
Computing and Informatics, Vol. 22, 2003, 1–17

OPTIMUM MULTI-DIMENSIONAL INTERVAL
ROUTING SCHEMES ON NETWORKS
WITH DYNAMIC COST LINKS∗

Yashar Ganjali

Department of Electrical Engineering
Stanford University
e-mail: yganjali@stanford.edu

Manuscript received 6 November 2002; revised 5 May 2003
Communicated by Peter Ružička

Abstract. One of the fundamental tasks in any distributed computing system is
routing messages between pairs of nodes. An Interval Routing Scheme (IRS) is
a space efficient way of routing messages in a network. The problem of character-
izing graphs that support an IRS is a well-known problem and has been studied
for some variants of IRS. It is natural to assume that the costs of links may vary
over time (dynamic cost links) and to try to find an IRS which routes all mes-
sages on shortest paths (optimum IRS ). In this paper, we study this problem for
a variant of IRS in which the labels assigned to the vertices are d-ary integer tuples
(d-dimensional IRS ). The only known results in this case are for specific graphs like
hypercubes, n-dimensional grids, or for the 1-dimensional case. We give a complete
characterization for the class of networks supporting multi-dimensional strict and
linear (no cyclic intervals) interval routing schemes with dynamic cost links.

Keywords: Interval routing, networks, routing algorithms, dynamic, multi-dimen-
sional, characterization

1 INTRODUCTION

One of the fundamental tasks in any distributed computing system is routing mes-
sages between pairs of nodes (processors). The classic method for routing messages

∗ This research was completed while the author was a graduate student at the Depart-
ment of Computer Science, University of Waterloo



2 Y. Ganjali

in a network is to store a routing table at each node of the network. A routing table
has one entry for each destination node that indicates which outgoing link should be
used to forward a message going to that destination. This is an example of a rout-
ing scheme which in general is a strategy that determines which path a message,
originating from a known source and going to a known destination, should take in
the network.

Using routing tables is not always efficient, because each routing table re-
quires Ω(n) entries in the worst case in an n-node network. An interval routing
scheme (IRS), which was originally proposed by Khatib and Santoro [13], is a more
efficient routing scheme. In this method each node v of the network is assigned
a unique integer label, L(v), taken from {1, 2, . . . , n} (n is the number of nodes in
the network). Each outgoing link e at a node v is also associated with a cyclic
interval Ie, which denotes the set of destinations reachable through e. This rout-
ing method was used in the C104 Router Chip of INMOS T9000 transputer de-
sign [10].

A Linear Interval Routing Scheme (LIRS) is a variant of IRS in which the
intervals assigned to the links are not cyclic. Another variation is a Strict Interval
Routing Scheme (SIRS). In SIRS, no interval associated with a link e, which is
adjacent to a node v, can contain the label of v. For example, a node with label 4
cannot have a link that is labeled with the interval [2..8]. An IRS which is both
linear and strict is denoted by SLIRS.

In any IRS, the routing is completed in a distributed way. At each intermediate
node p, the routing process ends if the destination of the message, dest, is p. Other-
wise, the message is forwarded through a link e labeled by an interval Ie, such that
dest ∈ Ie. This method requires O(l) entries at each node (l is the number of links
at that node), which is a more efficient memory allocation than required by routing
tables.

The class of networks which have an LIRS or SLIRS such that each message even-
tually reaches its destination has been characterized by Fraigniaud and Gavoille [5].
There, the routes traversed by messages are not necessarily shortest paths. If an
IRS routes all messages on shortest paths, the IRS is called an optimum IRS. Given
a graph G and an IRS defined on G, it is reasonable to assume that the labels of the
vertices remain fixed over time, but the cost of the links may vary. Assuming that
the costs of the links are non-negative numbers that vary over time, the question is:
can we always relabel the links of G such that the path traversed by any message
always remains optimum? In other words, does a given graph G having dynamic
cost links, have an optimum IRS?

This problem has been studied for graphs supporting optimum SIRS by Fredrick-
son and Janardan [6]. They characterize the class of graphs supporting optimum
SIRS with dynamic cost links. Bakker et al. give a complete characterization for
the class of networks supporting optimum LIRS [1]. They assume that the labels
assigned to the links of the graph remain fixed, even if the costs of the links change.
This makes the class of graphs supporting optimum LIRS very restricted. Tan and
Leeuwen have also studied the problem of characterizing networks supporting op-



Optimum MIRS on Networks with Dynamic Cost Links 3

timum IRS with dynamic cost links and have a characterization for this class of
networks [14].

Here, a natural question is: can we slightly change IRS (LIRS, SLIRS, etc.) to
expand the class of graphs supporting LIRS, SIRS and SLIRS, or improve the length
of routing paths?

