
Computing and Informatics, Vol. 22, 2003, 19–51

BOOM — A HEURISTIC BOOLEAN MINIMIZER

Petr Fǐser, Jan Hlavička†

Czech Technical University in Prague

Dept. of Computer Science and Engineering

Karlovo nám. 13

121 35 Prague 2, Czech Republic

e-mail: fiserp@fel.cvut.cz

Manuscript received 8 November 2002; revised 5 March

Communicated by Norbert Frǐstacký

Abstract. This paper presents an algorithm for two-level Boolean minimization
(BOOM) based on a new implicant generation paradigm. In contrast to all previous
minimization methods, where the implicants are generated bottom-up, the proposed
method uses a top-down approach. Thus, instead of increasing the dimensionality
of implicants by omitting literals from their terms, the dimension of a term is
gradually decreased by adding new literals. The method is advantageous especially
for functions with many input variables (up to thousands) and with only few care

terms defined, where other minimization tools are not applicable because of the
long runtime.

The method has been tested on several different kinds of problems and the results
were compared with ESPRESSO.

Keywords: Boolean minimization, logic functions, sparse functions, implicant ex-
pansion, group minimization, covering problem solution, mutations

1 INTRODUCTION

The problem of two-level minimization of Boolean functions is old, but surely not
dead. It is encountered in many design environments like PLA design, multi-level
logic design, design of control systems, or design of built-in self-test (BIST) equip-
ment, and also in software engineering, artificial intelligence problems, etc. The
systematic Boolean minimization methods mostly copy the structure of the original



20 P. Fǐser, J. Hlavička

method by Quine and McCluskey [1, 2], implementing the two basic phases known
as prime implicant (PI) generation and covering problem (CP) solution. Some more
modern methods, including the well-known ESPRESSO [3, 4], try to combine these
two phases because the problems encountered in up-to-date application areas often
require minimization of functions with a prohibitively large number of PIs. Also the
number of don’t care states is mostly very large, hence the modern minimization
methods must be able to take advantage of all don’t care states without enumerating
them.

One of the most successful Boolean minimization methods is ESPRESSO and
its later improvements. The original ESPRESSO generates near-minimal solutions,
as can be seen from the comparison with the results obtained by using alternative
methods — see Section 10. ESPRESSO-EXACT [5] was developed in order to
improve the quality of the results, mostly at the expense of much longer runtimes.
Finally, ESPRESSO-SIGNATURE [6] was developed, accelerating the minimization
by reducing the number of prime implicants to be processed by introducing the
concept of a “signature”, which is an intersection of all primes covering one minterm.
This in turn was an alternative name given to the concept of “minimal implicants”
introduced in [7]. Other Boolean minimization methods exploiting the implicit set
manipulation techniques were proposed in, e.g., [8, 9]. The idea of meta-products
was proposed, which allows the manipulation with extremely large sets of PIs.

A sort of combination of PI generation with solution of the CP, leading to a re-
duction of the total number of PIs generated, is also used in the BOOM (BOOlean
Minimizer) approach proposed here. An important difference between the ap-
proaches of ESPRESSO and BOOM is the way they work with the on-set received
as a function definition. ESPRESSO uses it as an initial solution, which has to be
modified (improved) by expansions, reductions, etc. BOOM, on the other hand,
uses the input sets (on-set and off-set) only as a reference that determines whether
a tentative solution is correct or not. This allows us to reduce the dependence on
the original function coverage. The second main difference is the top down approach
in generating implicants. Instead of expanding the source cubes in order to obtain
better coverage, BOOM reduces the universal n-dimensional hypercube until it no
longer intersects the off-set, while it covers as many 1-terms of the source function as
possible. This phase is denoted as a CD-Search and represents the most innovative
idea of the proposed method. Beyond this, some other commonly known algorithms
(Implicant Expansion, Covering Problem solution, etc.) are used together with the
CD-Search to obtain the final solution.

The algorithm is advantageous above all for functions with a large number of
input variables, where other minimization tools often fail to give a result in a rea-
sonable time.

Some features of the proposed method were published in several conference
proceedings [10–14]. BOOM was programmed in Borland C++ Builder and tested
under MS Windows 2000.

This paper has the following structure. After a formal problem statement in
Section 2, the structure of the BOOM system is described in Section 3 and the



BOOM — A Heuristic Boolean Minimizer 21

initial implicant generation through a coverage-directed search is described in Sec-
tion 4. The iterative use of the method is described in Section 5. The expansion of
the obtained implicants into prime implicants is given in Section 6. Section 7 briefly
describes the covering problem solution. The extension of the method to multi-
output functions is described in Section 8. Section 9 presents the use of mutations
that sometimes improves the result. Experimental results are presented and com-
mented in Section 10, and Section 11 evaluates the time complexity of the algorithm.
Section 12 concludes the paper.

