete | 100 0
S526 21/32 76 Yes 1.4 Yes | Complete | 100 0
5641 19/17 4 Yes 1.4 Yes | Complete | 100 0
S713 19/17 5 Yes 1.4 Yes | Complete | 100 0
S832 5/5 236 Yes 1.4 Yes | Complete | 100 0
S838 32/74 - No 4.5 Yes | Complete 88 12
S953 29/62 186 Yes 1.5 Yes | Complete | 100 0
51196 18/18 3.8 Yes 1.5 Yes | Complete | 100 0
S1238 18/18 4.3 Yes | 1.75 | Yes Complete 92 8
S1423 74/154 - No | 273 | Yes | Complete 78 22
51488 6/6 1.1 Yes 1.4 Yes | Complete | 100 0
S1494 6/6 0.9 Yes 1.5 Yes | Complete | 100 0
S5378 179/253 - No 5.2 Yes | Complete 78 22
59234 160/62 - No 2.3 Yes | Complete 82 18
S13207 | 648/431 - No 3.1 Yes | Complete 88 12
S15850 | 563/304 - No 11 Yes | Complete 69 31
S35932 | 1728/1728 - No 9.1 Yes | Complete 74 26
538584 | 1301/1406 - No 68 No | Incomplete | 36 64

Table 1. Experimental results on sequential and logically optimized ISCAS89 circuits

Table 2 shows that the proposed matching engine passes 21 tests over 23 indus-
trial circuits where the industrial tool passes only 14 tests.

The average rate of FFs matched functionally is 69 % and non-functionally 31 %.
The non-passed tests using the industrial tool occur when the tests are proved dif-
ferent due to incomplete matching (False negative problem). Our procedure results
in a false negative for circuit 117 due to an incomplete matching. Our procedure
does not find a FFs replication optimization because of BDD size limit. The cir-
cuit passes if the replication information is given using the user matching input of
our procedure. Circuit 121 does not pass with our method because the procedure
does not finish with in the time limit of 3 days. This circuit is successfully tested
with the industrial tool. We believe that the industrial tool has a better and faster
SAT/BDD solver than ours. This is confirmed with circuit 120, where both our
procedure and the industrial tool pass, but the industrial tool verified the circuit
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Circuit # FFs Industrial tool Our procedure
orig. /opt Time | Pass Matching Time Pass Matching FM | NFM
(s) (s) (%) | (%)
11 255/277 2.2 Yes Complete 2.9 Yes Complete 72 28
12 255/270 1.9 Yes Complete 2.2 Yes Complete 100 0
13 158/206 5.2 No Incomplete 2.3 Yes Complete 18 82
14 17/18 0.9 Yes Complete 1.5 Yes Complete 100 0
15 1437/1437 345 Yes Complete 595 Yes Complete 95 5
16 101/105 1.5 Yes Complete 1.7 Yes Complete 100 0
17 222/211 36 No Incomplete 24 Yes Complete 12 88
18 523/568 11 No Incomplete 7.2 Yes Complete 100 0
19 354/219 6.3 No Incomplete 5.4 Yes Complete 95 5
110 565/537 4.1 Yes Complete 4.6 Yes Complete 100 0
111 381/384 3.4 Yes Complete 3.3 Yes Complete 38 62
112 72/72 18.2 Yes Complete 20.6 Yes Complete 0 100
113 120/162 36.3 No | Incomplete 32.5 Yes Complete 34 66
114 996/1251 78.6 No Incomplete 56.4 Yes Complete 100 0
115 524/611 24.5 No Incomplete 19.7 Yes Complete 100 0
116 48/52 3.4 Yes Complete 4.2 Yes Complete 21 79
117 250/246 345 No Incomplete 222 No Incomplete 0 100
118 419/439 12.5 Yes Complete 18.3 Yes Complete 76 24
119 358/369 14.1 Yes Complete 21.2 Yes Complete 82 18
120 357/360 2378 Yes Complete 5288 Yes Complete 42 58
121 347/249 26378 Yes Complete - No Complete 57 43
122 432/444 92.3 No Incomplete 68.1 Yes Complete 76 24
123 236/237 36200 Yes Complete 172800 Yes Complete 75 25

Table 2. Experimental results on sequential and logically optimized industrial circuits

twice faster (2378s) than our method (5288s). Note that both the industrial tool
and our matching procedure produce a false negative with an incomplete match-
ing. This confirms the importance of a complete matching to resolve the sequential
equivalence-checking problem.

Comparisons done in [9, 14] and [15] show better performances, but we could not
optimize the circuits using the same tools and we did not know the exact machine
used for the testing. For example, circuit S838 is proved in 55.6 seconds with
apparently the same optimizations (same number of FFs after optimizations) in [9]
on a HP9000/755, our method proved this circuit in 4.5s. Circuit S1196 is proved in
159.3 s with apparently the same optimizations in [14] on a Sun machine; our method
proved the circuit in 1.5s. Circuit S35932 is proved in 75s in [15] on a Sun-sparch
machine; our method proved it in 9.1s.

7 CONCLUSION

In this paper, we show why sequential optimizations are a real bottleneck for match-
ing based equivalence checking (Section 3). We therefore introduce an efficient and
complete matching engine in Section 4. This engine uses several techniques to find
complex optimizations. We present a functional matching technique (Section 5.1)
based on a powerful partitioning technique, which is able to find functional equiva-
lent and included FF. A redundancy removal engine is also introduced in order to
perform complex pruning as stuck at FFs (Section 5.3). We show why structural
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matching should sometimes be applied to improve the matching process. We present
our structural matching, which combines several techniques to make the assump-
tion correct in most cases. Finally, we show how this matching is combined with
our functional matching (Section 5.2).

The experimental results show a clear advantage to our procedure. The results
show that our procedure is more reliable than an industrial tool (less false negatives).
These improved results are due to several factors. The first is our incremental
approach; every time new matching is found, the entire procedure is run again.
The second is the use of several engines (functional matching, structural matching,
complex redundancy removal), which is more likely to produce a complete matching
in most cases. Another advantage of our method is due to our functional matching,
which handles 69 % of the matched FFs for the industrial circuits and 91 % for the
ISCAS89. Thus, our procedure finds a greater of complex sequential optimizations
and produces a complete and better matching than the industrial tool.
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