One way to make IRS more flexible and the routing more efficient is to assign
more than one label to each link. Bakker, Leeuwen and Tan have proved that the
class of graphs supporting LIRS with k (k > 1) intervals per link is a strict subset
of the class of graphs supporting LIRS with k + 1 intervals per link [11, 1]. Hence,
increasing the number of intervals at each link increases the power of interval routing
and allows a larger class of networks to support IRS. Narayanan and Nishimura
study the problem of finding the number of intervals needed at each link for the
case of optimum IRS on k-trees [12]. Using the notion of tree-width, Bodlaender et
al. also give an interesting characterization of the graphs supporting optimum IRS
with dynamic cost links and k intervals per link [2].

Another interesting variant is to assign multi-dimensional labels to the nodes and
multi-dimensional interval labels to the links of the network. This extension of IRS
is called a Multi-dimensional Interval Routing Scheme (MIRS) and was originally
proposed by Flammini et al. [4]. More formally, in a d-dimensional MIRS we will
assign a d-dimensional label which is a d-ary tuple of the form (p1, p2, . . . , pd), 1 6

pi 6 n, for 1 6 i 6 d, to each node of the network. We will also assign a d-dimensional
interval to each outgoing link (at each node) where a d-dimensional interval, denoted
by I = [a1..b1, a2..b2, . . . , ad..bd] (ai, bi ∈ {1, 2, . . . , n} for 1 6 i 6 d) is the set of all
d-ary tuples, like P = (p1, p2, . . . , pd), such that ai 6 pi 6 bi, for every i, 1 6 i 6 d.

The routing process in an MIRS is quite similar to the routing process in a 1-
dimensional IRS. A Linear MIRS (MLIRS), a Strict MIRS (MSIRS), and a Strict
and Linear MIRS (MSLIRS), are defined analogously to 1-dimensional LIRS, SIRS
and SLIRS, respectively. Let us consider a graph G which has a d-dimensional
MIRS with k intervals associated with each link. If for any pair of nodes s and t

in V (G), the message originating from s eventually reaches t, we say that G is
in 〈k, d〉-MIRS or G supports 〈k, d〉-MIRS. Classes of networks supporting 〈k, d〉-
MLIRS and 〈k, d〉-MSLIRS are defined similarly.

The class of networks supporting 〈1, d〉-MLIRS and 〈1, d〉-MSLIRS (not an op-
timum IRS) has already been characterized [7, 8]. In this paper, we completely
characterize the class of networks supporting an optimum 〈1, d〉-MSLIRS with dy-
namic cost links. This is a natural generalization of the characterization results (for
the 1-dimensional case) mentioned above.

The rest of this paper is organized as follows: in Section 2 we introduce some
preliminary concepts. Then, in Section 3 we show which graphs can have an op-
timum 〈1, d〉-MSLIRS with dynamic cost links. Section 3.1 demonstrates how to
assign d-dimensional labels to the vertices of a given graph and Section 3.2 shows
how to assign labels to the links of the graph, for a given set of link costs. Finally
in Section 4 we conclude and give a list of open problems.



4 Y. Ganjali

2 PRELIMINARIES

In this section we briefly mention some of the important definitions used throughout
this paper. For basic graph theoretic definitions and notation we refer the reader to
standard texts [3, 15].

A network is modeled by a graph G = (V, E). The set of vertices V represents
the nodes of the network and the set of edges E represents the links between the
nodes. Whenever there is no ambiguity, we will use the terms nodes and vertices
and also links and edges interchangeably. We assume that the graph is simple,
connected, undirected and does not have any self-loops. For any edge (u, v) ∈ E

we will use both (u, v) and (v, u) in order to assign two unidirectional labels to the
edge. If removing a vertex v disconnects a graph G, v is called a cut-vertex in G.
A connected graph having no cut-vertex is called a block. Every block which has at
least three vertices is 2-connected. A block of a graph is a maximal subgraph that
is a block. A vertex joining two blocks of a graph G is called an articulation point
of G. A vertex which is not an articulation point is called a non-articulation point.

Observation 1. If a graph G is connected, removing any of its articulation points
will disconnect the graph. It follows directly from this observation that any two
blocks of a graph share at most one vertex (which is an articulation point).

Any d-dimensional label associated with a node of a network denotes a point in
d-dimensional Cartesian space with integer coordinates. We will use this point and
the label interchangeably. Let us consider a set of points P in d-dimensional space.
If for any dimension i, 1 6 i 6 d, the ith coordinate of a point b in P is less than or
equal to the ith coordinate of every other point in P , b is called a minimum point
for the ith dimension. A maximum point is defined similarly. A boundary set B

of P is a minimal set of points in P containing a minimum and a maximum point
for each dimension i, 1 6 i 6 d, where one point can be both the minimum and the
maximum point for some or many dimensions.

Example 1. Figure 1 illustrates an example of a boundary set in 2-dimensional
space. Here, P = {1, . . . , 7} and {1, 5, 7} is a boundary set of P . The set {2, 5, 7}
is also a boundary set of P . We note that point 7 is the maximum point for one
dimension and the minimum point for another dimension.

Clearly, for any set of points in d-dimensional space, the number of points in
any boundary set is at most 2d.