2 PROBLEM STATEMENT

2.1 Boolean Minimization

Let us have a set of m Boolean functions of n input variables F1(x1, x2, . . . , xn),
F2(x1, x2, . . . , xn), . . . , Fm(x1, x2, . . . , xn), whose output values are defined by truth
tables. These truth tables describe the on-set Fi(x1, x2, . . . , xn) and off-set Ri(x1, x2,

. . . , xn) for each of the functions Fi. The terms not represented in the input field
of the truth table are implicitly assigned don’t care values for all output functions.
The don’t care set Di(x1, x2, . . . , xn) of the function Fi is thus represented by all the
terms not used in the input part of the truth table and by the terms to which don’t
care values are assigned in the ith output column. The don’t care values can be also
specified explicitly in the truth table. Listing the two care sets instead of an on-set
and a don’t care set, which is usual, e.g., in MCNC benchmarks, is more practical for
problems with a large number of input variables, because in these cases the size of
the don’t care set exceeds the two care sets. We will assume that n is of the order of
hundreds and that only a few of the 2n minterms have an output value assigned, i.e.,
the majority of the minterms are don’t care states. Moreover, using off-set in the
function definition simplifies checking whether a term is an implicant of the given
function. Without the explicit off-set definition, more complicated methods using,
e.g., tautology checking as in ESPRESSO [3], must be used, which slows down the
minimization process.

Our task is to formulate a synthesis algorithm which will for each output func-
tion Fi produce a sum-of-products expression Gi = g1i+g2i+ . . .+gti, where Fi ⊆ Gi

and Gi ∩ Ri = Ø. The expression T =
∑

m

i=1
ti should be kept minimal.

This formulation of the minimization process uses the number of product terms
(implicants) as a universal quality criterion. This is mostly justified, but it should
be kept in mind that the measure of minimality must correspond to the needs of
the intended application [16]. Thus, e.g., for PLAs, the number of product terms is
what counts, whereas the total number of literals has no importance. In some other
cases, like in custom design, the total number of literals and the output cost (the
number of inputs into all second-level OR gates), may be important. Hence we will
formulate the method in such a way that all criteria can be used on demand and
allow the user to choose among them.



22 P. Fǐser, J. Hlavička

2.2 Motivation

An example of a design problem with many input variables and many don’t care
states can be found in the design of built-in self-test (BIST) devices for VLSI circuits.
A very common method of BIST design is based on the use of a linear feedback shift
register (LFSR) generating a code whose code words are used as the input patterns
for the circuit under test. However, before being used as test patterns, these words
usually have to be transformed into the patterns needed for fault detection [17,
18]. The LFSR may have more than one hundred stages and the sequence used for
testing may have several thousands of states. Thus, e.g., for a circuit with 100 LFSR
stages and 1000 test patterns the design of the decoder is a problem with 100 input
variables and 2100 − 1000 don’t care states.

Another typical application is the design of control systems, where the circuit
is described by its behavior. Here, again, the truth table defines the values of the
outputs (or internal variables) for the corresponding values of the input variables
(internal variables).

3 BOOM STRUCTURE

Like most other Boolean minimization algorithms, BOOM consists of two major
phases: generation of implicants (PIs for single-output functions, group implicants
for multi-output functions) and the subsequent solution of the covering problem. The
generation of implicants for single-output functions is performed in two steps: first
the Coverage-Directed Search (CD-Search) generates a sufficient set of implicants
needed for covering the on-set of the source function, and the succeeding Implicant

Expansion (IE) phase converts them into PIs.

Multi-output functions are minimized in a similar manner. Each of the output
functions is first treated separately; the CD-Search and IE phases are performed
in order to produce primes covering all output functions. However, to obtain the
minimal solution, we may need implicants of more than one output function that are
not primes of any (group implicants). Here, Implicant Reduction takes place. Then
the Group Covering Problem is solved and Output Reduction is performed. Figure 1
shows a block diagram of the BOOM system, where each block corresponds to one
minimization step and the data sets described between these blocks correspond to
the products of these steps.

The BOOM system may improve the quality of the solution by repeating the
implicant generation phase several times and recording all different implicants that
were found. At the end of each iteration we have a set of implicants that is sufficient
for covering all the output functions. In each of the following iterations, another
sufficient set is generated and new implicants are added to the previous ones (if the
solutions are not equal). This process is treated more closely in Section 5.



BOOM — A Heuristic Boolean Minimizer 23

CD-Search

?
Implicants

Implicant Expansion

?
PIs

Implicant Reduction

?
Group Implicants

Covering Problem Solution

?
Necessary Implicants

Output Reduction

?
Minimum Cover

Fig. 1. Structure of the BOOM system

4 COVERAGE-DIRECTED SEARCH

4.1 Basis of the Method

The idea of combining implicant generation with the solution of the covering problem
was the basis of the Coverage-Directed Search (CD-Search) method used in the
BOOM system. This consists in a search for the most suitable literals that should
be added to some previously constructed term. Thus, instead of increasing the
dimension of an implicant starting from a 1-minterm, we reduce an n dimensional
hypercube by adding literals to its term, until it becomes an implicant of Fi. This
happens at the moment when the resulting hypercube does not intersect with any
0-term.

