
Computing and Informatics, Vol. 23, 2004, 487–499

AN FPGA IMPLEMENTATION OF A MONTGOMERY
MULTIPLIER OVER GF (2M)∗

Nele Mentens, Sıddıka Berna Örs
Bart Preneel, Joos Vandewalle

Katholieke Universiteit Leuven, ESAT/COSIC
Kasteelpark Arenberg 10
B-3001 Leuven-Heverlee, Belgium
e-mail: {Nele.Mentens, Siddika.BernaOrs, Bart.Preneel,

Joos.Vandewalle}@esat.kuleuven.ac.be

Manuscript received 21 February 2005

Abstract. This paper describes an efficient FPGA implementation for modular
multiplication in the finite field GF (2m) that is suitable for implementing Ellip-
tic Curve Cryptosystems. We have developed a systolic array implementation of
a Montgomery modular multiplication. Our solution is efficient for large finite fields
(m = 160−193), that offer a high security level, and it can be scaled easily to larger
values of m. The clock frequency of the implementation is independent of the field
size. In contrast to earlier work, the design is not restricted to field representations
using irreducible trinomials, all one polynomials or equally spaced polynomials.

Keywords: Elliptic Curve Cryptosystems, FPGA, Montgomery’s multiplication
method, systolic array

1 INTRODUCTION

In 1976, Diffie and Hellman introduced the idea of public key cryptography [1].
They showed that private communication is possible even when one only has an

∗ Nele Mentens and Sıddıka Berna Örs are funded by research grants of the Katholieke
Universiteit Leuven, Belgium. This work was supported by GOA-Mefisto-2000/06, GOA-
Ambiorix-2005/11 and FWO.

488 N. Mentens, S. B. Örs, B. Preneel, J. Vandewalle

authenticated channel. Moreover, they have introduced the concept of a digital sig-
nature, which allows to uniquely bind a message to its sender. Since then, numerous
public-key cryptosystems (PKCs) have been proposed and all these systems based
their security on the difficulty of some mathematical problem. Elliptic Curve Cryp-
tosystems (ECCs), which were proposed by Koblitz [2] and Miller [3], are examples
of PKCs. The basic operation in an ECC is a point multiplication which relies on an
efficient finite field multiplication. Commonly used finite fields for ECC are GF (p)
and GF (2m). As a consequence, a substantial amount of research is focused on
efficient and secure implementations of modular multiplication in hardware.

In 1985 Montgomery has introduced a new method for modular multiplica-
tion [4]. The approach of Montgomery avoids the time consuming trial division
that is a common bottleneck in other algorithms. His method has been proved to be
very efficient and is the basis of many implementations of modular multiplication,
both in software and hardware [5, 6, 7, 8, 9, 10]. The implementation discussed
in [5] is fully systolic but not suitable for comparison because it is done in the finite
field GF (p). In 1998 Koç and Acar introduced a method to use Montgomery mul-
tiplication over GF (2m) [11]. They showed that the multiplication operation in the
field GF (2m) can be implemented significantly faster than the standard multiplica-
tion. In this paper we look at an efficient hardware implementation of a Montgomery
Modular Multiplication (MMM) over GF (2m) in a Field Programmable Gate Array
(FPGA). An efficient implementation of the MMM over GF (2m) in hardware was
considered by Wu [12]; the proposed parallel architecture is restricted to finite fields
that are represented using irreducible trinomials. The major drawback of a parallel
implementation is the clock frequency’s dependency on the field size m. Our contri-
bution consists of an FPGA implementation of the MMM in a systolic array, which
allows pipelining and makes the clock frequency of the design independent of the field
size m. This is important e.g. in cryptographic applications where a growing field
size is necessary for security reasons. The clock frequency of Wu’s design decreases
with the increase of m. Unlike Wu’s design, our implementation is also suitable for
finite fields that cannot be represented using a trinomial. This does not restrict our
design to applications using this special kind of irreducible polynomials. There are
no practical ASIC or FPGA implementation results on previously designed systolic
array architectures for Montgomery multiplication. However, Savas et al. presented
some unified architectures in [13]. The disadvantage of these architectures is that
they are not fully systolic which makes them less flexible.