In the following sections we will need a way to divide d-dimensional space and
represent the resulting subspaces. The axes in d-dimensional space are denoted by
x1, x2, . . . , xd. Let us consider a point P = (p1, p2, . . . , pd) in d-dimensional space.
A region in d-dimensional space having P as the origin is a set of points in that
space, such that for every point Q = (q1, q2, . . . , qd) in the region the constraint
qiRipi holds for each dimension i, where Ri is one of 6, =, > or a null constraint
meaning that there is no constraint for the ith coordinate of the points in the region.



Optimum MIRS on Networks with Dynamic Cost Links 5

1

2

3

4

5

6

7

Fig. 1. An example of a boundary set in 2-dimensional space

We will use ←, −, →, ↔ to denote each of the four constraints 6, =, > and the
null constraint, respectively. To denote a region we use the coordinates of the origin
and add these symbols on top of each coordinate to show the type of constraint
in that dimension. If there is no constraint for the ith dimension of the region,
the ith coordinate of the origin can have any value. We use 0 for this coordinate for
simplicity.

Example 2. The region R containing all the points in the second quadrant in the
plane, such that x1 ≤ −1 and x2 ≥ 1 is denoted by (

←−
−1,
−→
1 ) (Figure 2).

1

-1

origin

R

x2

x1

Fig. 2. The region R with two open directions in 2-dimensional space

For a region R and the ith dimension, if R contains points with infinitely large
positive (negative) values in the ith dimension, the region is said to be open in
the positive (negative) side of the ith axis and the positive (negative) direction of
the ith axis is said to be an open direction for R and will be denoted by −→xi (←−xi ). It is
worth mentioning that a region is defined by the origin and the set of open directions.
The negative direction of the first axis and the positive direction for the second axis
are open in the region shown in example 2, so this region has two open directions.
We can consider d-dimensional space as a region with origin (0, 0, . . . , 0) and call



6 Y. Ganjali

it the universal region. This region has 2d open directions (one positive and one
negative direction for each of the d axes) and can be denoted by (↔0 ,↔0 , . . . ,↔0 ).

A region S is said to be a subregion of a region R if the origin of S is in R and
the set of open directions of S is a subset of open directions of R. We also say two
regions R and S are disjoint if they have disjoint sets of open directions and neither
origin is inside the other region. The generalization to more than two regions is
analogous. The complement of a region R is a region, denoted by R, such that the
origin of R is the same as the origin of R and the set of open directions of R is the
complement of the set of open directions of R relative to the set of open directions
of the universal region.

Example 3. The complement of the region R = (
←−
−1,
−→
1 ) is the region (

−→
−1,
←−
1 ).

There are points in the universal region that belong to neitherR nor R. For example,
the point (0, 2) is not in R or R in the previous example.

For a point P = (p1, p2, . . . , pd) and a subset S of the set of open directions of
the universal region, we define a function move(P,S) which generates a new point
P ′ = (p′

1
, p′

2
, . . . , p′d) such that for the ith dimension, 1 6 i 6 d, p′i = pi if S does

not contain either the positive direction or the negative direction of the ith axis or
if S contains both of them. If S contains only the positive direction then p′i = pi+1
and if it contains only the negative direction of the ith axis, p′i = pi − 1.

3 CHARACTERIZATION

The main goal of this paper is to prove the following theorem:

Theorem 1. A graph G has an optimum 〈1, d〉-MSLIRS with dynamic cost links,
if and only if G has at most 2d non-articulation vertices.

This gives a complete characterization of the class of graphs supporting optimum
〈1, d〉-MSLIRS with dynamic cost links. We defer the proof of this theorem for now.

We first show that any graph having more than 2d non-articulation points cannot
support an optimum 〈1, d〉-MSLIRS with dynamic cost links. Then, for all other
graphs we divide the original graph into some basic parts, arrange those parts in the
d-dimensional space in a proper manner and show that with this arrangement we
can always find labels for links and nodes of the graph such that the graph supports
an optimum 〈1, d〉-MSLIRS.

We consider the assignment of d-dimensional labels to the vertices of a graph as
assigning corresponding points in d-dimensional space to each vertex. We will use
a vertex and its corresponding point interchangeably.

We start with an observation about boundary sets.

Observation 2. For a set of points P in d-dimensional space and a boundary set B
of P , any d-dimensional interval I containing all the points in B contains all of P .

This is true because if Q = (q1, q2, . . . , qd) is an arbitrary point in P , then for
each dimension i, 1 6 i 6 d, there is a minimum point mi and a maximum point Mi



Optimum MIRS on Networks with Dynamic Cost Links 7

in P (mi and Mi can be the same) such that mi 6 qi 6 Mi. Since I contains these
minimum and maximum points, the ith dimension of I covers the ith dimension of Q
and so I contains Q. Therefore, I contains all of the points in P .

In the following lemma, we use this observation to prove a restriction on the
number of non-articulation points in a graph supporting an optimum 〈1, d〉-MSLIRS
with dynamic cost links.

Lemma 1. Any graph G having more than 2d non-articulation points cannot sup-
port an optimum 〈1, d〉-MSLIRS with dynamic cost links.

