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Abstract. Cooperation among agents has been the object of many recently pub-
lished papers. Cooperation might be formulated and work in many forms, between
different kinds of agents and situations in which they are situated. In addition,
it is also influenced a lot by the agent’s intelligence, mutual relationships and the
willingness to cooperate with other ones. The main focus of this paper is to solve
the problem of how to create optimal coalitions of the given agents with the purpose
to improve the collective performance. The coalition is a possible form of coopera-
tion in which the common goal has the highest priority for all members included
in it. Further, we introduce methods for finding the sub-optimal solutions, which
are able to approximate the range of the optimal solutions. Finally we discuss the
problem of creating coalition with more parameters.
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1 INTRODUCTION

Introduction of agents has already been presented in many recent papers. An agent
can work alone; in this case the final results depend only on its capabilities and on
the given tasks, but it can also cooperate with others. Cooperation depends mainly
on types of agents and their capabilities. If there are too many differences, the co-
operation may be very complicated. Agents with different capabilities of reasoning,
evaluating and decision-making, in combination with different kinds of knowledge
or experience, can create unpredictable situations [12, 13]. Thus, it is necessary
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to restrict the area and the objectives of cooperation, to classify methods and lan-
guages for communication, etc. The above-mentioned features, however, are very
important for formulating agent cooperation; in general, they cannot be specified
precisely in advance if agent functionalities are not known. Agent’s behavior is the
next important point in cooperation. The behavior could be deterministic -meaning
it can be described, approximated or explained by mathematical formulations, or
stochastic — such as dealers in the stock exchange, managers of companies, etc.
Agents could also improve their knowledge and behavior during cooperation. For
example, adaptive agents are able to react to changing situations in the environ-
ment, learning agents sequentially learn from the behavior of others and improve
their knowledge, etc. The quality of the adaptation or learning process is assessed
by the chosen actions within the cooperation process and according to the received
results. Both the adaptation and learning processes may last as long as the received
results satisfy the agent’s goals. They depend also on each agent’s intelligence and
willingness to cooperate [4, 7, 8].

Coalition is one form of cooperation. Agent coalition is defined as a group
of agents, which are willing to cooperate with each other in order to achieve the
desired goals. The methods for realization are defined by all the members through
negotiation. The goal that the coalition tends to achieve might not be the globally
optimal solution for all of them, but in many cases only to find the solutions that are
optimal for certain criteria or the Nash optimal solutions (the Nash optimal solution
is defined in [2, 9]). Formulation of coalition includes the following activities:

• Creating groups of agents for specific problems.

• Distributing the defined requirements to each coalition.

• Solving the optimization problems in each coalition or among coalitions.

There exist many possible ways to create and to search for optimal coalitions,
e.g. via negotiation, or using heuristic search algorithms. There are also several
well-known methods for making decisions while formulating coalitions such as game
theory, Markovian decision process, Fuzzy sets, etc. More details will be presented
in the next part.

Agent coalition is applicable in many application fields, essentially in manu-
facturing for optimizing production; e.g. a flexible manufacturing system (FMS)
consists of different types of production lines and each of them also has a num-
ber of production devices (PD-hardware agents) controlled by software agents (SW
agents). Joining of coalitions can effectively use the capacity of PDs and increase
the total profit of production [9, 10]. The next domain where coalitions are often
applied is planning of enterprises, business, etc. [6, 11]. The managers (considered
as agents) try to cooperate with others to improve the profit. In this case, joining
a coalition can bring additional effect and there is a possibility to eliminate the
performance of the other competitor agents out of the coalition.
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1.1 Our Contribution

The main issue that this paper addresses is to find the optimal configuration for
agent coalitions. The optimal configuration will fulfil each agent’s requirements and
maximizes the performance of the whole system. The first contribution is the in-
troduction of the coalition properties, which are useful in creating coalitions. The
next novelty presented in this paper is to solve the above-mentioned problem by
approximation. Using approximate values can accelerate the solving process. How-
ever, the achieved solutions might not be the best ones; we can specify the range of
the optimal solution on the basis of approximated results. The next contribution is
a proposition of four algorithms used for automatic negotiation to create coalitions
and to find the sub-optimal coalition structure. The fourth contribution is a propo-
sition of methods for solving the multi-parameter coalition problem, which is, to our
knowledge, quite new in this field.

The paper is organized as follows: Section 2 discusses the related work. Section 3
introduces the basic formulations related to agent’s coalitions and their properties.
Section 4 looks at the problem of searching for globally optimal and sub-optimal
solutions by approximation. Section 5 presents four methods for creating coalitions
and finding the sub-optimal coalition configuration via sequential regression making.
Section 6 introduces the multi-criterion coalition problem. Section 7 outlines some
open problems for future work.

2 RELATED WORK

The first task that this paper aims to solve is to find the optimal coalition configu-
ration, which maximizes the collective performance. The above problem has been
the subject of many papers, whose common goal was to create a group of interested
agents for solving specific problems. One of the main tools for solving is the game
theory. Game theory provides methods of calculation to define the best coalitions in
various types of problems. In particular, its application to multi-agent systems was
studied in [3]. The limits of its use are related to two underlying assumptions: (1) the
agents are generally considered as perfectly rational and (2) game theory focuses
generally on the value of the optimal solution and not on the most efficient method
to reach that solution. The next limit of many recent papers is that they have
focused mainly on superadditive coalitions [e.g. 3, 15]. Superadditivity means two
coalitions or agents can achieve better results by merging into one. However, many
applications might be classified as superadditive; this paper does not concentrate
on such a special case, but deals with the general coalitions where agents can gain
more or less if joining coalitions.

In [3], the optimal coalition configuration could be found by using a hierarchical
search, but the difference between the achieved solution and the optimal one could
be specified if coalitions are superadditive. For general case it is impossible to
assess the achieved solution. In [15] a mechanism for coalition formation that uses
cryptography techniques was proposed. An agent sets each coalition by a weight,
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which expresses a probability that it joins this coalition. The solving process is
realized in a random order that starts with the first agent, and successively it adds
one agent at a time to each coalition. However, this mechanism can be applied to
only small-sized multi-agent systems because of its combinatorial complexity due
to the calculation of all possible coalitions. [1] proposed a method for coalition
formation based on merging agents, but the error might be too large.

The first difference from the mentioned work is to reduce the high complexity
of the problem solving. This paper tries to solve it with the approximated data and
uses the achieved results to predict the range of the really optimal solutions.

The next issue that this paper addresses is to create the optimal coalition con-
figuration through negotiation. The research of many recent papers has focused on
negotiation between self-interested agents [2, 11, 16, 17]. The sequential process of
coalition formation is similar to the sequential process of trading where agents try to
reach a compromise by exchanging proposals and the final agreement usually is Nash
equilibrium [17]. [1] uses fuzzy sets for evaluating and choosing coalitions. In [11],
negotiation process was described by game theory as min-max problem between two
players. [2] focuses on achieving a compromise between agents within a negotiation
process, but the agent’s private goals have higher priority than the collective perfor-
mance. Similarly, [16] tries to find the Pareto optimum through negotiation, where
each agent can select the coalition into which it prefers to join.

The second difference from the above-mentioned papers is that this paper sup-
poses that each agent is able to know what other ones can gain, when they join
any coalitions (e.g. by sharing their utility functions). In addition, agent’s choice is
deterministic (whether to join or not) and there is the obligation for each agent to
concede within negotiation.

The last novelty presented in this paper that all the above-mentioned papers
have not dealt with is the multi-parameter’s coalition. In the following sections we
will discuss the new methods for solving the above-mentioned problems.

3 GENERAL DEFINITIONS AND FORMULATIONS
OF THE COALITION

First, let us introduce some general notations that will be used in the rest of this
paper. Then we will introduce and prove several important properties related to
agent coalitions and the general method for finding the globally optimal solution.

3.1 General Notifications

Let A = (A1, . . . , An) denote a set of n agents, and I denote a set of their index,
I = 1, . . . , n. A remark i ∈ I means agent Ai from set A; K ⊆ I denotes a subset
created by the agents from set A with index belonging to set K. Further notations
are: ∀i ∈ I,K ⊆ I .
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• The agent’s expected utility fi|i=1,...,n is a function mapping from a set of all
possible plans that the agent can apply to R+. It is used to assess the agent’s
performance.