2 MATHEMATICAL BACKGROUND

2.1 Polynomial Representation

The algorithm for the MMM used in this paper is defined on the polynomial repre-
sentation. According to this representation an element a of GF (2m) is a polynomial
with length m, written as

An FPGA Implementation of a Montgomery Multiplier Over GF (2m) 489

a(x) =

m−1
∑

i=0

aix
i = am−1x

m−1 + . . .+ a1x+ a0, (1)

where the coefficients ai ∈ GF (2). In the word-level description of the algorithms
in the following sections these bits are grouped into s words of equal length. Let w
be the word length and m = s · w. Throughout the remainder of this paper, m, w
and s will be used to denote the field size, the word length and the number of words
in one GF (2m) element, respectively. Hence, a can be written as

a(x) =

s−1
∑

i=0

Ai(x)x
iw, (2)

where each polynomial Ai(x) corresponds to a word of length w, or

Ai(x) = aiw+w−1x
w−1 + . . .+ aiw+1x+ aiw. (3)

The addition of two elements a and b in GF (2m) is performed by adding the poly-
nomials a(x) and b(x), where the coefficients are added in the field GF (2). This is
equivalent to a bit-wise XOR operation on the vectors a and b. In order to multiply
two elements a and b in GF (2m), we need to select an irreducible polynomial of
degree m. Note that a different choice of the polynomial leads to a different finite
field representation, but all finite fields with the same number of elements are iso-
morphic. Let p(x) be an irreducible polynomial of degree m over the field GF (2),
hence pm = 1 and p0 = 1. The product c = a ·b in GF (2m) is obtained by computing

c(x) = a(x)b(x) mod p(x), (4)

where c(x) is a polynomial of length m, representing the element c ∈ GF (2m).

2.2 Montgomery Modular Multiplication Over GF (2m)

The Montgomery multiplication of a and b is defined as follows:

c(x) = a(x)b(x)r−1(x) mod p(x) (5)

where r(x) = xm mod p(x) = (pm−1pm−2 . . . p1p0).
Equation 5 can be evaluated with Algorithm 1 given by Koç and Acar in [11].

Algorithm 1. Word-level Montgomery modular multiplication
Require: a(x), b(x), p(x), P ′

0(x)
Ensure: c(x) := a(x)b(x)x−m mod p(x)
1: c(x) := 0
2: for i from 0 to (s− 1) do
3: M(x) := [C0(x) + Ai(x)B0(x)]P

′

0(x) mod xw

490 N. Mentens, S. B. Örs, B. Preneel, J. Vandewalle

4: c(x) := x−w [c(x) +Ai(x)b(x) +M(x)p(x)]
5: end for

Algorithm 1 requires the computation of the polynomial P ′

0(x) = P−1
0 (x) mod

xw, where P0(x) =
∑w−1

i=0
pix

i [11]. P ′

0(x) consists of w bits and is computed by
using the observation that P0(x) and its inverse satisfy

P0(x)P
′

0(x) = 1 mod xi (6)

for i = 1, 2, . . . , w.
The following example helps understand Algorithm 1.

Example 1. Let a(x) = x7 + x4 + x + 1, b(x) = x7 + x6 + x4 + x3 + 1, p(x) =
x8 + x6 + x5 + x+ 1, m = 8 and w = 4.

In Algorithm 1 the polynomial P ′

0(x) is pre-computed as in Equation 6:

• i = 1: P0(x)P
′

0(x) = 1 mod x

⇒ (x+ 1)(p′3x
3 + p′2x

2 + p′1x+ p′0) = 1 mod x

⇒ 1 · p′0 = 1
⇒ p′0 = 1

• i = 2: P0(x)P
′

0(x) = 1 mod x2

⇒ (x+ 1)(p′3x
3 + p′2x

2 + p′1x + 1) = 1 mod x2

⇒ (p′1 + 1)x+ 1 = 1
⇒ p′1 = 1

• i = 3: P0(x)P
′

0(x) = 1 mod x3

⇒ (x+ 1)(p′3x
3 + p′2x

2 + x+ 1) = 1 mod x3

⇒ (p′2 + 1)x2 + 1 = 1
⇒ p′2 = 1

• i = 4: P0(x)P
′

0(x) = 1 mod x4

⇒ (x+ 1)(p′3x
3 + x2 + x+ 1) = 1 mod x4

⇒ (p′3 + 1)x+ 1 = 1
⇒ p′3 = 1

In short, P ′

0(x) = x3 + x2 + x+ 1.
For the computation of c(x) we follow the steps in Algorithm 1:

1: c(x) := 0

2: i = 0

3: M(x) := [0 + (x+ 1)(x3 + 1)](x3 + x2 + x+ 1) mod x4 = x3 + 1

4: c(x) := x−4[0 + (x+ 1)(x7 + x6 + x4 + x3 + 1) + (x3 + 1)(x8 + x6 + x5 + x+ 1)]
= x7 + x5 + x4 + 1

2: i = 1

3: M(x) := [1 + (x3 + 1)(x3 + 1)](x3 + x2 + x+ 1) mod x4 = 0

An FPGA Implementation of a Montgomery Multiplier Over GF (2m) 491

4: c(x) := x−4[(x7 + x5 + x4 + 1) + (x3 + 1)(x7 + x6 + x4 + x3 + 1) + 0]
= x6 + x5 + x3 + x

The result of the Montgomery multiplication of a(x) and b(x) is c(x) = x6 +
x5 + x3 + x.

2.3 Montgomery Modular Multiplication Circuit

The architecture of the Montgomery Modular Multiplication Circuit (MMMC) con-
sists of a systolic array, a circuit to compute P ′

0(x), a read-in and read-out mechanism
and a state machine to control the MMM. The systolic array performs Algorithm 1
and will be discussed in Section 2.3.1. The implementation of the inversion of P0(x)
is explained in Section 2.3.2. Section 2.3.3 describes the read-in and read-out me-
chanism. The read-in mechanism makes sure the inputs to the systolic array arrive
at the correct moment. The read-out mechanism registers the resulting bits of the
MMM when they are ready. In Section 2.3.4 the state machine controlling the MMM
is discussed. The implementation results are listed in Section 3.

2.3.1 Systolic Array

The ith iteration of Step 4 in Algorithm 1 computes the temporary results

ci(x) = x−w (ci−1(x) +Ai(x)b(x) +Mi(x)p(x)) , (7)

where i = 0, . . . , s − 1 and c−1(x) = 0. A division into s words of length w can be
done for ci(x). In our implementation, the jth word of ci(x), without the right-shift,
is obtained using the recurrence relation

Ci,j(x) = Ci−1,j+1(x) +LABi,j(x) +LMPi,j(x) +HABi,j−1(x) +HMPi,j−1(x). (8)

To include the right-shift of the previous c(x), we use Ci−1,j+1(x) instead of Ci−1,j(x).
In the following, the rest of the notation used in Equation 8 is explained.

The multiplication of two w-bit words with coefficients in GF (2) results in
a 2w − 1-bit word. That is why only the w least significant bits of Ai(x)Bj(x) are
used in the calculation of Ci,j(x). The most significant part, consisting of w−1 bits,
is used in Ci,j+1(x), so Ci,j(x) uses the w−1 most significant bits of Ai(x)Bj−1(x) as
an input. For the division into the most and the least significant parts the following
notation is used:

Ai(x)Bj(x) = HABi,j(x)x
w + LABi,j(x). (9)

Likewise, this notation is also used for the multiplication of Mi(x) and Pj(x):

Mi(x)Pj(x) = HMPi,j(x)x
w + LMPi,j(x). (10)

In Equations 9 and 10, i = 0, . . . , s − 1 and j = 0, . . . , s − 1. Ai(x), Bj(x), Mi(x)

492 N. Mentens, S. B. Örs, B. Preneel, J. Vandewalle

and Pj(x) are defined as in Equation 3:

Ai(x)Bj(x) = (11)

w−1
∑

k=2w−2

(

k
∑

l=2w−2

aiw+l−w+1bjw+k−l+w−1

)

xk + (12)

0
∑

k=w−2

(

0
∑

l=k

aiw+lbjw+k−l

)

xk (13)

with i = 0, . . . , s− 1 and j = 0, . . . , s− 1.

HABi,j(x) =

w−1
∑

k=2w−2

(

k
∑

l=2w−2

aiw+l−w+1bjw+k−l+w−1

)

xk (14)

with i = 0, . . . , s− 1 and j = 0, . . . , s− 1.