Proof. If G has an optimum 〈1, d〉-MSLIRS with dynamic cost links, the points
corresponding to the labels of the vertices in G will have a boundary set B of at
most 2d points. Since G has more than 2d non-articulation points, we have at least
one non-articulation point, say v, such that the point corresponding to v is not in B.

G is a connected and non-trivial graph, so v has at least two adjacent vertices.
We let u be an arbitrarily chosen neighbor of v. Recalling that the links have
dynamic costs, there must be a labeling of the links of G for any assignment of
costs. We can consider a case in which the cost of the link (v, u) is 1 and the cost of
any other link adjacent to v is arbitrarily large, say M (e.g. M is at least n2). The
cost of any other link of the graph is set to be 1 (Figure 3).

Since v is a non-articulation point, the shortest path from v to any other vertex
in G must go through the link (v, u). To prove this, let us assume that the shortest
path from v to some other vertex t in G goes through a neighbor z of v such that
z 6= u. Since v is not an articulation point, if we remove v there exists a path
connecting u and z. The cost of this path is less than M because we have less than
n2 links of cost 1, and we know M > n2. Therefore, the path going from v to u and
then going from u to z and finally going to t, has a smaller cost than the path going
from v to t through the edge (v, z). This is a contradiction because the path from v

to t passing through z is a shortest path. If v instead were an articulation point, this
argument would not work, because by removing v the graph becomes disconnected
(Observation 1).

This argument together with Observation 2 shows that the interval I assigned
to (v, u) contains all other points including the points in the boundary set B. There-
fore, I contains v, which contradicts the fact that the IRS is strict. 2

In the following sections, we will show that the necessary condition stated in
Lemma 1 is also a sufficient condition for a graph to support an optimum 〈1, d〉-
MSLIRS with dynamic cost links. We will first give an algorithm to assign labels to
the vertices of the graph. Then, we will show that with those labels assigned to the
vertices, and for assignment of any costs to the links, one can always find a suitable
set of labels for the links so that the graph supports an optimum 〈1, d〉-MSLIRS.



8 Y. Ganjali

1

1

Path connecting

v

M

M
u

G

z

u and z t

Fig. 3. Costs assigned to the links of the graph G; here, M is at least n2

3.1 Labels of Vertices

We consider a graph G supporting an optimum 〈1, d〉-MSLIRS with dynamic cost
links. There is a labeling of the vertices of G such that for any set of costs assigned
to the links of the graph, one can always find a suitable set of labels for the links. By
Lemma 1, G has at most 2d non-articulation points. In this section we show how to
find such a labeling for the vertices of any graph having at most 2d non-articulation
points.

We will use a structure, which we call the block tree of a graph, in order to find
such a labeling of vertices. This structure defines an ordering of the vertices of the
graph, based on which we will assign the labels to the vertices in a way that all
the non-articulation points will be in a boundary set and articulation points are
placed so that they are not contained in any boundary set. In other words, when
we assign a point in d-dimensional space, this assignment is done in a way that in
some direction (one of the 2d directions of the d-dimensional space) this point is
a minimum or a maximum point and we will not place any other point beyond this
one in that specific direction.

The block tree of a graph G, which is denoted by BT (G), is a structure in which
each block of the graph G is represented by a vertex. BT (G) also has one vertex
for each articulation point in G. Whenever there is no ambiguity, we will use the
same name for a block in G and its corresponding vertex in BT (G) and also for any
articulation point in G and its corresponding vertex in BT (G). If and only if an
articulation point v is in a block B of G, the corresponding vertices in BT (G) will
be joined by an edge.

Figure 4 depicts an example of a block tree. The graph indicated in this example
has four blocks B0, B1, B2, B3 and two articulation points u1 and u2. The vertex u1

connects B0, B1 and B2 in G, so in the block tree BT (G) the vertex representing u1

is connected to the vertices representing B0, B1 and B2.

It is a trivial task to verify that the block tree of a graph G is a tree (otherwise
the blocks of the graph form a cycle, which is impossible).



Optimum MIRS on Networks with Dynamic Cost Links 9

(a) (c)(b)

u1
v2

u2

B3

B0

B1

B3

B2

v4

v6

v3

u1

v1

v5

v7

u2

B1

B0

B2

Fig. 4. (a) A graph G (b) blocks of G and (c) the block tree of G

As mentioned earlier, we will use this tree (the block tree BT (G)) to assign labels
to the vertices of the graph G. We can consider BT (G) as a rooted tree with an
arbitrary block B0 being the root of BT (G). To assign labels in d-dimensional space
to the vertices of a graph G, we will assign each vertex v a region in d-dimensional
space. The label of a vertex v will then be the origin of the region assigned to v.

Intuitively, we will assign the whole d-dimensional space to the root B0 of the
block tree. The regions assigned to the vertices in a subtree are subregions of the
region assigned to the root of that subtree. Also, in a node v which is the root of
more than one subtrees, the regions assigned to different subtrees will be disjoint.
This property will allow us to assign intervals to the links of the graph without any
conflicts, as we will see later in this paper.