• q∗i denotes a resulting utility for agent Ai if it works alone

• qKi denotes a resulting utility for agent Ai if it joins coalition K

• fi = q∗i if agent Ai works alone, or
fi = qKi if agent Ai joins coalition K

• FK denotes a resulting utility for agent coalition K ⊆ I and it is defined as
follows:

FK =
∑

i∈K

ci · fi,

where ∀i ∈ K, ci is a weight setting for agent Ai, and
∑k

i=1 ci = const. Generally,
all agents have the same priority; therefore function FK can be rewritten as
follows:

FK =
∑

i∈K

fi. (1)

In this case, ∀i ∈ [1, n], ci = 1. In the next part several definitions and important
properties of agent coalitions will be introduced.

3.2 The Properties of Agent Coalitions

Let us consider the optimal coalition as follows: Set K ⊆ I is an optimal coalition
if every experiment trying to separate it into a number of smaller coalitions will
decrease the value FK (defined in Equation 1).

Definition 1. A set K ⊆ I is an optimal coalition if

∑

i∈K

fi ≥
∑

Kj

∑

i∈Kj

fi, where K =
⋃

j

Kj . (2)

Remark (a special case): we consider that each agent itself is an optimal coalition,
because it cannot be divided into smaller subsets.

From Definition 1, the following theorem is derived:

Theorem 1. The configuration that maximizes value FI must consist of only opti-
mal coalitions.

Proof. Let set I be divided to m disjoint coalitions:

I =
m
⋃

j=1

Kj , and ∀i 6= j ∈ [1, m] Ki ∩Kj = {Ø}.

If any subset Ki∈[1,m] is not an optimal coalition, then from Definition 1 a man-
ner for reorganization of set Ki, Ki =

⋃

r K
i
r must exist, in which the new value
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of FKi
is larger than the current one. Then the configuration composed as I =

{
⋃m

j=1,j 6=i Kj}
⋃

r K
i
r will achieve a better resulting utility than the current one. Con-

frontation. 2

Further, let us introduce some notations that will be used in the following sec-
tions.

Definition 2. Let Si denote a set of coalitions, which can bring agent Ai a better
or equal resulting utility in comparison with the one that the agent can gain when
it works alone.

Si = {K ⊆ I | qKi ≥ q∗i } (3)

Definition 3. Let SK denote a set of coalitions that bring all the agents belonging
to set K a better or equal resulting utility in comparison with the one that the
agents can gain when each of them works alone.

SK = {Ko ⊆ I | ∀i ∈ K, qKo
i ≥ q∗i }. (4)

From these definitions the following results are derived.

Lemma 1.

1. If K1 ⊆ K2, then, SK1
⊇ SK2

.

2. SK1∪K2
⊆ SK1

∩ SK2
.

3. SK1
∩ SK2

⊆ SK1∩K2
.

Proof.

1. Let K0 be a coalition, which brings all members included in set K2 a better
or equal resulting utility in comparison with the one they can gain when each
of them works alone (K0 ⊇ K2). Clearly, this one brings each agent within
coalition K1 the same effects too. Thus, if K0 ∈ SK2

⇒ K0 ∈ SK1
, as a result

SK1
⊇ SK2

.

2. Let K0 ∈ SK1∪K2
; then K0 is a coalition that brings all the agents belonging to

sets K1 and K2 a better or equal resulting utility than when they work alone.
Thus, K0 ∈ SK1

and K0 ∈ SK2
. As a consequence K0 ∈ SK1

∩ SK2
. The lemma

is proved.

3. If K0 ∈ SK1
∩ SK2

, then K0 brings all the agents belonging to sets K1 and
K2 a better or equal resulting utility than when they work alone; consequently
it brings all the agents belonging to set K1 ∩ K2 the same effects too. Then,
K0 ∈ SK1∩K2

and SK1
∩ SK2

⊆ SK1∩K2
. The lemma is proved.

2

Consequence 1.

1. SK1∪K2
⊆ SK1∩K2

.
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2. SK1∪...∪Km
⊆ SK1

∩ . . . ∩ SKm
, where K1, . . . , Km ⊆ I .

3. SK1
∩ . . . ∩ SKm

⊆ SK1∩...∩Km
, where K1, . . . , Km ⊆ I .

Proofs are similar to those presented above.
Consequence 1 is just Lemma 1 extended for a general case. It is used to restrict

the area of exploration of SK1∪...∪Km
when single sets SK1

, . . . , SKm
are known.

Of course, implementation of all features of the real world behavior into the
mathematical model is quite difficult. To simplify we suppose that each agent is
willing to join a coalition if and only if it can gain a better or at least equal resulting
utility than when it works alone.

Assumption 1. Agent Ai joins coalition K ⇔ (qKi ≥ q∗i ).
We consider that this assumption is valid in the rest of this paper.

Definition 4. A coalition is acceptable if each agent in it can gain a better or at
least equal resulting utility than when the agent works alone.

With such an assumption the following theorem can be derived.

Theorem 2. A set K ⊆ I is an acceptable coalition (does not have to be optimal)
if and only if

K ∈

{

⋂

i∈K

Si

}

. (5)

Proof.

1. If K is an acceptable coalition, then ∀i ∈ K : qKi ≥ q∗i . Then, K ∈ Si, ∀i ∈ K.
As a result K ∈ {

⋂

i∈K Si}.

2. If K ∈
⋂

i∈K Si, then coalition K brings all agents belonging to this coalition
a better or at least equal resulting utility than when they work alone ⇒ set K
is an acceptable coalition (does not have to be optimal).

2

Consequence 2. If
⋂

αi∈I,i∈1,...,m Sαi
= {Ø}, then these agentsAα1

, . . . ,Aαm
cannot

be in one acceptable coalition.

Consequence 2 is used for checking a capability of creating acceptable coalitions
between specific agents.

The main task that this paper tends to solve is to find such a configuration of
set I that maximizes function FI defined by (1); in other words, to find a manner
dividing set I to subsets I =

⋃m
i=1Ki, where ∀i, j ∈ [1, m] Ki ∩ Kj = {Ø} so

FI =
∑n

i=1 fi is maximal. To resolve the stated task and to find the maximal value
of FI it is necessary to explore all possible configurations of set I . Let Mn denote
a set of all possible configurations of set I , where |I | = n; then it is possible to verify
that:

|Mn| =
n
∑

i=1

M(n, i),
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where M(n, i) is a number of variants allowing to decompose set I to i independent
subsets. For this value the following recursive equation is valid:

M(n, i) = M(n− 1, i− 1) + i ·M(n− 1, i). (6)

The first part in the right side of (6) is the number of configurations when {An}
is one subset. The second part is the number of configurations when An joins one
of i subsets. In [2] was proved that |Mn| ∼= O(nn).

In the next section a general method that allows achieving the optimal solution
is presented.

3.3 A Method for Finding the Globally Optimal Solution

The method presented in this section is based on the A∗ search algorithm, which
guarantees the globally optimal solution. Due to Theorem 1, searching will focus on
only optimal coalitions.

3.3.1 An Algorithm for Finding the Globally Optimal Solution (Sketch)

Phase 1

a. Search for sets {Si}i=1,...,n.

b. Search for optimal coalitions according to Definition 1. Let Kop denote a set
of such coalitions.

Phase 2 Use A∗ search algorithm to find the optimal configuration(s) that maxi-
mizes FI . I =

⋃m
j=1 Kj, where ∀j ∈ [1, m], Ki is an optimal coalition Ki ∈ Kop

and ∀i 6= j ∈ [1, m] Ki ∩Kj = {Ø}.

At first step each agent specifies its set Si|i=1,...,n (coalitions that it is willing to
join). Then they search for optimal coalitions, since the optimal solution consists
of only such coalitions. To reduce useless solutions, agents can use Consequence 2
for checking the agent capability of being in the same acceptable coalition. Phase 2
uses A∗ search algorithm to explore all possible configurations that consist of optimal
coalitions from set Kop; therefore the achieved solution will be the globally optimal
one.