LABi,j(x) =

0
∑

k=w−2

(

0
∑

l=k

aiw+lbjw+k−l

)

xk (15)

with i = 0, . . . , s−1 and j = 0, . . . , s−1. HMPi,j(x) and LMPi,j(x) are determined
in the same way.

In the ith clock cycle the array computes ci(x) by using ci−1(x), Ai(x), b(x)
and p(x). Figure 1 shows a schematic view of the array. The output of the j + 1th

cell is used as the input for the jth cell during the next iteration. This way the
division by xw in Step 4 of Algorithm 1 is implemented.

Every word Ci,j(x) of ci(x) is computed in a separate cell. These cells are
contained in the systolic array. There are three different kinds of cells. Most of
the words are calculated by a regular cell (cell 1, . . ., cell s− 1). Two special cells,
the rightmost cell (cell 0) and the leftmost cell (cell s), perform the rest of the
calculations. Figure 2 shows the different cells in the systolic array. In iteration i

all cells take Ai(x) as an input.

Regular cell. Figure 2 a) shows the regular cell (cell 1, . . ., cell s− 1). It consists
of two different operations:

• an addition (+): This is implemented as a bit-wise XOR array which consists
of w XOR gates.

• a multiplication/addition (∗): This performs a multiplication and sends the
most significant part to the next cell (on the left). The least significant part
is added to the most significant part of the calculation result of the previous
cell (on the right).

Rightmost cell. Based on Step 3 in Algorithm 1 we can compute Mi(x) as follows:

Mi(x) = (Ci−1,1(x) + LABi,0(x))P
′

0(x) mod xw (16)

An FPGA Implementation of a Montgomery Multiplier Over GF (2m) 493

cell
regular

cell s−1

C
i,s−1

C
i−1,s

P
s−1

B
s−1

leftmost
cell

cell s

C
i,s

p
m

i,s−1
HAB

i,s−1
HMP

i,s−2
HAB

i,s−2
HMP

cell 1

cell
regular

C
i,1

C
i−1,2

P
1

B
1

cell 0

rightmost
cell

0
C

i−1,1
P

0
B

0
P’

HAB
i,1

HMP
i,1

HAB

HMP

i,0

i,0

M
i

Fig. 1. Schematic view of the complete systolic array

with i = 0, . . . , s−1, C−1,1(x) = 0 and LABi,0(x) = Ai(x)B0(x)x
w. According to

Step 4 in Algorithm 1 Mi(x) is not an input to the rightmost cell, but obtained
in the rightmost cell. The least significant word (LSW) of c(x) can be obtained
by the following equation:

Ci,0(x) = Ci−1,1(x) + LABi,0(x) + LMPi,0(x) (17)

with i = 0, . . . , s−1 and C−1,1(x) = 0. It follows immediately from Equations 15
and 14 that Ci,0(x) is always equal to 0.

Figure 2(b) shows the rightmost cell (cell 0), which consists of three different
operations:

• an addition (+): This is the same operation as the addition in the regular
cell

• a multiplication (∗): This is the same as the multiplication/addition in the
regular cell, except for the addition that is omitted because there is no pre-
vious cell (on the right)

• a modular multiplication (⊙∗): This is a multiplication modulo 2w.

Leftmost cell. Because Ci,s+1(x) = 0, Bs(x) = 0 and Ps(x) = 1, the equation of
Ci,s(x) can be simplified as follows:

Ci,s(x) = Mi(x) +HABi,s−1(x) +HMPi,s−1(x) (18)

with i = 0, . . . , s− 1. This equation is implemented by the leftmost cell (cell s),
which is shown in Figure 2(c). It consists of:

• an addition (+): This is the same operation as the addition in the regular
cell.

• a multiplication (∗): This is the multiplication of a w-bit word with one bit.
The result of the multiplication is added to the most significant part of the
multiplication/addition result of the previous cell (on the right).