Formally, starting at the root B0 (an arbitrary block) of the block tree, we
let B0, B1, B2, . . . be a topological sort of the blocks in BT (G). We denote by
v1, v2, . . . , vα (α 6 2d) the list of all non-articulation points in B0 followed by the
set of non-articulation points in B1, and so on. For each non-articulation vertex,
vi, (1 6 i 6 min{α, d}) we assign an open direction OD(vi) which is the positive
direction of the ith axis. If α > d, for each vi, (d < i 6 α) we also assign an open
direction OD(vi) which is the negative direction of the (i− d)th axis.

Example 4. The graph depicted in Figure 4 has 7 non-articulation points, so if
we want this graph to have an optimum 〈1, d〉-MSLIRS with dynamic cost links,
d must be at least 4. Recalling that the axes are denoted by x1, x2, x3, x4 then
OD(v1), OD(v2), . . . , OD(v7) will be −→x1,

−→x2,
−→x3,
−→x4,
←−x1,
←−x2 and ←−x3, respectively.

Now that each non-articulation point has an open direction, we assign a set of
open directions to each articulation point and each block in BT (G) as follows: the
set of open directions assigned to an articulation point v is the union of the open
directions of all non-articulation points in a subtree of BT (G) rooted at v. We
denote this set by OD(v).

Similarly, the set of open directions assigned to a vertexB inBT (G) representing



10 Y. Ganjali

a block, which is denoted by OD(B), is the union of the open directions of all non-
articulation points in a subtree of BT (G) rooted at B. Obviously, this subtree
includes all non-articulation points in the block B.

Example 5. For the graph G denoted in Figure 4 (a), the block tree is depicted
in Figure 4 (b). Here, B0 is the root of the block tree. In this graph, OD(u2) =
OD(B2) = {←−x2,

←−x3} which is the same as OD(v6) ∪ OD(v7) (the non-articulation
points in the subtree rooted at B2 or u2).

(b)(a) (c)

B2

v1

B0

u1

B1

B0

v3

v2

v4

u2

u1

B2

B1

u2

X(v1)

X(B0) X(v2)

x1

x2

X(B1)

X(B2)

X(u1)

X(u2)

X(v3)

X(v4)

Fig. 5. (a) A graph G (b) The block tree of G rooted at B0 (c) The origin of each region
assigned to each block and each vertex in G

The next step is to assign an origin to each set of open directions associated with
a vertex in BT (G). The origin of the region assigned to v (any vertex in BT (G))
will be denoted by X(v). This will be used for calculating the origin of each non-
articulation point later.

We start with the block B0 and let X(B0) = (0, 0, . . . , 0). If G has 2d non-
articulation points, recalling that we have already assigned all 2d open directions
to B0, the region assigned to B0 would be the universal region, (↔0 ,↔0 , . . . ,↔0 ).
To compute the origin of the region assigned to u, a child of a vertex v with
a known origin, we let X ′(v, u) = move(X(v), OD(v)). Then we let X(u) =
move(X ′(v, u), OD(u)). This is the origin of the region associated with u. Since
the root of the tree BT (G) has a known origin, by repeating this step every vertex
in BT (G) will eventually have an origin.

If v is a non-articulation point in a block B ofG, the origin of the region assigned
to v (which has exactly one open direction), X(v), is computed as follows: we first
let X ′(B, v) = move(X(B), OD(B)). Then we let X(v) = move(X ′(B, v), OD(v))
which is the origin of the region assigned to v.



Optimum MIRS on Networks with Dynamic Cost Links 11

Example 6. In the graph G depicted in Figure 5 the region associated with B0 is
(↔0 ,

↔

0 ). To find X(v1) we move X(B0) = (0, 0) in the direction of OD(B0) (which
includes all four directions) and get (0, 0). Then this point is moved in the direction
of OD(v1) which is −→x1. Therefore, X(v1) = (1, 0).

Algorithm VertexLabeling(G, BT );
Input: G (a simple connected and undirected graph).

BT (the block tree of G).
Output: L (an array containing a d-dimensional label for each vertex of G).

begin
let k ← number of non-articulation points in G;
let d← ⌈k/2⌉;
let B0, B1, . . . be the DFS order of blocks in BT ;
let v1, v2, . . . , vk be the order of non-articulation vertices

in B0, B1, . . . respectively;
for each vi, 1 6 i 6 d

let OD(vi)← −→xi ;
for each vi, d < i 6 k

let OD(vi)←←−−xi−d;
for each vertex v of BT

let OD(v)← empty set;
for each non-articulation vertex u in the subtree of BT rooted at v

let OD(v)← OD(v) ∪OD(u) ;
let X(B0)← (0, 0, . . . , 0);
for each vertex v in BT such that X(v) is already known

for each child c of v
let Y ← move(X(v), OD(v));
let X(c)← move(Y,OD(c));

for each block B in G
for each non-articulation point v in B

let Y ← move(X(B), OD(B));
let X(v)← move(Y,OD(v));

for each vertex v in G
let L(v)← X(v);

end;

Fig. 6. Algorithm for labeling the vertices of a given graph G

In the optimum 〈1, d〉-MLIRS defined on G, we let the label assigned to each
vertex v, denoted by L(v), be the same as the origin of the region assigned to
that vertex (L(v) = X(v)). Figure 6 is the pseudo-code for labeling the vertices of
a graph G (VL algorithm). We can verify that this algorithm can be executed in



12 Y. Ganjali

O(n2) time.