The main difficulty is to solve Step 1.b. Since checking the optimality of coali-
tions has recursive character, Step 1.b can be executed according to a hierarchical
scheme. In the first level only coalitions of two members are examined (there are (n2 )
such coalitions), in each following level the sum of members in coalitions increases
by one. In level i, the number of all possible coalitions consisting of i+ 1 members
is ( n

i+1). Let K be coalition of i + 1 members in level i, K = {α1, . . . , αi+1} ⊆ I .
Set K is an optimal coalition if and only if the following condition is satisfied (the
proof is shown in [1]):

∑

j∈K

qKj ≥ QK1
+QK2

, ∀K1, K2 where K1 ∪K2 = K and K1 ∩K2 = {Ø}, (7)
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where function QK is defined as follows:

∀K ⊆ I, QK = arg max
K1,...,Km







m
∑

r=1

∑

j∈Kr

qKr

j







, (8)

where K =
⋃m

r=1Kr and ∀i 6= j ∈ [1, m] Ki ∩Kj = {Ø}.
It is clear that |K1| and |K2| < |K| = i + 1; then these values QK1

and QK2

could be taken from calculation in the previous levels. On the other hand, for
i + 1 members, there are 2i methods to decompose them into such form shown in
Equation (7). Thus, it is necessary to verify 2i-times to ensure whether this coalition
is optimal one or not. Finally, the total number of operations necessary to find all
optimal coalition will be: Mmax =

∑n−1
i=1 (

n
i+1) · 2

i.
Values ofMn andMmax are manageable for a small value n (see in Table 1, values

of Mn for n ≤ 10). For arbitrary value n this problem is known as a NP-hard prob-
lem; therefore it is necessary to turn to heuristic searching methods (e.g. iterative
improvement: genetic algorithm or iterative search: branch and bound, simulated an-

nealing, etc.), which are computationally efficient but which might guarantee only
sub-optimal solutions. Values qKi are fully independent and random; moreover, when
some values qKi change it is necessary to repeat the search process completely. For
that reason it is appropriate to approximate these values and to find sub-optimal
solutions with predictable errors. In the next section, a method based on the ap-
proximated principle, which has also manageable complexity, is presented.

4 CREATION OF COALITION CONFIGURATIONS
BY APPROXIMATION

The method presented in this section is based on the assumption that an average
value of each variable qKi |i∈[1,n],K⊆I can be calculated, although it might be altered
at any time. Instead of using the realistic values, agents will use the average values
to create coalitions.

4.1 Evaluation of Coalitions by Approximated Values

The basic idea of approximation is due to the fact that all the agents decide in-
dependently whether to join coalition or not (according to value qKi ); they are not
influenced by other agent decisions. Practically, the agents can be considered as
n independent unknown objects represented by variables qKi , i ∈ [1, n], K ⊆ I .
Moreover, qKi are stochastic variables that could be changed dynamically or ran-
domly. Therefore, it is more effective to work with approximated values than with
the realistic ones. Let qKi |k=1,...,n be the approximated resulting utility that agent Ai

can receive by joining arbitrary coalition with (k− 1) other agents, and it is defined
as follows:

∀k ∈ [1, n], then, qki =
1

mk

∑

∀K⊆I, where |K|=k

qKi , (9)
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where mk is the number of all coalitions consisting of k members including agent Ai:
mk = (n−1

k−1). This variable expresses the average utility that agent Ai can obtain
into k-member coalitions.

Let a set I be decomposed to m disjoint coalitions as follows:

I =
m
⋃

i=1

Ki, and ∀i 6= j ∈ [1, m] Ki ∩Kj = {Ø}, |Ki| = ki and
m
∑

i=1

ki. (10)

Then, from (1) it is possible to rewrite:

FI =
∑

Ki

∑

j∈Ki

qKi

j . (11)

Because of the independence between the agents, from Equation (11) the following
property for the average value of FI can be derived:

E(FI) = E





∑

Ki

∑

j∈Ki

qKi

j



 =
∑

Ki

∑

j∈Ki

E
(

qKi

j

)

=
∑

Ki

∑

j∈Ki

qkij . (12)

It is also assumed that an agent does not prefer one coalition to other ones; therefore,
the variables qKj have the same distribution. The variance of FI could be calculated
as follows:

Var(FI) = Var





∑

Ki

∑

j∈Ki

qKi

j



 =
∑

Ki

∑

j∈Ki

Var
(

qKi

j

)

. (13)

Combination of both the average value and the maximal variance allows predicting
the range of the optimal solution (e.g. using approximationmethod with the maximal
credibility).

Now the main goal is now to find such configuration of set I as shown in (10),
which maximizes the value E(FI) defined by Equation (12). Because each agent
has only n values qki , k ∈ [1, n], the search space will be reduced by many times
compared to when using realistic values.

4.2 Searching for the Optimal Coalition Configuration
with Approximated Values

In this section, a generic method resolving the task mentioned above is presented.
Let us consider an arbitrary configuration consisting of m coalitions with k1, . . . ,
km members, namely, n =

∑m
i=1 ki, ki, m < n. Theoretically, the number of such

configurations is

∆ =
n!

k1! · . . . · km!
, if k1 6= . . . 6= km, or (14)

∆′ =
n!

(r1kα
1 )! · . . . · (rαk

α
α)!

. (15)
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If
α
∑

i=1

ri = m and k1 = . . . = kr1(= kα
1 ) 6= kr1+1 = . . .

= kr1+r2(= kα
2 ) 6= . . . = km(= kα

α). (16)

Thus, it is necessary to examine ∆ (or ∆′) different configurations with the
same structure (a number of coalitions and sums of members in each coalition).
But in practice, a lot of configurations can be omitted and therefore the realistic
number of cases needed to be examined is not as high as it seems. To reduce useless
configurations, we introduce the following definition.

Definition 5. Let each agent use the expected values defined by Equation (9) and
let n =

∑m
i=1 ki, where ki, m ≤ n are integers. Then, the configuration I =

⋃m
i=1Ki,

where each coalition Ki|i=1,...,m consists of ki members, is stable if and only if each
attempt to exchange two agents in two different coalitions will decrease or achieve
the same E(FI).

Of course, the final solution that maximizes E(FI) belongs to these stable coali-
tion configurations. Therefore, the focus now is to find the stable coalition confi-
guration, when a sum of coalitions and numbers of members included in them are
known. Methods for finding stable coalition configurations will be presented in the
next section.

4.2.1 Greedy Algorithm for Finding Stable Coalition Configurations:
Special Case (GAS)

A number of coalitions (m) and numbers of members in each coalition
(k1, . . . , km) (n =

∑m
i=1 ki, ki|i=1,...,m, m ≤ n) are given. Let us consider the first case

when k1, . . . , km are different. Without loss of generality let us assume that
k1 > k2 > . . . > km and K1, . . . , Km are m disjoint coalitions consisting of k1,
. . . , km members, respectively, which create a stable configuration. From Defini-
tion 5 we infer that, if both the agents i ∈ K1 and j ∈ K2 are exchanged, the
value E(FI) will not increase. Thus:

∀i ∈ K1, j ∈ K2 : q
k1
i + qk2j ≥ qk1j + qk2i ⇐⇒ qk1i − qk2i ≥ qk1j − qk2j . (17)

Similarly, we can have

∀i ∈ K3, j ∈ K4 : q
k3
i + qk4j ≥ qk3j + qk4i ⇐⇒ qk3i − qk4i ≥ qk3j − qk4j (18)

etc.
Equation (17) could be explained in words as follows: If all the agents are sorted

according to value (qk1i − qk2i ), I ∈ I , from the largest to the smallest one, then the
agents in coalition K2 cannot be before the agents belonging to K1 (an example is
shown in Figure 1).

A situation as shown in Figure 2 may happen, where α agents (β from K1 and
(α−β) fromK2, respectively) have the same value qk1i −q

k2
i (α > β > 0). In this case,
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Fig. 1. The order of agents according to
(

qk1i − qk2i

)

the number of stable configurations could be higher by exchanging these α agents
from one coalition to another, but value E(FI) remains unchanged. Therefore, to get
value E(FI) it suffices to examine one of these configurations. A similar conclusion
could be made for agents from K3, . . . , Km.