494 N. Mentens, S. B. Örs, B. Preneel, J. Vandewalle

Mi PjCi−1,j+1

*i,j
HMP

i,j−1
HMP

+

i,j−1
HAB

C
i,j

*i,j
HAB

Ai Bj

+

*

+

HAB
i,0

i
M

HMP
i,0

*

A
i 0
B

i−1,1
C P’

0
P

0

*

HAB
i,s−1

HMP
i,s−1*

Mi
p
m

+

C
i,s

a) b) c)

Fig. 2. Schematic view of the array cells (∗ = multiplication, + = bitwise XOR,
⊙∗ = multiplication modulo 2w); a) regular, b) rightmost, c) leftmost

2.3.2 Inversion

Equation 6 finds the inversion of the polynomial P0(x) modulo xw. When P0(x) =
pw−1x

w−1 + . . .+ p1x+ p0 and P ′

0(x) = p′w−1x
w−1 + . . .+ p′1x+ p′0, the coefficients p′i,

can be found as follows:

p0p
′

0 = 1 ⇒ p′0 = p0 = 1

p1p
′

0 ⊕ p′1p0 = 0 ⇒ p′1 = p1

p2p
′

0 ⊕ p1p
′

1 ⊕ p′2p0 = 0 ⇒ p′2 = p2 ⊕ p1

p3p
′

0 ⊕ p2p
′

1 ⊕ p1p
′

2 ⊕ p0p
′

3 = 0 ⇒ p′3 = p3 ⊕ p1

p4p
′

0 ⊕ p3p
′

1 ⊕ p2p
′

2 ⊕ p1p
′

3 ⊕ p0p
′

4 = 0 ⇒ p′4 = p4 ⊕ (p1 + p2)

. . .

(19)

We have designed a combinatorial circuit that calculates the coefficients of the poly-
nomial P ′

0 during the first clock cycle and writes the result in a register. Then the
value of this register is used as an input for the MMMC.

2.3.3 Read-In and Read-Out Mechanism

If the execution of each iteration of Step 3 and 4 in Algorithm 1 would happen in
one clock cycle, Mi would have to be broadcasted through all cells in one clock cycle.
This would make the fan-out of the rightmost cell depending on m, which implies
that the minimum clock period would increase with m. Because the maximum clock
frequency should not become too low and remain independent of the value of m,
the design is implemented as a systolic array. Now, the maximum clock frequency
only depends on the word length w, because this value determines the number of
logic gates in one cell. The critical path Tcrit of the systolic array is the same as
the critical path of one regular cell and is independent of the bit length m of the
operands. It is equal to

An FPGA Implementation of a Montgomery Multiplier Over GF (2m) 495

Tcrit = TMULT/ADD + 2TADD = T2AND + TwXOR + 2T2XOR, (20)

where TMULT/ADD, TADD, T2AND, TwXOR and T2XOR are the latencies of the mul-
tiplication/addition, the addition, a 2-input AND-gate, a w-input XOR-gate and
a 2-input XOR-gate, respectively. The w-input XOR-gate can be implemented as
a balanced tree of 2-input XORs, which makes the critical path proportional to the
logarithm of w. Ci,j is calculated at the 2(i+ 1) + (j − 1)th clock cycle as the output
of the j + 1th cell.

Because of the registers in between, each cell evaluates another word of a(x) in
the same clock cycle. A left-shift register, a temp, is used to provide every cell with
the correct word of a(x). Figure 3 shows an example for m = 16 and w = 4. For this
example, the starting value, a start, of a temp is 0000 0000 0000 A0 0000 A1 0000
A2 0000 A3. In the same manner Mi(x) is placed in the least significant word of
a left-shift register, m temp, to provide each cell with the correct version of Mi(x).

Because the output words of c(x) are not valid at the same time, a right-shift
register, RSR, is used to determine when the words are loaded in the output register
as shown in Figure 3. The length of RSR is always 3s. For this example, the starting
value of RSR is 100000000000. Every clock cycle the ‘1’ in this register shifts one
place to the right. At the end, this ‘1’ is sent to the enable (E) of the output register.