Before showing how to find the labels of links for a given set of link costs, we
review some properties of the labels assigned to the vertices.

Observation 3. For a block B in G, we let X ′(B) = (a1, a2, . . . , ad) be the point
resulting from moving X(B) in the direction of OD(B). If v is a non-articulation
point in B, then L(v) = (b1, b2, . . . , bd) where bi = ai for all i, 1 6 i 6 d except for
one dimension j such that OD(v) =←−xj or OD(v) = −→xj . In this dimension bj = aj+1
or bj = aj − 1 based on the direction of OD(v).

Lemma 2. If v is a vertex in a block B or in the subtree of BT (G) rooted at B,
the region assigned to v, Rv by the VL algorithm is a subregion of RB, the region
assigned to B.

Proof. First, let us consider a point p in a region R. We let S be a subset of open
directions of R. The point p′ = move(p, S) is a point in R. We can repeat this
with another subset of open directions of R as many times as we want. The final
point would still be in R. This is exactly what happens to the origin of RB in the
VL algorithm, so X(v) is in RB.

The set of open directions of any vertex in the subtree rooted at B (non-
articulation vertices as well as articulation vertices and blocks) is a subset of open
directions of B. The origin of the region Rv is in RB and the set of open directions
of Rv is a subset of the set of open directions of RB. Therefore, Rv is a subregion
of RB. 2

If Rv is the region assigned to a vertex v in BT (G), the previous lemma shows
that all vertices in the subtree of BT (G) rooted at v are in Rv. With an argument
similar to that of the proof of Lemma 2 we can verify the following lemma.

Lemma 3. Any vertex not in the subtree of BT (G) rooted at v is in the region Rv.

Lemma 4. For e = (u, v) an edge in block B and z a vertex contained in a block
B′ 6= B which is in the subtree of BT (G) rooted at B, if the shortest path from u

to z goes through e, then there is a shortest path from u to any other vertex t in
the subtree of BT (G) rooted at B which goes through e.

Proof. To verify this, we notice that any shortest path going from u to any vertex
in the subtree of BT (G) rooted at B not including B itself must go through the
articulation point w connecting B to the rest of that subtree. Since the shortest path
from u to z (which is one of those shortest paths) goes through e, there is a shortest
path from u to w going through e. This path can be expanded to a shortest path
for any other vertex t by just adding the shortest path from w to t. 2

In the following section, we show how to assign intervals to the links for any set
of link costs.



Optimum MIRS on Networks with Dynamic Cost Links 13

3.2 Labels of Links

In this section we show that for a given graph G and the labels assigned to the
vertices of G using the Vertex Labeling (VL) algorithm, introduced in Section 3.1,
we can always find labels for the links of G for any set of link costs. By this labeling
of links, any message from any source vertex to any destination vertex in G will be
routed on a shortest path.

First, we show that if we just consider the non-articulation vertices in one block,
we can always find labels for the links for any set of costs assigned to the links, so
that the messages are routed on shortest paths.

Lemma 5. With the labels assigned by the VL algorithm, for any subset C of the
non-articulation vertices in a block B, we can always find a d-dimensional interval
containing the vertices in C and no other vertex in B.

Proof. We assume that X ′(B) is the point resulting from moving X(B) in the
direction of OD(B). Without loss of generality, we can assume that X ′(B) =
(0, 0, . . . , 0) (otherwise we can shift every label by −X ′(B)). By Observation 3
one can verify that the label of each non-articulation vertex v in B is of the form
(0, 0, . . . , 1, . . . , 0) or (0, 0, . . . ,−1, . . . , 0) (exactly one coordinate is 1 or −1 and the
rest of coordinates are all 0).

We let mi be −1 if there is a vertex in C having −1 as its ith coordinate
and 0 otherwise. Similarly, Mi will be set to 1 if there is a vertex in C having 1 as
the ith coordinate and 0 otherwise. Obviously mi 6 0 6 Mi.

For any non-articulation point v in C (with L(v) = (b1, b2, . . . , bd)) and for any
dimension i, 1 6 i 6 d, we have m i 6 bi 6 Mi. As a consequence, the d-dimensional
interval I = [m1..M1, m2..M2, . . . , md..Md] contains all the vertices in C.

We define ODC = ∪OD(v) for any v ∈ C. For any vertex u in B−C, OD(u) 6∈
ODC . Therefore, if L(u) = (b1, b2, . . . , bd), there is a dimension j such that bj < mj

or bj > Mj (this is the direction which belongs to OD(u) but not to ODC). Hence,
u is not in I and thus I contains exactly the vertices of B which are in C. 2

The next step is to generalize this argument to the case in which C contains
articulation points of B, not including the parent of B in BT (G) (if it has any).