Fig. 2. A special case when β agents from K1 and α − β agents from K2 have the same

value
(

qk1i − qk2i

)

On the basis of the above explanation we derive the following algorithm for
finding stable coalition configurations when coalitions have different dimensions.

Greedy Algorithm for finding stable coalition configurations –
Special case (GAS):
Input: m, k1, . . . , km, k1 > k2 > . . . > km.
Output: stable coalition configurations that maximize E(FI).

1. j = 1.

2. Choose (k2×j−1 + k2×j) arbitrary agents from the unselected ones.

3. Classify the selected agents according to value (q
k2×j−1

i − q
k2×j

i ), starting with
the largest.

4. Distribute k2×j−1 first members in this queue to coalition K2×j−1, the remaining
ones to coalition K2×j.

5. Indicate the selected agents (I = I\(K2×j−1 ∪K2×j)), j = j + 1 and return to

step 2 until j =
[

m
2

]

.

6. If j =
[

m
2

]

, calculate a value E(FI) of the obtained configuration and comparing
it with the best current one. Return to step 1.
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GAS shows a definite way to create coalitions to achieve stable configurations (in
Step 4). As a result the overall configurations to be examined is reduced many
times. The complexity of GAS is expressed by the following theorem.

Theorem 3. Given {m, k1, . . . , km are integers, and k1 > k2 > . . . > km,
∑m

i=1 ki = n}. Let be the actual number of configurations examined by GAS. ∆ de-
fined from (14) is the theoretical number of all possible configurations. Then

∆

∆GAS

≥
(k1 + k2)!

k1! k2!
×

(k3 + k4)!

k3! k4!
× . . .×

(k2×[m
2
]−1 + k2×[m

2
])!

k2×[m
2
]−1! k2×[m

2
]!

. (19)

Proof. (see Appendix 1) 2

Theorem 3 points out how many times faster GAS achieves a solution in com-
parison with the traditional search. Such acceleration allows resolving the above-
mentioned task during an acceptable time. The next part will deal with the general
case when many coalitions have the same dimension.

4.2.2 Greedy Algorithm for Finding Stable Coalition
Configurations General Case (GAG)

In general case, many coalitions might have the same size. Let us take the same
labels as in the previous part and consider m disjoint coalitions {K1, . . . , Km} with
corresponding k1, . . . , km members, which create a stable coalition configuration,
where k1 = . . . = kr1 6= kr1+1 = . . . = kr1+r2 6= . . . = kr1+...+rα,

∑α
i=1 ri = m. Let

denote:
kr1 = kα

1 , . . . , kr1+...+rβ = kα
β , . . . , kr1+...+rα = kα

α, and (20)

Kα
1 =

⋃

i=1,...,r1

Ki, . . . , K
α
α =

⋃

i=r1+...+rα−1+1,...,r1+...+rα

Ki.

Similarly to the previous part, it is possible to derive:

∀i ∈ Kα
1 , j ∈ Kα

2 : q
kα
1

i + q
kα
2

j ≥ q
kα
1

j + q
kα
2

i ⇐⇒ q
kα
1

i − q
kα
2

i ≥ q
kα
1

j − q
kα
2

j , (21)

etc.
Furthermore, the agents within Kα

i |i=1,...,α can move from one coalition to ano-
ther, because the agent’s approximated utility does not change, so value E(FI)
remains unchanged. These deductions lead to the following algorithm for finding
stable coalition configurations in a general case.

Without loss of generality, let assume that r1 × kα
1 ≥ r2 × kα

2 ≥ . . . ≥ rα × kα
α.

Greedy Algorithm for finding stable coalition configurations –
General case (GAG):
Input: m, k1, . . . , km, (k1 = . . . = kr1 6= kr1+1 = . . . = kr1+r2 6= . . . = kr1+...+rα).
Output: stable coalition configurations that maximize E(FI).
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1. j = 1.

2. Choose (r2×j−1×kα
2×j−1+r2×j×kα

2×j) arbitrary agents from the unselected ones.

3. Classify the selected agents according to value (q
kα
2×j−1

i − q
kα
2×j

i ), starting with
the largest one.

4. Distribute r2×j−1 × kα
2×j−1 first members in this queue to r2×j−1 coalitions in-

cluded in Kα
2×j−1, the remaining ones to r2×j coalitions those create Kα

2×j.

5. Indicate the selected agents (I = I\(Kα
2×−1 ∪ Kα

2×j)), j = j + 1 and return to
step 2 until j = [α

2
].

6. If j = [α
2
], calculate value E(FI) of the obtained configuration and compare it

with the best current one. Return to step 1.

The complexity of GAG is expressed by the following theorem.

Theorem 4. Given a general case (n =
∑m

i=1 ki, k1 = . . . = kr1(= kα
1 ) 6= kr1+1 =

. . . = kr1+r2(= kα
2 ) 6= . . . = kr1+...+rα(= kα

α),
∑α

i=1 ri = m). Let ∆GAG be the actual
number of configurations examined by GAG. ∆′ defined from (15) is the theoretical
number of all possible configurations. Then

∆′

∆GAG

≥
(r1 × kα

1 + r2 × kα
2 )!

(r1 × kα
1 )! (r2 × kα

2 )!
× . . .×

(r2×[α
2
]−1 × kα

2×[α
2
]−1 + r2×[α

2
] × kα

2×[α
2
])!

(r2×[α
2
]−1 × kα

2×[α
2
]−1)! (r2×[α

2
] × kα

2×[α
2
])!
. (22)

Proof. (see Appendix 2) 2

Both presented theorems show out the computational advantage of GAS and
GAG, which are used to find the stable coalition configurations when a number of
coalitions and their corresponding sizes are known. In the next section the method
for finding the optimal configurations that maximize E(FI) will be introduced.

4.2.3 An Algorithm for Finding Optimal Coalition Configurations
with Approximated Values (AAV)

This algorithm has the following three phases:
An Algorithm for finding optimal coalition configurations
with Approximated Values (AAV):
Input: n, qki |

k=1,...,n
i=1,...,n .

Output: The coalition configurations that maximize E(FI).

Phase 1 Decompose n to smaller integer numbers: n =
∑m

i=1 ki.

Phase 2 For each variant, use GAS or GAG, search for stable coalition configura-
tions.

Phase 3 Choose one of the achieved configurations that maximizes E(FI) for the
optimal solution.

It is clear what the goal of each phase is. However, to ensure that AAV is
realizable, the next section will discuss the complexity of this algorithm.
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4.3 Complexity and Prediction of Errors

When the number of coalitions and their sizes are known, the total number of con-
figurations necessary to examine can be calculated using Theorems 3 and 4. The
complexity of AAV depends also on the number of methods for decomposition of n
in Phase 1. Let Sumn be the number of methods for decomposition n. Value Sumn

can be calculated by the following recursive equations (proof will be given in Ap-
pendices 3 and 4):

Let sni be a number of variants for decomposition of n, where each element is
larger than or equal to i; then:

Sumn = sni = 1 + sn−1
1 + sn−2

2 + . . .+ s
n−[n

2
]

[n
2
] = 1 +

[n
2
]

∑

i=1

sn−i
i , (23)

where

∀i >
[

n

2

]

: sni = 1 and ∀n > 3 : sn[n
2
] = 2; and s21 = 2. (24)

∀i <
[

n

2

]

: sni = 1 +

[n
2
]

∑

j=i

s
n−j
j .

An example with 4 agents (n = 4):

Sum4 = 1 + s31 + s22 = 2 + 1 + s21 = 5.

In this case, overall configurations necessary to be examined to find max(E(FI))
are 5 (GAS and GAG are used to search in each variant of decomposition).

Table 1 shows the comparison between the number of configurations necessary
to be examined in searching for max(FI) and max(E(FI)) by applying Equations (6)
and (19 + 22 + 23 + 24) respectively.

Checking whether AAV has a polynomial complexity or not is very difficult.
However, the results in Table 1 show that using approximated values requests exa-
mining many times fewer instances in comparison with the traditional search for
max(FI). This fact confirms again the computational advantage of using approxi-
mated values in case when the number of agents is large and values qKi |i ∈ I,K ⊆ I

change frequently.