The search for suitable literals that should be added to a term is directed to-
wards finding an implicant that covers as many 1-terms as possible. To do this, we
start implicant generation by selecting the most frequent input literal from the given
on-set, because the (n − 1) dimensional hypercube covering the most 1-minterms
is described by the most frequent literal appearing in the on-set. The (n − 1) di-
mensional hypercube found in this way may be an implicant, if it does not intersect
with any 0-term. If there are some 0-minterms covered, we add another literal and
verify whether the new term already corresponds to an implicant by comparing it
with 0-terms that can intersect with this term. We continue adding literals until an
implicant is generated, then we record it, remove the 1-terms that are covered by
this term, and start searching for other implicants.

During the CD-Search, the key factor is the efficient selection of literals to be
included into the term under construction. After each literal selection we temporari-
ly remove from the on-set the terms that cannot be covered by any term containing



24 P. Fǐser, J. Hlavička

the selected literal. These are the terms containing that literal with the opposite
polarity. In the remaining on-set we find the most frequent literal and include it into
the previously found product term. Again we compare this term with 0-terms and
check if it is an implicant. After obtaining an implicant, we remove from the original
on-set those terms that are covered by this implicant. Thus we obtain a reduced
on-set containing only yet uncovered terms. Now we repeat the procedure from the
beginning and apply it to these terms, selecting the most frequently used literal,
until another implicant is generated. In this way we generate new implicants, until
the whole on-set is covered. The output of this algorithm is a set of product terms
covering all 1-terms and not intersecting with any 0-term. This algorithm is greedy
and thus the obtained implicants need not be prime. In order to expand them into
primes the IE phase must be performed after the CD-Search.

The basic CD-Search algorithm for a single-output function can be described
by the following function in pseudo-code. The inputs are the on-set (F) and the
off-set (R); the output is the sum of products (H) that covers the given on-set.

Algorithm 1 (The CD-Search).
CD Search(F, R) {
H = Ø // H is being created
do
F′ = F // F ′ is the reduced on-set
t = true // t is the term in progress
do
v = most frequent literal(F′)
t = t.v

F′ = F′ − cubes not including(t)
while (t ∩ R 6= Ø)
H = H ∪ t

F = F− F′

until (F == Ø)
return H

}

4.2 Immediate Implicant Checking

When selecting the most frequent literal, it may happen that two or more literals
have the same frequency of occurrence. In these cases we either select one at random
or we must apply another decision criterion — namely the immediate implicant
checking. The idea consists in constructing terms as candidates for implicants by
multiplying all newly selected literals (those with the same frequency) by the pre-
viously selected one(s). Among these terms we select only the implicants (if any)
and reject the rest. When there are still more possibilities to choose from, we select
one at random.



BOOM — A Heuristic Boolean Minimizer 25

Sometimes this feature prevents a term from being unnecessarily prolonged,
because it would have to be shortened during the IE. The effects of using this
additional criterion are the following:

• it reduces the runtime of CD-Search and the whole minimization

• it reduces the number of PIs that are generated.

This can be illustrated by Table 1. A single-output function with 20 input
variables and 500 defined terms was minimized in 1000 iterations. In the first ex-
periment, immediate implicant checking was not used, while in the second one it
was.

not used used

Total CD-Search time [s] 318,9 265,1

Total minimization time [s] 6688,3 4782,8

Number of PIs found 2719 21741

Table 1. Immediate implicant checking effects

4.3 CD-Search Example

Let us have a partially defined Boolean function of ten input variables x0, . . . , x9

and ten defined minterms given by a truth table Table 2. The 1-minterms are
highlighted.

var: 0123456789

0. 0000000010 1

1. 1000111011 1

2. 0000011001 1

3. 1111011000 0

4. 1011001100 0

5. 1111000100 1

6. 0100010100 0

7. 0011011011 0

8. 0010111100 1

9. 1110111000 1

Table 2

As the first step we count the occurrence of literals in the 1-minterms. Lines “0”
and “1” in Table 3 give the counts of x′

i
and xi literals respectively. In this table we

select the most frequent literal.



26 P. Fǐser, J. Hlavička

var: 0123456789

0. 3435322444

1. 3231344222

Table 3

The most frequent literal is x′

3
with five occurrences. This literal alone describes

a term that is not an implicant, because it covers the 6th minterm (0-minterm) in the
original function. Hence another literal must be added. When searching for the next
literal, we can reduce the scope of our search by suppressing 1-minterms containing
the selected literal with the opposite polarity (shaded dark in Table 4). An implicant
containing a literal x′

3
cannot cover the 5th minterm, because it contains the x3 literal.