Lemma 6. With the labels assigned by the VL algorithm, for any subset C of the
vertices in a block B which does not include the parent of B in BT(G), we can
always find a d-dimensional interval containing exactly the vertices in C and no
other vertex.

Proof. We let B′ be the set resulting from replacing each articulation point z in B

with the set of non-articulation points in the subtree(s) of BT (G) rooted at z say
z1, z2, . . . , zt (B

′ = B−{z}∪{z1, z2, . . . , zt} for any articulation point z in B). These
new vertices ({z1, z2, . . . , zt}) all together represent the articulation point z in B.

Lemma 5 shows that for any subset C ′ of B′ there is an interval containing
exactly the vertices in C ′. If C contains the articulation point z, we let C ′ =



14 Y. Ganjali

C −{z} ∪ {z1, z2, . . . , zt}. By Lemma 5 there is an interval I containing exactly the
vertices in C ′. If I contains all of the points z1, z2, . . . , zt, it will also contain z, so
this interval contains all the vertices in C. On the other hand, any vertex v in B−C

is in B′ − C ′. It means if I contains a vertex v in B − C, it also contains a point
from B′ − C ′ which is impossible by Lemma 5. 2

Example 7. In graph G shown in Figure 5, the origin of region associated with B2

is (−4,−4) and moving this point in the direction of OD(B2) results in the point
(−5,−5), because OD(B2) contains the negative direction of both axes. If we con-
sider this point as the origin, the coordinates of X(v3) and X(v4) (v3 and v4 are
non-articulation points in B2) are (−1, 0) and (0,−1) respectively. If C = {v3, v4}
then the interval covering C would be I = [−1..0,−1..0].

In the VL algorithm, each block has at most one articulation point as its parent
in BT (G). For a block B and v the vertex in BT (G) which is the parent of B,
Lemma 2 shows that all the vertices in the subtree of BT (G) rooted at B are
contained in the region RB. Lemma 3 states that any other vertex is in RB.

Lemma 7. If I is an interval in the region RB containing the articulation point v,
we can find another interval I ′ such that I ′ contains all the vertices in the subtree
rooted at v and the same set of points in RB as I . Also, if I is an interval in RB

containing v, we can find another interval I ′ such that I ′ contains all the vertices
which are not in the subtree rooted at v and the same set of points in RB as I .

Proof. If we repeatedly move L(v) (which is X(v)) in the direction of OD(B) and
let I ′ be the interval that contains the resulting point, we can verify that I ′ contains
exactly the same set of points in RB as I . By moving L(v) a sufficiently large
number times in the direction of OD(B), the new interval I ′ will also contain all
points in RB (any point with finite coordinates which is in RB), which completes
the proof. The other claim can be proved similarly. 2

Now, let us assume that we are given the costs of the links in a graph G and
want to find the labels for the links based on the labels given by the VL algorithm
to the vertices of G. The following lemma illustrates how to do this.

Lemma 8. For any assignment of costs to the edges of a graph G, and with labels
assigned to the vertices of the graph by the VL algorithm, we can always find suitable
intervals for the links so that the result is an optimum 〈1, d〉-MSLIRS.

Proof. First, we will consider a link e = (u, v) and the set of vertices Se reachable
(by a shortest path) through e. The link e is in a block, say B, of G. We let
Q1 = B ∩ Se that is Q1 is the subset of vertices in B that are contained in Se. Let
us consider a vertex z which is a vertex in the subtree of BT (G) rooted at B. If
z is not in B but is contained in Se, by Lemma 4, Se also contains all the vertices
in the subtree of BT (G) containing z (we denote the vertices in this subtree by the
set Q2). Finally, if z is not in a child block of B, Se must contain all the vertices
that are not a child of B (we denote the set containing all these vertices by Q3).



Optimum MIRS on Networks with Dynamic Cost Links 15

Lemma 6 shows that we can always find an interval covering exactly the vertices
in Q1. If there is any point in Q2 (or Q3) then the articulation point joining B to the
vertices in Q2 (Q3 respectively) must also be in Q1. This is because this articulation
point is the only vertex connecting B to the child subtree (or the vertices of G that
are not contained in the subtree rooted at B) and so the only way to reach those
vertices. Lemma 7 shows that we can always find an interval containing the same
set of points in Q1 at the previously assigned interval, and covering all the points
in Q2 (Q3). This completes the proof. 2

Example 8. In the graph G of Figure 5, let us assume that the cost of the edge
(v1, v2) is extremely large and the cost of any other edge is 1. The interval assigned
to the edge e = (v1, u1) should contain all the vertices, except v1. The interval
[−1..0,−1..1] contains Q1 = {v2, u1}. Therefore we can find another interval which
contains all vertices in the subtree of BT (G) rooted at u1 (Lemma 7). This interval
is [−6..0,−6..1].

Now we can easily prove the main result of this paper.