The difference between the solutions obtained by using approximated values
and the really optimal one can be calculated from value maxVar(FI) and by using
Appendix 5. According to Appendix 5 we can guess the probability that the absolute

difference |maxFI − maxE(FI)| ≤ δ ×
√

maxVar(FI) is larger than or equal to

(1− 1
δ2
), where δ is a positive real number used to access the prediction.

Comparison of both Equations (12) and (13) shows that the problem of a search
for maxVar(FI) is similar to the search for max(E(FI)). Therefore, maxVar(FI)
could be obtained by using AAV too.
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The number of
agents — n

Sumn The number of configu-
rations in searching for
max(E(FI))

Mn — The number of con-
figurations in searching for
max(FI)

4 5 5 15

5 7 7 52

6 11 16 203

7 15 40 877

8 22 97 4140

9 30 272 21147

10 42 688 115975

Table 1. Comparison of complexity in searching for maxE(FI) and maxFI

Despite the computational efficiency AAV does not consider agents personal
requirement during solving. In the next section, we introduce other methods, which
allow the agents to express their requirements within the search for solutions.

5 LINEAR REGRESSION ALGORITHMS TO CREATE
COALITION CONFIGURATIONS

This section introduces methods for finding sub-optimal configurations based on
automatic negotiation and the linear regression principle. In these methods, each
agent can select the preferable coalitions to join through negotiation. There are
many papers dealing with agent negotiation based on the game theory or other
ones and in which agents compete with each other with the purpose to improve own
profits. This paper differs from the traditional negotiation approaches in that agents
always aim at improving the collective performance. However, due to the practical
realization agents might have to be satisfied with sub-optimal solutions, which are
achieved by reducing a part of coalitions that are not so interesting for the agents.
We propose that agents calculate coalitions that they want to join in order to avoid
the complication of classification of reduced coalitions. Only the selected ones are
used for constructing the final configurations. We discuss these problems in this
section.

5.1 Agent Choices and their Influences to the Coalition Configurations

Due to the fact that sets of coalitions that agents are willing to join (Si|i=1,...,n)
might be very large, it is necessary to reduce them to manageable sizes. Each agent
can reduce coalitions that are not interesting for it, but in order to guarantee as
high quality of the final solutions as possible it should collaborate with other agents
before deciding to reduce. Naturally, each agent tends to join coalitions which bring
the best resulting utility, but when agent Ai chooses coalition K ⊆ I , it has also
to consider the decision of (|K| − 1) remaining agents included in this coalition.
If one of them refuses joining (e.g. this coalition does not fulfil its requirement),
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the coalition will not be successful. In order to achieve a compromise each agent
must concede something of its requirement. The familiar work with this paper is
Literature [2] is related to this work; there concession mechanisms were used in
negotiation process to achieve the Nash equilibrium. In this paper we do not deal
with the Nash equilibrium and assume that each agent decides definitely to join
or to refuse coalitions — the probability that it joins any coalition is only 1 or 0,
respectively.

Let us take a simple example for illustration.

A1 A2 A3

{A1, A2, A3} 1 2 5

{A1, A2} 2 3
{A1, A3} 3 3

{A2, A3} 6 2
{A1}, {A2}, {A3} 1 1 3

Table 2. An example with 3 agents and their expected resulting utility

Example 1. Let I = {1, 2, 3} be a set of three agents. Values of the resulting
utility that each agent can get when it joins any coalition or works alone are shown
in Tab. 2.

First, naturally, agents A1, A2, A3 choose coalitions {A1, A3}, {A2, A3} and
{A1, A2, A3}, respectively. It is easy to see that such a choice cannot be successful,
because the agents do not agree with each other.

This simple example demonstrates the necessity of making regressions in or-
der to achieve a compromise. Let us assume that each agent is willing to concede,
but the question is: which agent must concede and how much? In Example 1, if
agents A1 and A3 make a regression to agent A2 and choose such coalitions that
do not have a conflict with the A2’s choice, then possibly they can reach the op-
timal solution (configuration (A1, {A2, A3}) is the optimal solution since FI = 9 is
maximal). Simply, the A2’s choice depends strongly on the regression of agents A1

and A3.

The main task now is to find the optimal coalition configuration that consists
only of coalitions supported by all the members included in them and concurrently
maximizes FI . In the next part we present four methods for solving the formulated
task based on the linear regression principle.

5.2 Searching for the Sub-Optimal Coalition Configurations
On the Basis of the Linear Regression Principle

The methods presented here can be explained as follows: Each agent selects coali-
tions it prefers to join according to the resulting utility it can gain. The solutions
will consist only of these selected coalitions. Because all the agents have the same
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priority, all of them have to concede until any solution is achieved. We propose four
basic strategies for making regression, which could also combine one with others and
create more strategies applicable for various kinds of situations. The first two strate-
gies are: in each turn (1) the agent requirements are decreased by the same rate or
(2) by the same value. These strategies support parallel calculation and simultane-
ously allow the agents to calculate their favorite coalitions at once. The remaining
two strategies are based on the sequential negotiation scheme: in each turn (3) the
agent (or agents) with the highest requirement has to concede; or (4) sequentially
each agent (or several ones) makes regression. Before presenting these algorithms,
let us consider the following definition:

Definition 6. ∀i ∈ I , let v0i = maxK⊆I{q
K
i } be the maximal resulting utility that

agent Ai can gain and ∀0 < β ≤ v0i let Ωi
β = {K ⊆ I | qKi ≥ β} be a set of coalitions

in which agent Ai can gain more or at least β.

The main task is re-formulated as follows: ∀i ∈ I , let βi be the minimal require-
ment of Ai. The goal is to search for such coalition configuration I =

⋃m
i=1Ki which

satisfies the following conditions:

• ∀i ∈ [1, m] and ∀j ∈ Ki : Ki ∈ Ωj
βj
,

• FI is maximal.

The first condition guarantees that all the agents will support the final solution.
The second condition ensures that the achieved solution is the best one among all
candidates satisfying the first condition.

5.2.1 Automatic Negotiation Algorithms Based on Parallel Calculation

First, we propose two algorithms to automatically create coalitions based on parallel
calculation.

Both proposed SRC/SR algorithms support parallel processing, so the search
process can be accelerated by agents calculating sets Ωi

βi
simultaneously. Besides,

before starting Phase 2, agents can use Theorem 2 and Lemma 1 (in Section 3) to
remove useless coalitions, which do not satisfy at least one agent’s requirement. To
effectively resolve Step 1.b, each agent sorts out coalitions according to value qKi |

K⊆I
i∈I .

Since each agent can join maximally 2n−1 coalitions, the classification process will
have a complexity ∼= O(2n−1× (n− 1)× log2) by using the quick sort algorithm. At
any time when coefficient λ changes, each agent can immediately choose coalitions
that satisfy the new requirements.

Example 2. Let us continue with Example 1. From values in Table 2 we can
have: v01 = 3, v02 = 6, v03 = 5. Let us assume agents use SRC algorithm with
λ = 0.5; then the following sets are obtained: Ω1

1.5 = {{A1, A2}, {A1, A3}}, Ω
2
3 =

{{A1, A2}, {A2, A3}}, Ω
3
2.5 = {{A1, A2, A3}, {A1, A3}, {A3}}. Before starting Pha-

se 2, coalition {A2, A3} could be omitted from set Ω2
3, because it does not ap-

pear in set Ω3
2.5; i.e., agent A3 does not support this coalition {A1, A2, A3} (simi-

larly to coalition from set Ω3
2.5, which could also be omitted). The remaining sets



Optimal Creation of Agent Coalitions for Manufacturing and Control 71

the Same Rate of Conceding — SRC

Phase 1

a. Choose coefficient λ = 1.

b. ∀i ∈ I set βi = λv0i and find set
Ωi
βi
.

Phase 2

a. Search for solutions from sets Ωi
βi
,

i ∈ I. If any solution is found,
then store it for comparison.

b. Decrease coefficient λ and return
to step 1.b, if time does not ex-
pire. Stop otherwise.

the Same Regression — SR

Phase 1

a. Choose coefficient λ = 0.

b. ∀i ∈ I set βi = v0i − λ and find
set Ωi

βi
.