Thus, we temporarily suppress this minterm. In the remaining 1-minterms we find
the most frequent literal.

var: 0123456789

0. 0000000010 1

1. 1000111011 1

2. 0000011001 1

3. 1111011000 0

4. 1011001100 0

5. 1111000100 1

6. 0100010100 0

7. 0011011011 0

8. 0010111100 1

9. 1110111000 1

var: 0123456789

0: 343-211433

1: 212-344122

Table 4

As there are several literals with maximum frequency of occurrence 4 (x′

1
, x5,

x6, x
′

7
), the second selection criterion must be applied. We use these literals ten-

tatively as implicant builders and create four product terms using the previously
selected literal x′

3
: x′

3
x′

1
, x′

3
x5, x

′

3
x6, x

′

3
x′

7
. Then we check which of them are already

implicants. The term x′

3
x5 is not an implicant (it covers the 6th minterm), so it

is discarded and among the remaining three terms one is selected at random, e.g.,
x′

3
x6. This implicant is stored and the search continues.
The search for literals of the next implicants is described in Table 5. We omit

minterms that are covered by the selected implicant x′

3
x6 (dark shading) and select

the most frequent literal in the remaining minterms.
As seen in the lower part of Tab. 5, we have four equal possibilities, so we choose

one randomly — e.g. x′

5
. In a similar way we can find another literal (x′

6
) needed to



BOOM — A Heuristic Boolean Minimizer 27

var: 0123456789

0. 0000000010 1

1. 1000111011 1

2. 0000011001 1

3. 1111011000 0

4. 1011001100 0

5. 1111000100 1

6. 0100010100 0

7. 0011011011 0

8. 0010111100 1

9. 1110111000 1

var: 0123456789

0: 1111222112

1: 1111000110

Table 5

create an implicant covering the remaining two 1-minterms.
The resulting expression covering the given function is x′

3
x6 + x′

5
x′

6
.

4.4 Weights

The fact that the input file may contain both 1-minterms and 1-terms of higher
dimension may complicate the search for the most frequent literal. In fact, every
term with k don’t care input values (representing a k dimensional hypercube) might
be replaced by 2k minterms, thus increasing the occurrence of the literals used in the
original term 2k times. Strictly speaking, each of these literals should be assigned
a weight corresponding to this factor. This is, however, not feasible, because for
functions with several hundreds of input variables the number of vertices of any
hypercube may reach astronomic values. Different approaches to the solution of this
problem have been evaluated and tested. However, the best results were obtained
when no weights were assigned to the literals in connection with the dimensions of the
input terms. This can be explained to some extent by the fact that when searching
for the proper literal for inclusion, the algorithm does not try to cover maximum
1-minterms, but the maximum number of 1-terms in the function definition.

5 ITERATIVE MINIMIZATION

Most current heuristic Boolean minimization tools use deterministic algorithms.
The minimization process then always leads to the same solution, never mind how
many times it is repeated. On the contrary, in the BOOM system the result of
minimization depends to a certain extent on random events, because when there



28 P. Fǐser, J. Hlavička

are several equal possibilities to choose from, the decision is made randomly. Thus
there is a chance that repeated application of the same procedure to the same
problem would yield different solutions and thus we can pick out the best solution.
Moreover, the PIs and group implicants can be cumulated during the process and
afterwards the CP solved using all of them, which enables us to reach a better final
result.

5.1 The Effect of Iterative Approach

The iterative minimization concept takes advantage of the fact that each iteration
produces a new set of prime implicants sufficient for covering all 1-terms of all output
functions. This set of implicants gradually grows until a maximum reachable set is
obtained. The typical growth of the size of a PI set as a function of the number
of iterations is shown in Figure 2 (thin line). This curve plots the values obtained
during the solution of a problem with 20 input variables and 200 care minterms.
Theoretically, the more primes we have, the better the solution can be found after
solving the covering problem, but the maximum set of primes is often extremely
large. In reality, the quality of the final solution, measured by the number of literals
in the resulting SOP form, improves rapidly during the first few iterations and then
remains unchanged, even though the number of PIs grows further. This fact can be
observed in Figure 2 (thick line).

Fig. 2. Growth of PI number and decrease of SOP length during iterative minimization



BOOM — A Heuristic Boolean Minimizer 29

It is obvious from the curves in Figure 2 that selecting a suitable moment T1
for terminating the iterative process is of key importance for the efficiency of the
minimization. The approximate position of the stopping point can be found by
observing the relative change of the solution quality during several consecutive ite-
rations. If the solution does not change during a certain number of iterations (e.g.,
twice as many iterations as were needed for the last improvement), the minimization
is stopped. The amount of elapsed time may be used as an emergency exit for the
case of unexpected problem size and complexity.