EEE E

M i

cell 4 cell 3 cell 2 cell 1 cell 0

m_temp

a_temp

c_in

c_out

VALID

RSR
result

Fig. 3. Architecture of the Montgomery modular multiplier circuit for m = 16 and w = 4
(• = register (updated every clock cycle), E = enable)

496 N. Mentens, S. B. Örs, B. Preneel, J. Vandewalle

2.3.4 State Machine

Figure 4 shows the Algorithmic State Machine (ASM) chart of the MMMC. When
the reset signal (RST) arrives, all the registers are reset. The circuit waits in the
IDLE state for the START signal. When the START signal comes a start is loaded
into a temp, the most significant bit of RSR is set and the circuit goes to state S1.
In every clock cycle a temp, m temp and RSR are shifted w, w bits and 1 bit,
respectively. Also, the outputs of the systolic array cells are returned to the inputs.
When the least significant bit of RSR is 1, after 3s clock cycles, a VALID signal is
produced to indicate that the value of the output register, result, is ready.

m_temp

0

RST

IDLE

START

1

RSR (100...0)
a_temp a_start

S1

RSR(0)

0

1
VALID 1

a_temp << w

(m_temp << w) &Mi

RSR >> 1

Fig. 4. Algorithmic state machine chart of the Montgomery modular multiplier (<< x =
left shift over x bits, >> x = right shift over x bits, & = concatenation of two words)

3 IMPLEMENTATION RESULTS

The implementation results of the MMMC on a Xilinx Virtex XCV800-4 FPGA are
indicated in Table 1. When the word length w increases, the number of clock cycles
needed for completing one MMM decreases, but the minimal clock period increases.

An FPGA Implementation of a Montgomery Multiplier Over GF (2m) 497

The total MMM latency reaches an optimum for w = 16. The circuit becomes larger
when w increases.

w = 1 w = 4 w = 8 w = 16 w = 32

#of clock cycles 160 120 60 30 15

Minimum clock period (ns) 16.030 17.895 19.798 23.162 62.560

Total MMM latency (µs) 2.564 2.147 1.187 0.694 0.938

of gates 18 940 32 564 37 017 49 112 72 690

Table 1. FPGA implementation results of the Montgomery modular multiplier over
GF (2160)

4 CONCLUSIONS

In this paper we have presented an efficient hardware implementation of the Mont-
gomery modular multiplication over GF (2m) in an FPGA. The design has a systolic
array architecture to allow pipelining and to make the clock frequency independent
of the operand bit length m = sw. In this way, the clock frequency does not change
when the bit length is enlarged for security reasons. The clock frequency only de-
pends on the word length w, which determines the amount of logic in one cell of
the systolic array. The word length is an input parameter for the implementation
of the circuit. The design is not restricted to field representations using irreducible
trinomials, all one polynomials or equally spaced polynomials. Every irreducible
polynomial of degree m can be used. When the word length is chosen to be 1, the
maximum frequency is 62.38MHz. The minimum delay for the execution of one
Montgomery multiplication is 0.694µs with a word length of 16.

REFERENCES

[1] Diffie, W.—Hellman, M. E.: New Directions in Cryptography. IEEE Transac-
tions on Information Theory. Vol. 22, 1976, pp. 644–654.

[2] Koblitz, N.: Elliptic Curve Cryptosystem. Math. Comp., Vol. 48, pp. 203–209,
1987.

[3] Miller, V.: Uses of Elliptic Curves in Cryptography. Advances in Cryptology: Pro-
ceedings of CRYPTO’85, H. C. Williams, Ed. 1985, number 218 in Lecture Notes in
Computer Science, pp. 417–426, Springer-Verlag.

[4] Montgomery, P.: Modular Multiplication without Trial Division. Mathematics of
Computation, Vol. 44, 1985, pp. 519–521.

[5] Örs, S. B.—Batina, L.—Preneel, B.—Vandewalle, J.: Hardware Implemen-
tation of a Montgomery Modular Multiplier in a Systolic Array. The 10th Reconfigu-
rable Architectures Workshop (RAW), Nice, France, April 22, 2003.

[6] Batina, L.—Muurling, G.: Montgomery in Practice: How to Do It More Effi-
ciently in Hardware. Proceedings of RSA 2002 Cryptographers’ Track, B. Preneel,

498 N. Mentens, S. B. Örs, B. Preneel, J. Vandewalle

Ed., San Jose, USA, February 18–22, 2002, Number 2271 in Lecture Notes in Com-

puter Science, pp. 40–52, Springer-Verlag.

[7] Trichina, E.—Tiountchik, A.: Scalable Algorithm for Montgomery Multiplica-
tion and Its Implementation on the Coarse-Grain Reconfigurable Chip. Proceedings

of Topics in Cryptology – CT-RSA 2001, D. Naccache, Ed. 2001, Number 2020 in
Lecture Notes in Computer Science, pp. 235–249, Springer-Verlag.