Phase 2

a. Search for solutions from sets Ωi
βi
,

i ∈ I. If any solution is found,
then store it for comparison.

b. Increase coefficient λ and return
to step 1.b, if time does not ex-
pire. Stop otherwise.

Fig. 3. An algorithm for creating optimal coalition configurations based on the Same Rate

of Conceding (SRC) and the Same Regression (SR)

for solving Phase 2 are: Ω1
1.5 = {{A1, A2}, {A1, A3}}, Ω2

3 = {{A1, A2}}, Ω3
2.5 =

{{A1, A3}, {A3}}. After examining all possible configurations consisting of the re-
maining coalitions the final solution is ({A1, A2}, {A3}). This is the best configura-
tion in the current situation supported by all the agents. Value FI of the solution
is 8 (however the maximal value of FI is 9).

Both above algorithms have an important property. When coefficient λ decreases
or increases (SRC or SR algorithm, respectively), all coalitions in the previous cycle
remain as candidates for solutions in the new cycle too. In other words, the more
agents concede the more coalitions satisfy their requirement, but not historical coali-
tion is reduced because of decreasing the requirement. That leads to the following
lemmas.

Lemma 2 (for SRC algorithm). Let FI |λ be the total resulting utility of the solu-
tion of the SRC algorithm when each agent has to concede λ-times from the initial
requirements. Then ∀λ1 > λ2 : FI |λ1

≤ FI |λ2
.

Proof. [outline] ∀λ1 > λ2, it is valid that ∀i ∈ I, βi|λ1
≥ βi|λ2

. ∀K ∈ Ωi
βi
|λ1

follows;
then K has to be in set Ωi

βi
|λ2

too. Consequently, ∀i ∈ I : Ωi
βi
|λ1
⊆ Ωi

βi
|λ2

, i.e. each
potential coalition configuration when λ = λ1 must also be a potential solution in
case λ = λ2 ⇒ FI |λ1

≤ FI |λ2
. 2

The following lemma can be inferred similarly:

Lemma 3 (for SR algorithm). Let FI |λ be the total resulting utility of the solution
of the SR algorithmwhen each agent has to reduce λ units of the initial requirements.
Then ∀λ1 > λ2 : FI |λ1

≥ FI |λ2.
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Proof. Similar as above. 2

The quality of achieved solutions of the presented algorithms compared to the
optimal one is expressed by the following theorems.

Theorem 5 (for SRC algorithm). Let λ0 < 1 be a value of coefficient λ when the
SRC algorithm achieves a solution for the first time. Let F sup

I be the total result-
ing utility of the solution of the algorithm and Fmax

I = max{FI} be the maximal
resulting utility of all possible configurations. Then,

λ0F
max
I ≤ F

sup
I ≤ Fmax

I .

Proof. F sup
I ≤ Fmax

I follows from definition of Fmax
I . Let us denote

vmax =
n
∑

i=1

v0i , (25)

then, Fmax
I ≤ vmax, because ∀i ∈ I, qKi ≤ v0i . On the other hand, each coalition that

an agent inserts into its set Ωi
βi
|i∈I always satisfies the condition ∀K ∈ Ωi

βi
|qKi ≥

βi = λ0v
0
i . Then, F

sup
I ≥ λ0vmax ≥ λ0F

max
I . The theorem is proved. 2

Similarly we can prove that the following theorem is valid too.

Theorem 6 (for SR algorithm). Let λ0 be a value of coefficient λ when the SR
algorithm achieves a solution for the first time. Let F sup

I be the total resulting utility
of the solution of the algorithm and Fmax

I = max{FI} be the maximal resulting
utility of all possible configurations. Then,

Fmax
I − nλ0 ≤ F

sup
I ≤ Fmax

I .

Proof. [outline] Similarly to the previous proof, F sup
I ≥ vmax − nλ0 ≥ Fmax

I − nλ0,
where vmax is defined by Equation (25). 2

Lemmas 2 and 3 show that if agents continue searching after the first solution was
found, the later solutions are always better than (or at least as good as) the current
one. We can infer Theorems 5 and 6 are also valid for the newly achieved solutions.
Value vmax could be identified easily; therefore the main goal is to identify λ0 in
order to predict the range of the optimal solution.

The difference between both algorithms is not too large. If values qKi are not
too different, the SRC algorithm is preferable; but, if values qKi are distributed
over a wide range, then the SR algorithm can be more suitable for use. A more
complicated situation occurs when agents have different distribution of values qKi ,
e.g. in Example 1, agent A1 might prefer to use the SRC algorithm, but for agent
A2 the SR algorithm is better. To overcome this problem we propose two other
algorithms, in which agents do not concede at once, but successively one or only
several ones at a time. The second modification is that agents do not have to concede
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the same value, but in each turn agent A1 can choose coefficient λ such that at least
one unselected coalition satisfies its new (reduced) requirement. The aim of the
first modification is to avoid useless investigation when agents are satisfied with the
achieved solutions. The second modification prevents unpractical regressions, which
do not bring improvements. The algorithms will be presented in the next section.

5.2.2 Automatic Negotiation Algorithms Based on Sequential Calculation

Two algorithms presented in this section are based on the assumption that only one
or a limited number of agents make regression in each cycle and the agents do not
have to concede equally. In both algorithms, instead of coefficient λ we use only βi.

Sequentially Making Regression — SMR

Phase 1

a. ∀i ∈ I choose coefficient βi = v0i .

b. ∀i ∈ I find set Ωi
βi
.

Phase 2

i = 1.

a. Search for solutions from sets
Ωj
βj
|j∈1,...,n. If any solution is

found, then store it for compar-
ison.

b. Decrease coefficient βi to: βi ←
max∀K⊆I{q

K
i | q

K
i < βi}.

c. Update set Ωi
βi

(call step 1.b),
then i = i + 1 if i < n, otherwise
i = 1 and return to step 2.a.

d. If time expires, then stop. Other-
wise return to Step 2.a.

Agents with the Highest Requirements

make Regression — HRR

Phase 1

a. ∀i ∈ I choose coefficient βi = v0i .

b. ∀i ∈ I find set Ωi
βi
.

Phase 2

a. Search for solutions from sets

Ωj
βj
|j∈1,...,n. If any solution is

found, then store it for compar-
ison.

b. Choose i|βi = max∀j=1,...,n βj.

c. Decrease coefficient βi to: βi ←
max∀K⊆I{q

K
i | q

K
i < βi}.

d. Update set Ωi
βi

(call step 1.b) and
return to step 2.a.

e. If time expires, then stop. Other-
wise return to Step 2.a.

Fig. 4. An algorithm for creating optimal coalition configurations based on the sequential
regression

Similarly to both previous algorithms, to accelerate the process solving before
starting Phase 2 each agent can sort out coalitions that it is willing join according
to value qKi . Both SMR and HRR are rather sequential search algorithms, which
perform the search in only certain directions (where agents reduce their require-
ments) at once. Prediction of the range of the optimal solutions could be calculated
similarly to the SR algorithm, but agents have to report how much they have al-
ready conceded. The complexity of the presented algorithms, however, cannot be
precisely specified, and is practically low, because the set of coalitions that agents
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are willing to join (always the best coalitions are selected at first) is not as huge as
the theoretical prediction.

Notation: Com = complete search of all variants.