The iterative minimization of a group of functions Fi (i = 1, 2, . . . , m) can be
described by the following pseudo-code. The inputs are the on-sets Fi and off-
sets Ri of the m functions, and the output is a minimized disjunctive form G =
(G1, G2, . . . , Gm).

Algorithm 2 (Minimization of a group of functions).
BOOM(F[1..m], R[1..m]) {
G = Ø
do
I = Ø
for (i = 1; i ≤ m; i++)
I ′ = CD Search(F[i], R[i])
Expand(I ′, R[i])
Reduce(I ′, R[1..m])
I = I ∪ I ′

G′ = Group cover(I , F[1..m])
Reduce output(G′, F[1..m])
if (Better(G′, G)) then G = G′

until (stop)
return G

}

5.2 Accelerating Iterative Minimization

When the CD-Search phase is being repeated, identical implicants are quite often
generated in different iterations. These are then passed to the Implicant Expansion
phase (see Section 6), which might be unnecessarily repeated. To prevent this, all
implicants that were ever produced by the CD-Search are stored in the I-buffer
(Implicant buffer). A diagram of the whole minimization algorithm for a multi-
output function is shown in Figure 3.

Each newly generated implicant is first looked up in the I-buffer and, if it is
already present, its further processing is stopped. Otherwise it is stored in both the
I-buffer and E-buffer (Expansion buffer). The E-buffer serves as storage of implicants
that are candidates for expansion into PIs. After expansion, they are removed from
the E-buffer. Then they are reduced to group implicants and, after duplicity and



30 P. Fǐser, J. Hlavička

Fig. 3. Iterative minimization schematic plan

dominance checks, the newly created group implicants are stored in the R-buffer
(Reduced implicants buffer). Finally, the covering problem is solved using all the
implicants from the R-buffer. For multi-output functions there are separate I- and
E-buffers for each output. The R-buffer is common.

The main implementation requirement for the I-buffer is its high look-up speed,
enhanced especially by early detection of the absence of a term. The buffer is
structured as a ternary tree with depth n. During the search in the tree, the direction
at the kth level is chosen according to the type of occurrence (0,−, 1) of the kth

variable in the searched term. The presence of an implicant is represented by the
existence of its corresponding leaf. The tree is dynamically constructed during the
addition of implicants into the buffer. An example of such a tree for n = 3 is
shown in Figure 4. The buffer contains implicants 0−0, 10− and 11−. If, e.g.,
an implicant 0−1 is looked for, the search will fail in the node 0−, where no path
leading to 0−1 is present.

0

0−

0−0

10 11

10− 11−

1
��

s

@@s

��

s
��

s

@@s s

s ss

Fig. 4. I-buffer tree structure

6 IMPLICANT EXPANSION

As mentioned above, the implicants constructed during the CD-Search need not be
prime. To reduce the number of implicants needed to cover all 1-terms of the given
function, we have to increase their size by IE, which is done by removing literals
(variables) from their terms. When no literal can be removed from the term any
more, we get a prime implicant (PI).

There are basically two problems to be solved in connection with implicant
expansion. One of them is the mechanism that effectively checks whether a tentative
literal removal is acceptable. The other is the selection of the literals and the order
in which they are to be removed from the implicant term. First let us discuss the
checking mechanism.



BOOM — A Heuristic Boolean Minimizer 31

6.1 Checking the Removal of a Literal

Removing a variable from a term doubles the number of minterms covered by the
term. The newly covered minterms may be 1-minterms or DC-minterms, but none
of them should be a 0-minterm. In BOOM, individual literals are tried for removal
and checked whether the expanded term does not intersect the off-set (therefore the
DC terms need not be enumerated explicitly). If a non-empty intersection with a 0-
term is found, the removal is rejected. The checking is done by a simple comparison
of the term with all the off-set terms.

6.2 Expansion Strategy

The second problem is the selection strategy for the literals to be removed. The
expansion of one implicant may yield several different prime implicants. To find
them all, we have to try systematically to remove each literal, whereas the order
of the literals selected plays an important role. Trying all possible sequences of
literals to be removed will be denoted as an Exhaustive Implicant Expansion. Using
recursion or queue, all possible literal removals can be systematically tried until all
primes are obtained. Unfortunately, the complexity of this algorithm is exponential.
Hence this method is usable only in problems with up to 20 input variables.

There exist several other IE methods differing in complexity and quality of
results obtained. Some of them that are used in BOOM are described below.

The simplest one, namely a Sequential Expansion, systematically tries to remove
from each term all literals one by one, starting from a randomly chosen position.
Every removal is checked against the off-set as above, but if the removal is successful,
we make it permanent. If, on the contrary, some 0-minterm is covered, we put the
literal back and proceed to the next one. After removing all possible literals we
obtain one prime implicant covering the original term. This algorithm is greedy,
i.e., we stay with one PI even if there is more than one PI that can be derived from
the original implicant. The complexity of this algorithm is linear with the number
of input variables and the number of processed terms.