Proof. [Main Theorem] Lemma 1 states that any graph having more than 2d non-
articulation points cannot support an optimum 〈1, d〉-MSLIRS with dynamic cost
links. By Lemma 8, if a graph G has at most 2d non-articulation points we can
always find a fixed labeling for the vertices such that for any costs assigned to the
links, we can find intervals for each link to support an optimum 〈1, d〉-MSLIRS. 2

Corollary 1. The class of graphs supporting an optimum 〈1, d〉-MSLIRS with dy-
namic cost links is a strict subset of the class of graphs supporting an optimum
〈1, d+ 1〉-MSLIRS with dynamic cost links.

4 CONCLUSION AND OPEN PROBLEMS

Characterizing the class of graphs which support different variations of IRS is
a well-known problem. Assuming that the costs of links (and therefore the in-
tervals assigned to links) may vary over time for a fixed set of labels assigned to
nodes seems quite natural. In this paper, we completely characterized the class of
networks supporting an optimum 〈1, d〉-MSLIRS with dynamic cost links. Theo-
rem 1 shows that adding the number of dimensions strictly increases the power of
IRS. In other words, for any d ∈ IN there is a class of graphs which does not sup-
port optimum 〈1, d〉-MSLIRS with dynamic cost links, but supports an optimum
〈1, d+ 1〉-MSLIRS.

Characterizing the class of graphs supporting an optimum 〈k, d〉-MSLIRS with
dynamic cost links, which is a generalization of the result of this paper, is a very
interesting open problem. Even if we consider the case with fixed cost links the
problem is still open. Assuming the case in which the IRS is not necessarily optimum,
another open problem is to find lower bounds on the length of paths traversed by
messages. We can also consider the variants in which the IRS is not necessarily linear



16 Y. Ganjali

or strict. For more open problems in this area, we refer the reader to a comprehensive
survey by Gavoille [9].

5 ACKNOWLEDGEMENTS

I would like to thank Professor Naomi Nishimura, for her thoughtful comments,
guidance and support. I am also grateful to Mohammadtaghi Hajiaghayi for his
useful comments.

REFERENCES

[1] Bakker, E. M.—van Leeuwen, J.—Tan, R.: Linear Interval Routing. ALCOM:
Algorithms Review. Newsletter of the ESPRIT II Basic Research Actions Program
Project No. 3075 (ALCOM), Vol. 2, 1991.

[2] Bodlaender, H. -L.—van Leeuwen, J.—Tan, R.—Thilikos, D. M.: On Inter-
val Routing Schemes and Treewidth. Information and Computation, Vol. 139, 1997,
No. 1, pp. 92–109.

[3] Bondy, J. A.—Murty, U. S. R.: Graph Theory with Applications. American
Elsevier Publishing Co., Inc., New York, 1976.

[4] Flammini, M.—Gambosi, G.—Nanni, U.—Tan, R. B.: Multidimensional In-
terval Routing Schemes. Theoretical Computer Science, Vol. 205, 1998, Nos. 1–2,
pp. 115–133.

[5] Fraigniaud, P.—Gavoille, C.: Interval Routing Schemes. Algorithmica, Vol. 21,
1998, No. 2, pp. 155–182.

[6] Frederickson, G. N.—Janardan, R.: Optimal Message Routing Without Com-
plete Routing Tables. pp. 88–97, 1986.

[7] Ganjali, Y.: Characterization of Networks Supporting Multi-dimensional Linear In-
terval Routing Schemes. Proceedings the 8th International Colloquium on Structural
Information and Communication Complexity (SIROCCO 8), 2001, pp. 163–178.

[8] Ganjali, Y.: Multi-Dimensional Interval Routing Schemes. Department of Com-
puter Science, University of Waterloo, 2001.

[9] Gavoille, C.: A Survey on Interval Routing. Theoretical Computer Science,
Vol. 245, 2000, No. 2, pp. 217–253.

[10] INMOS: The T9000 Transputer Overview Manual. 1991.

[11] van Leeuwen, J.—Tan, R. B.: Interval Routing. The Computer Journal, Vol. 30,
1987, No. 4, pp. 298–307.

[12] Narayanan, L.—Nishimura, N.: Interval Routing on k-Trees. Journal of Algo-
rithms, Vol. 26, 1998, No. 2, pp. 325–369.

[13] Santoro, N.—Khatib, R.: Routing Without Routing Tables. Technical Report
SCS-TR-6 School of Computer Science, Carleton University, Ottawa, 1985.

[14] Tan, R. B.—van Leeuwen, J.: Compact Routing Methods: A Survey. Proceedings
of Colloquium on Structural Information and Communication Complexity (SICC’94),
SCS, Carleton University, Ottawa, 1995, pp. 99–109.



Optimum MIRS on Networks with Dynamic Cost Links 17

[15] West, D. B.: Introduction to Graph Theory. Prentice Hall Inc., Upper Saddle River,

NJ, 1996.

Yashar Ganjali received the BSc degree in computer engineer-
ing from Sharif University of Technology, Tehran, Iran, in 1999
and the MSc degree in computer science from University of Wa-
terloo, Waterloo, Canada, in 2001. Since then, he is a PhD
student working in the Computer Systems Laboratory at Stan-
ford University. His research is mainly focused on optimization
of routing protocols, multi-path routing, and load balancing.