Fig. 5. Graph 1: The simulation results with 6 and 8 agents

Fig. 6. Graph 2: The simulation results with 10 and 11 agents

Com SRC SR SMR HRR

6599 26 15 39 39
6328 40 22 47 49
5902 69 65 94 109
5809 126 61 152 152
5751 186 83 216 216
6600 24 15 12 12
5591 67 28 55 55
7052 57 35 69 75
6406 6 6 20 22
7198 173 82 197 197

Table 3. Number of cycles — 8 agents

In Graphs 1, 2 and Tables 3, 4 we present the comparison of all the proposed
algorithms and a complete search in order to ensure the optimality of the obtained
solutions.
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Com SRC SR SMR HRR

134399 43 33 72 67
170593 13 16 17 17
159661 110 52 186 186
119208 99 89 175 170
140611 38 26 70 70
137295 187 97 327 334
160283 109 65 211 211
161738 91 45 14 14
164538 43 57 65 72

176702 87 60 129 129

Table 4. Number of cycles — 10 agents

In these experiments values qKi were generated randomly from interval [0, 100].
Values in Tables 3 and 4 show how many steps the program had repeated until
the final result was found. These values may also be used for assessment of time
consumption of each method. In graphs of results, the results achieved by complete
searching always have the maximal values. The obtained results lead to the conclu-
sion that the complete search approach is applicable for a small number of agents
(up to 8), because the complexity is realizable. In case when the number of agents
is larger (9 and more), the presented methods have a negligibly low complexity in
comparison with the complete search approach, and they acquire results very close
to the optimal ones. Better results could be obtained by modifying Step 2.b in the
SMR algorithm. Instead of adding one coalition, an agent can attach more coalitions
to increase the chance to obtain the optimal solutions. Experiment results also show
that the number of examination steps to ensure that the obtained solutions are the
optimal ones increases exponentially (from about 150 000 in case with 10 agents up
to 1 million in case with 11 agents). Therefore, from the practical point of view it
is preferable to use the presented algorithms.

The presented algorithms can be combined with other heuristic search algo-
rithms to solve more complicated negotiation scenarios. In addition, the search
can be distributed to all agents for parallel processing to accelerate the negotiation
process. We will deal with these objects in future work.

6 MULTI-PARAMETER COALITION PROBLEMS

In practice the subject of joining coalitions often consists of various parameters,
which could also be mutually influenced. Complexity of the problem solving grows
exponentially with the number of parameters. This motivates us to search for me-
thods to reduce the solution space. One of these methods presented in [1, 21] is using
fuzzy sets for representation. The choice of each agent is represented by a fuzzy set,
and negotiation in order to create optimal coalitions is calculated by using fuzzy
operators. In this paper the multi-parameter coalition problem is represented by
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using linear vectors. In the next section the basic characteristics of multi-parameter
coalition problem will be presented.

6.1 Data Representation in the Multi-Parameter
Coalition Domain (MPCD)

Let s be a number of parameters and let qKi = {xK
i,1, . . . , k

K
i,s} be a vector of the ex-

pected resulting utility that agent Ai receives by joining coalition K ⊆ I . Similarly,
let q∗i = {x∗

i,1, . . . , x
∗
i,s} be a vector of the expected resulting utility that agent Ai

receives when it working alone. An operation ||qKi || =
√

∑s
j=1(x

K
i,j)

2 denotes a norm

of vector qKi . Similarly, let I be decomposed to a number of disjoint coalitions:
I =

⋃

i Ki, then the criterion function is defined as follows:

FI =
∑

Ki

∑

j∈Ki

qKi

j =
{

xF
1 , . . . , x

F
s

}

, (26)

where ∀r ∈ [1, s] : xF
r =

∑

Ki

∑

j∈Ki
xKi

j,r .
In order to compare two different configurations we introduce the following defi-

nition.

Definition 7. Given two coalition configurations Y and Z. We say Y is better than
or as good as Z if and only if: ||FI |Y || ≥ ||FI |Z ||.

Now the main task now is re-formulated as follows: to find the optimal coalition
configuration that maximizes ||FI ||.

To simplify, we consider that Assumption 1 is also valid here. Agent Ai is
willing to join coalitions K if it can gain more or at least as when working alone:
||qKi || ≥ ||q

∗
i ||. Definition 4 in Section 3.2 about acceptable coalitions is also valid in

the multi-parameter coalition domain. Sets Si|i=1,...,n are defined as follows: Si =

{K ⊆ I : ||qKi || ≥ ||q
∗
i ||}. With newly formulated sets Si|i=1,...,n we can prove that

the following lemmas hold too.

Lemma 4. Lemma 1 is also valid in the multi-parameter coalition domain (MPCD).

Lemma 5. Theorem 2 is also valid in the MPCD.

Proofs of Lemmas 4 and 5 are similar to Section 3.2.
The problem of finding the optimal multi-parameter coalition configurations

using linear vectors for representation is similar to the task introduced in Section 3
for one-parameter case, because the number of all possible coalitions remain un-
changed. Using properties of the vector norm leads to the following interesting
conclusion.

Lemma 6. max(||FI ||) ≤ max(
∑

Ki

∑

j∈Ki
||qKi

j ||), where is defined by (26).

Proof. [outline] Using properties of the vector norm. 2
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In practice the criteria might have a different importance degree. In this case
a vector of the resulting utility could be defined as: qKi = {ωi

1x
K
i,1, . . . , ω

i
sx

K
i,s},

where ωi
j is the weight by which agent Ai assesses its j-th parameter and ∀i ∈

[1, n],
∑s

j=1 ω
i
j = 1. Then, the vector’s norm is defined as:

||qKi || =

√

√

√

√

s
∑

i=1

(

ωi
jx

K
i,j

)2
. (27)

q∗i |i=1,...,n and FI can be defined similarly. It can be proved that Lemma 6 is
also valid for this case. In the next section we present methods for finding the
sub-optimal coalition configuration in the MPCD.

6.2 Methods for Finding Optimal Coalition Configurations in the MPCD

The methods presented here are extended from those which have been proposed for
solving the same problem in the one-parameter coalition domain. First, we shall
discuss how the approximate method could be extended in the MPCD. Then, we
shall present methods for automatic negotiation for finding the sub-optimal coalition
configurations in the MPCD.

6.2.1 Searching for the Sub-Optimal Coalition Configurations
with Approximated Values in MPCD

The method introduced in Section 4 can be extended for the use in the MPCD; to
simplify, we present only the basic changes here. Let us define qki as the approximate
utility when agent Ai joins an arbitrary coalition with (k − 1) other agents.

The AAV algorithm is applicable without changes in the MPCD, but instead
of one-parameter variables it will work with linear vectors. Since Equations (17)
and (18) are valid only for one-parameter coalitions, phase 2 of AAV has to use the
A∗ search algorithm in order to ensure that the achieved solutions have the maximal
value ||E(FI)||. Thus, the complexity of the algorithm is quite high; therefore we
turn rather to the second group of the algorithms presented in Section 5, which have
realizable dimensions in MPCD too.

6.2.2 Automatic Negotiation Algorithms for Creating Sub-Optimal
Coalition Configurations in MPCD

All methods presented in Section 5 are applicable in MPCD, but with the following
relevant modifications. Definition 6 is extended for the multi-parameter case as
follows:

Definition 8 (for SRC and SR algorithms). ∀i ∈ I , let v0i = {v1i , . . . , v
s
i } be

an s-dimension vector consisting of maximal values of individual parameters that
agent Ai can gain in all possible coalitions: ∀j ∈ [1, s] : v

j
i = max∀K⊆I(qKi )j.



78 T.-Tung Dang, B. Frankovič, I. Budinská

∀β ∈ Rs
+ let Ωi

β = {K ⊆ I | ∀j ∈ [1, s] : (qKi )j ≥ (β)j} be a set of coalitions

in which agent Ai can gain more or at least β where (β)j, (qKi )j express element j

of vector β and qKi respectively.

The SRC algorithm is applicable without any change. In the SR algorithm,
we have to use λ as an s-dimension vector (λ = {λ}s−times). With regard to the
similarity between Sections 5 and 6, the following lemmas will be presented without
proofs.

Lemma 7 (for SR extended algorithm). Lemma 3 is also valid in MPCD.

Theorem 7. Let λ0 = {λ0}s−times be the value of vector λ when the SR extended

algorithm achieves solution for the first time. Let F sup
I and Fmax

I be vectors of the
total resulting utilities of the solution of the SR extended algorithm and the optimal
solution, respectively ||Fmax

I || = max{||FI ||}. Then ||Fsup|| ≥ ||Fmax − nλ0||.

Proof. Similar to Section 5. 2

In order to extend SMR and HRR algorithms in MPCD we need the following
definition.

Definition 9 (for SMR and HRR algorithms). ∀i ∈ I , let v0i = maxK⊆I{||qKi ||} be
the maximal resulting utility that agent Ai can gain and let ∀0 < β < v0i Ωi

β =

{K ⊆ I : ||qKi || ≥ β} be a set of coalitions in which agent Ai can gain more or at
least β.