A sequential expansion obviously cannot reduce the number of product terms,
but it reduces the number of literals. The experimental results have shown that this
reduction may reach approximately 25%.

With a Multiple Sequential Expansion we try all possible starting positions and
each implicant thus may expand into several PIs. The upper bound of the number
of PIs that can be produced from one implicant is n− d, where n is the number of
input variables and d is the dimension of the original implicant. The complexity of
this algorithm is O(n · p), where p is the number of processed terms.

6.3 Evaluation of Expansion Strategies

The properties of the proposed IE methods and their influence on the minimization
process (runtime and quality of the final solution) will be discussed in this section.



32 P. Fǐser, J. Hlavička

Figure 5 shows the time of the minimization of a single-output function of 30 in-
put variables and 500 defined minterms as a function of the number of iterations.
The growth for the sequential expansion is linear, which means that an equal time
is needed for each iteration. The time for the multiple sequential expansion and the
exhaustive expansion grows faster at the beginning and then turns to linear with
a slower growth. At this point the CD-Search no longer produces new implicants
and thus the IE and the following phases are not executed. This causes simple
sequential expansion, which is seemingly the fastest, to become the slowest after
a certain number of iterations.

Figure 6 illustrates the growth of the PI set as a function of time. We can
see that Sequential Expansion achieves the lowest values, although it is the fastest
implicant expansion method. However, when this method is used we cannot take
advantage of the I-buffer. The implicants are repetitively expanded, even if they
have already been expanded in all possible ways. The two other methods achieve
higher values, because they put an implicant into the E-buffer only once and then
they are blocked by the I-buffer. Hence when the same implicants are generated
repetitively by the CD-Search, they are not processed any more, which speeds up the
whole minimization. We can see that the most complex method, namely exhaustive
expansion, produces PIs at the fastest rate.

Practice shows that the more complex IE methods are advantageous for functions
with large care sets, where the number of implicants in the final solution is big, while
the simplest sequential expansion is better for very sparse functions.

0 1000 2000 3000 4000 5000

0

500

1000

1500

2000

Exhaustive Expansion

Multiple Sequential Search

Sequential Search

T
im

e
[s

]

Iterations

Fig. 5. Growth of time for different IE methods



BOOM — A Heuristic Boolean Minimizer 33

0 2000 4000 6000 8000 10000

0

1000

2000

3000

4000

Multiple Sequential Search
Exhaustive Expansion

Sequential Search

P
ri
m

e
s

Time [s]

Fig. 6. Growth of PIs for different IE methods

7 SOLUTION OF THE COVERING PROBLEM

We saw in subsection 5.1 that even a small subset of PIs may give the minimum solu-
tion. However, the quality of the final solution strongly depends on the CP solution
algorithm. With a large number of PIs it is impossible to obtain an exact solution
and thus some heuristic must be used. Here the large number of implicants may
misguide the CP solution algorithm and thereby lead to a non-minimal solution.

An exact CP solution is mostly rather time-consuming, especially when it is
performed after several iterations during which many implicants had accumulated.
In this case, a heuristic approach is the only possible solution. Out of several possible
approaches we used two. The first one, denoted as the LCMC cover (Least Covered,
Most Covering) is a common heuristic algorithm for solution of the covering problem.
The implicants covering minterms covered by the lowest number of other implicants
are preferred. If there are more than one such implicants, implicants covering the
highest number of yet uncovered 1-minterms are selected.

More sophisticated heuristic methods for CP solution are based on computing
the contributions (scoring functions) of terms as a criterion for their inclusion into
the solution [19, 20, 21]. Such a method is also used in BOOM as we found it very
effective and not too time-consuming.



34 P. Fǐser, J. Hlavička

8 MINIMIZING MULTI-OUTPUT FUNCTIONS

To minimize multi-output functions, only a few modifications of the algorithm must
be done.

At the beginning, each of the output functions Fi is treated separately, and
the CD-Search and IE phases are performed. After that, we have a set of primes
sufficient for covering all m functions. However, for obtaining the minimal solution
we may need implicants of more than one output function that are not primes of
any Fi. Here the next part of the minimization — Implicant Reduction (IR) finds
place. After the IR the group covering problem is solved.

Its solution is a set of implicants needed to cover each of the output functions
F1, . . . , Fm. These implicants are assigned to the individual output functions, so
they do not intersect the functions’ off-sets. However, to generate the required out-
put values, some of these implicants may not be necessary. These implicants would
create redundant inputs into the output OR gate. Sometimes this is harmless (e.g. in
PLAs); moreover it could prevent hazards. Nevertheless, for hardware-independent
minimization the redundant outputs should be removed. This is done at the end of
the minimization by solving m covering problems for all m functions independently.
This phase corresponds to ESPRESSO’s MAKE SPARSE procedure.