[8] Freking, W. L.—Parhi, K. K.: Performance-Scalable Array Architectures

for Modular Multiplication. Proceedings of the IEEE International Conference on
Application-Specific Systems, Architectures, and Processors. 2000, pp. 149–160,
IEEE.

[9] Tsai, W.-C.—Shung, C. B.—Wang, S.-J.: Two Systolic Architectures for Mo-

dular Multiplication. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 8, 2000, No. 1, pp. 103–107.

[10] Eldridge, S. E.—Walter, C. D.: Hardware Implementation of Montgomery’s

Modular Multiplication Algorithm. IEEE Transactions on Computers, Vol. 42, 1993,
pp. 693–699.

[11] K. Koç, Ç.—Acar, T.: Montgomery Multiplication in GF(2k). Designs, Codes and

Cryptography, Vol. 14, pp. 57–69, 1998.

[12] Wu, H.: Montgomery Multiplier and Squarer in GF(2m). Proceedings of Crypto-
graphic Hardware and Embedded Systems (CHES 2000), Ç. Koç and C. Paar, Eds.,

Worcester, MA, USA, August 2000, Number 1965 in Lecture Notes in Computer
Science, pp. 264–276, Springer-Verlag.

[13] Savaş, E.—Tenca, A. F.—K. Koç, Ç.: A Scalable and Unified Multiplier Archi-

tecture for Finite Fields GF(p) and GF(2m). Proceedings of Cryptographic Hardware
and Embedded Systems (CHES 2000), C. Paar and Ç. K. Koç, Eds. 2000, Num-
ber ‘1965 in Lecture Notes in Computer Science, pp. 281–296, Springer-Verlag.

Nele Mentens obtained the degree of Master of Industrial
Science in electronics, chip design, in 2000 at the Katholieke
Hogeschool Limburg (KHLim), Diepenbeek. In 2000–2001 she
was a research assistant at the KHLim. In 2003, she received
the Master degree in applied electrotechnical science, micro-
electronics. Since 2000, she is a part-time lecturer at the KHLim.
In 2003, she started a Ph.D. program at the Katholieke Univer-
siteit Leuven, Belgium. She is working on efficient hardware
implementations of cryptographic algorithms and side-channel
attacks.

An FPGA Implementation of a Montgomery Multiplier Over GF (2m) 499

Siddika Berna �Ors obtained the degree in electronics and

telecommunications engineering from Istanbul Technical Uni-
versity (I. T.U.), Electrical and Electronic Engineering Faculty,
Turkey. In 1998, she received the Masters degree in electron-
ics and communication engineering from I. T.U., Institute of
Science and Technology. She obtained a doctoral degree on the
subject “Hardware Design of Elliptic Curve Cryptosystems and
Side-Channel Attacks” in February 2005 at the Katholieke Uni-
versiteit Leuven, Belgium. At the moment she is an associate
professor at I. T.U.

Bart Preneel received the Doctorate in Applied Sciences from
the Katholieke Universiteit Leuven (Belgium). He is currently
professor at the K.U. Leuven and visiting professor at the T.U.
Graz (Austria). He was visiting professor at several universities
in Europe. His main research interests are cryptography and
network security. He has authored more than 180 scientific pub-
lications. He is vice-president of the IACR (International Asso-
ciation for Cryptologic Research) and a member of the Editorial
Board of the Journal of Cryptology and of the ACMTransactions
on Information Security. In 2003, he has received the European

Information Security Award in the area of academic research.

Joos Vandewalle obtained the degree of M.Sc. in electrical
engineering, a doctoral degree and a special doctoral degree
from K.U. Leuven in 1971, 1976 and 1984, respectively. He
was a postdoctoral researcher in 1976–78 and visiting assistant
professor in 1978–79 at the University of California, Berkeley.
Since 1979 he is appointed at the K.U. Leuven, where he is full
professor since 1986. He is a fellow of IEEE and is currently
vice-president for Region 8 of the IEEE Society on Circuits and
Systems. He is currently the head of the Department of Electri-
cal Engineering ESAT, and of the research group ESAT/SISTA-

COSIC. He is one of the 3 coordinators of the Interdisciplinary Center for Neural Networks
(ICNN).