By using Definition 9, both the SMR and HRR algorithms could be applied in
MPCD without changes.

We have tested all proposed methods in two-parameter coalition domain. The
achieved results have confirmed the computational advantages of these methods in
MPCD. All the extended methods have manageable complexities and concurrently
reach very good final solutions (very close to the optimal ones).

There are other methods, which could be implemented in the negotiation process,
e.g. the agents can concede sequentially according to each parameter, not all at once;
or the SRC and SR algorithms can be extended in MPCD with using Definition 9,
etc. We will discuss this problem in later work.

7 CONCLUSION AND FUTURE WORK

This paper has dealt with the problem how to create the optimal coalition configu-
rations that maximize the collective performance. We have also shown and proved
the main properties and conditions related to creation of coalitions. Further, we
have proposed a method for finding sub-optimal solutions based on the approxi-
mate principle. Our method is appropriate for cases when the resulting utilities of
agents change randomly and dynamically. The method has very low complexity in
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the one-parameter coalition domain, and allows predicting the range of the globally
optimal solutions. In Section 5 we have introduced four methods for finding sub-
optimal coalition configurations that are based on the linear regression principle.
The presented algorithms have been tested in the one-parameter coalition domain,
and have achieved very good results. The achieved experiment results confirm the
computational advantages of our methods. Finally, in Section 6 we have discussed
the problem of creating coalitions when the resulting utilities consist of many pa-
rameters. All the methods proposed in Section 5 are extended for use in MPCD.
However, the approximate method in MPCD has not achieved the expected results;
we will improve it in our future work.

Because of large extent of the original problem solving, all methods which we
have introduced here concentrate on searching for sub-optimal solutions. However,
the achieved results of these algorithms allow us to calculate the range of the optimal
solutions. In Section 6 we have mentioned some problems that can influence the
accuracy of the final solutions in MPCD. One of them is inequality among single
parameters (through weights wi|i=1,...,s). When these values change, the problem
solving becomes very complicated; therefore adaptive algorithms could be helpful
for solving such cases. The next problem is creating optimal coalition configurations
among self-interested agents. We will deal with these problems in our future work.
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APPENDIX 1 — PROOF OF THEOREM 3

Due to the fact that for each selected subset of agents there is a definite manner,
which assigns where each agent has to be (Step 4). As a result the maximum number



Optimal Creation of Agent Coalitions for Manufacturing and Control 81

of cases necessary to be examined is the same as the number of possibilities to select
these subsets. Then:

∆GAS ≤
n!

(k1 + k2)! (k3 + k4)! . . . (k2[m
2
]−1 + k2[m

2
])!

(28)

if m is an even number. If m is an odd number,

∆GAS ≤
n!

(k1 + k2)! (k3 + k4)! . . . (k2[m
2
]−1 + k2[m

2
])! km!

. (29)

By comparing Equation (14) with (28, 29) the theorem will be proved.

APPENDIX 2

Similarly as in the previous proof, let K1 = {a
1
1, . . . , a

1
k1
}, . . . , Km = {am1 , . . . , a

m
km
}

be subsets of I , they create a stable coalition configuration for given decomposition
(as shown in (16)). LetKα

1 =
⋃

i=1,...,r1Ki, . . . , andKα
α =

⋃

i=r1+...+rα−1+1,...,r1+...+rαKi.
Clearly, |Kα

1 | = r1 · k
α
1 , . . . , |K

α
α | = rα · k

α
α and the members, which are in one of

sets {Kα
i }|i=1 to α can be exchanged arbitrarily. However, two members belonging to

two different sets of {Kα
i }|i=1 to α cannot be exchanged. This case is similar to the

previous one; therefore by applying the similar way to prove, we can show that this
theorem is valid too.

APPENDIX 3 — PROOF OF EQUATION (23)

• Sumn denotes the number of variants of decomposition n to individual subsets

• sni denotes the number of variants of decomposition n to individual subsets,
where each subset has at least i members: n =

∑m
j=1 kj where m ≤ n, ∀j : kj is

a integer and kj ≥ i.

Clearly, Sumn = sn1 . The variants of decomposition n to individual subsets can
be divided to the following categories:

a. The first category involves such variants, where k1 = 1 and ∀j > 1, kj ≥ 1. It is
easy to verify that the number of such variants is sn−1

1 .

b. The second category involves all variants, where k1 = 2 and ∀j > 1, kj ≥ 2. The
number of such variants is sn−2

1 , etc.

c. This process may continue up to [n
2
]-th category, where k1 = [n

2
] and ∀j > 1,

kj ≥ [n
2
]. The number of such variants is s

n−[n
2
]

[n
2
] .

d. For higher categories, where ∀j, kj > [n
2
], only one variant that satisfies this

condition exists: there is a case where m = 1 and k1 = n.
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Another problem that we have to prove that there is no such variant, which
would be in two different categories simultaneously. For example: A variant in the
first category (k1 = 1) cannot be in the second one, because in the second category
∀j, kj ≥ 2. We can show in a similar way that a variant in the second category
cannot be among variants in the third category, etc. Thus, the proposed categories
are disjunctive. Then:

Sumn = sn1 ≥ 1 + sn−1
1 + sn−2

2 + . . .+ s
n−[n

2
]

[n
2
] . (∗)

In addition, we will show that each variant of decomposition n to individual
subsets has to be in one of the proposed categories.

If m > 1, then 1 ≤ minj{kj} ≤ [n
2
]. Let δ = minj{kj}, then 1 ≤ δ ≤ [n

2
] and

from this point it follows: a variant n =
∑m

j=1 kj must belong to the δ-th category as
assumed above. If m = 1, then k1 = n and only one such variant exists. Therefore:

Sumn = sn1 ≤ 1 + sn−1
1 + sn−2

2 + . . .+ s
n−[n

2
]

[n
2
] . (∗∗)

By combination of (*) and (**) Equation (23) will be achieved.

APPENDIX 4 — PROOF OF EQUATION (24)

For i < [n
2
] we have to calculate value sni , which is the number of variants of decom-

position n to individual subsets, where each subset has minimal i members.
Similarly to the proof in the previous appendix we can separate variants in set sni

to single categories, beginning with k1 = i up to [n
2
]. The number of variants in each

category is exactly equal to s
n−j
j , where j = i up to [n

2
]. For another case where each

member is larger than [n
2
], only one variant satisfying this condition exists; namely,

m = 1 and k1 = n. Therefore, sni = 1 +
∑[n

2
]

j=1 s
n−j
j and Equation (24) is valid.

APPENDIX 5 — CHEBYSEV INEQUALITY

Let X be a random variable with a variance var(X); then ∀δ > 0 : P ({|X −E(X)|

≤ δ}) ≥ 1 − var(X)
δ2

.



Optimal Creation of Agent Coalitions for Manufacturing and Control 83

T.-Tung Dang was born in 1973. He received the Ing. (MSc.)

degree from the Slovak Technical University, Faculty of Electri-
cal Engineering and Informatics, Bratislava in 1997. Currently
he is working towards his PhD degree. His research interests
cover MAS, planning and scheduling, reasoning and knowledge
management.

Baltazár Frankovi�, a member of a scientific council of the
Technical University and its Faculty of Informatics; a member of
IFAC/IFIP TC (technical committee), scientific society ECCAI,
Slovak Society of Cybernetics and Informatics, J.von Neumann
Society Budapest; a member of the Central European Academy
of Sciences and Arts; .a member of the Editorial Board of seve-
ral journals, including Computing and Informatics. His current
research interests are in the field of modeling and simulation of
Flexible Manufacturing Systems (FMS) (where he is the head
of the project), by means of utilizing the adaptive and learning

control algorithms, applied knowledge representation and applied artificial intelligence.
The research in this area is aimed at creation of systems for the technology design veri-
fication. His publications include 5 books, 124 scientific papers from the area of optimal
control, adaptive and learning systems and utilization of artificial intelligence in discrete
events dynamic systems.

Ivana Budinsk�a graduated from Slovak Technical University,
Faculty of Electrical Engineering in 1987. She is with the Insti-
tute of Informatics, Slovak Academy of Sciences, Department of
discrete processes modelling and control. Her research interests
include DEDS, control theory, MAS.