8.1 Implicant Reduction (IR)

All obtained primes are tried for reduction by adding literals in order to become
implicants of more than one output functions. The method of implicant reduction
is similar to the CD-Search. Literals are sequentially being added to the previously
obtained implicants until there is no chance that the implicant will be used for
more output functions. Preferably, literals that prevent intersecting with most of
the terms of the off-sets of all F1, . . . , Fm (i.e., yielding reduced terms that cover
the least zeros in all the functions) are selected. When no further reduction leads
to any possible improvement, the reduction is stopped and the term is recorded.
A term that no longer intersects with the off-set of any Fi becomes its implicant. All
implicants that were ever found are stored and output functions are assigned to them.
Then simple dominance checks are performed in order to eliminate implicants that
are dominated by other implicants. Figure 7 shows the typical growth of the number
of group implicants (non-primes) as a function of the number of iterations. Here the
function of 13 input variables, 13 output variables and 200 defined terms was used
for demonstration. We can see that the number of the reduced implicants first grows
rapidly, but then it falls to approx. 15% of the maximum value. This is due the fact
that new prime implicants are being constantly produced and they absorb most of
the previously generated group implicants in the preliminary dominance checks.

When group implicants are generated, the Group Covering Problem is solved
using the same heuristic as described in Section 7.



BOOM — A Heuristic Boolean Minimizer 35

0 200 400 600 800 1000 1200

50

100

150

200

250

300
N

o
n
-p

ri
m

e
s

Iterations

Fig. 7. Growth and fall of the number of non-primes

9 MUTATIONS

The heuristics used to implement individual steps of this procedure are based on
a study of the statistical properties of the given Boolean functions. In some cases
this selection criterion may prevent reaching the minimum solution. In other words,
there may exist implicants that are unreachable by a strict CD-Search, although
they are necessary for obtaining the minimum solution. In such cases mutations,
implemented as a random choice used in place of a deterministic decision, may be
of help. These mutations may be used in several places in the minimization process,
namely in the CD-Search and IR phases. This section will investigate the usefulness
of the mutations, i.e., the quality of the solution obtained and the time needed to
find the solution.

During the strict CD-Search the terms are constructed by selecting literals with
the maximum frequency of occurrence in the reduced on-set. Selection of a literal
with a lower than maximum frequency of occurrence will be denoted as a mutation.
The probability of occurrence of a mutation will be denoted as a mutation rate k.
The implementation of mutations consists in a selection of a random literal with
a non-zero frequency of occurrence with the probability k. For k = 0% no mutations
are present; on the other hand, for k = 100% the CD-Search is driven by random
events only. Thus, introducing mutations into the CD-Search randomizes the literal
selection to some extent.



36 P. Fǐser, J. Hlavička

0 500 1000 1500 2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000
100%
80%
60%
40%

20%

0%

P
ri
m

e
s

Iterations

Fig. 8. PI set growth with the number of iterations

The more mutations are implanted, the faster is the growth of the number of
primes found during iterative minimization. This is caused by the variety of impli-
cants that are being produced. Figures 8 and 9 show the growth of the number of
prime implicants as a function of the number of iterations and the time, respectively.
The mutation rate k was changed as a parameter from 20 to 100%. The problem
solved was the minimization of a single-output function of 20 input variables with
300 defined minterms.

Although the number of PIs grows faster for higher mutation rates, the
CD-Search is slowed down. This is because implicants that cover fewer 1-terms
are produced and thus more of them must be generated to cover all the on-set. The
time needed for one pass of the CD-Search as a function of the mutation rate is
shown in Figure 10.

The effects documented above can be summarized in the following way: the
mutations slow down the whole minimization process and make it less effective;
hence we can conclude that selecting literals with maximum frequency of occurrence
is the best method of literal selection. The necessary set of implicants for covering
the on-set is then reached in the shortest time, and any deviation from this rule will
slow down the algorithm.

However, experiments show that 2–5% of mutations can improve the result by
producing some originally unreachable implicants. For example, it can easily be
proved that for the problem given by the truth table shown in Table 6 a simple
CD-Search without the use of mutations cannot reach the minimum two-term solu-
tion shown below.



BOOM — A Heuristic Boolean Minimizer 37

0 500 1000 1500 2000 2500 3000 3500 4000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

80,100%

60%
40%

20%

0%

P
ri
m

e
s

Time[s]

Fig. 9. PI set growth as a function of time

0 20 40 60 80 100

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

T
im

e
[s

]

Mutations [%]

Fig. 10. CD-Search run-time growth with increasing mutation rate



38 P. Fǐser, J. Hlavička

abcdef

001000 0
000101 0
111011 0
010111 0
101011 0
101110 1
001110 1
000110 0
100000 1
010000 1

exact solution: cd+ c′d′

solution without the use of mutations: af ′ + bf ′ + cef ′

Table 6. Mutations example

9.1 Implicant Reduction Mutations

Not only the CD-Search, but also implicant reduction can be enhanced by muta-
tions. Here the mutation is a random selection of a literal that prevents intersecting
a given term with at least one 0-term. The number of group implicants (non-primes)
grows very rapidly with increasing mutation rate — see Figure 11. However, the ex-
perimental results show that the final result of the minimization (the quality of the
solution) depends only slightly on the rate of IR mutations. The group implicants
that arise from the mutations are mostly not necessary for reaching the minimum

0 200 400 600 800 1000

0

200

400

600

800

1000

1200

1400

1600

1800

100%

80%

60%

40%

20%

0%

N
o
n
-p

ri
m

e
s

Iterations

Fig. 11. Dependence of the number of non-primes for different IR mutation rates



BOOM — A Heuristic Boolean Minimizer 39

solution. Still, there may exist functions that require the use of mutations in order
to find the minimum solution.

10 EXPERIMENTAL RESULTS

Extensive experimental work was done to evaluate the efficiency of the proposed
algorithm, especially for problems of large dimensions. Both runtime in seconds
and result quality were evaluated. The quality of the results was measured by three
parameters: total number of literals, output cost, and number of product terms
(implicants). One of them or the combination of two (sum of the number of lite-
rals and output cost) had always to be chosen as a minimization criterion. The
results of the experiments are listed in the following subsections. All the expe-
riments were performed on a standard PC with a 900MHz Athlon processor and
256MB RAM.

10.1 Standard MCNC Benchmarks

A set of 139 standard MCNC benchmarks [22] was solved by ESPRESSO v2.3 [15],
ESPRESSO EXACT and BOOM [23]. As the benchmark functions were specified
by the on-set and don’t care set (type fd PLA), the source files had to be converted
into the format where the on-set and off-set are defined (type fr PLA). This was
done by ESPRESSO (by the -ofr switch) before the minimization was performed.
Thus, both ESPRESSO and BOOM could use the same input files. The runtimes
indicated in the paper do not include the time needed for the conversion.

Of all the 139 standard problems, 67 (48.2%) were solved by BOOM in a shorter
time than by ESPRESSO. In all cases only one iteration of BOOM was used, and
thus the results may not be optimal. However, this option was chosen in order to
have a better comparison of the results. In 52 cases (37.4%) BOOM gave the same
result as ESPRESSO, while 30 (57.7%) of these equal results were reached faster
than by ESPRESSO.

Tables 7 and 8 show the minimization results of a selected set of the benchmarks.
The benchmarks were also solved by ESPRESSO-EXACT in order to obtain the
minimum solution for comparison. Note that in this case the minimality criterion
is only the number of terms and thus some “exact” solutions are even worse than
those reached by ESPRESSO or BOOM. Some benchmarks were not solved by
ESPRESSO-EXACT because of extremely long runtimes (blank entries in Table 8).
ESPRESSO solutions that are equal to the exact ones are shaded in the ESPRESSO
column. The column i/o/p describes the number of input/output variables and care
terms of a particular benchmark, the time columns indicate the computational time
in seconds, the lit/out/terms columns show the quality of the results, i.e., the number
of literals in the final SOP form, the output cost and the number of terms. The
shadowed cells indicate that the benchmark was solved by BOOM in a shorter time
than by ESPRESSO, or the same result was reached, respectively.



40 P. Fǐser, J. Hlavička

As the MCNC benchmark circuits mostly have a relatively low number of inputs
and many care terms defined, the features of BOOM couldn’t be fully exploited here.
Thus, the results are not optimal comparing with ESPRESSO. However, BOOM is
much more advantageous for more complex problems (see the following Subsections),
which ESPRESSO often cannot solve in a reasonable time.

ESPRESSO ESPRESSO-EXACT

bench i/o/p time lit/out/terms time lit/out/terms

alu2 10/8/241 0.07 268/79/68 0.18 268/79/68

alu3 10/8/273 0.08 279/70/65 0.19 278/74/64

alu4 14/8/1184 0.59 4445/644/575 12.24 4495/648/575

b9 16/5/292 0.08 754/119/119 0.89 754/119/119

br1 12/8/107 0.05 206/48/19 0.07 206/48/19

br2 12/8/83 0.06 134/38/13 0.07 134/38/13

chkn 29/7/370 0.14 1598/141/140 0.25 1602/142/140

cordic 23/2/2105 1.86 13825/914/914 3.59 13843/914/914

ex4 128/28/654 0.62 1649/279/279

e64 65/65/327 0.11 2145/65/65 0.11 2145/65/65

exep 30/63/643 0.17 1175/110/110 0.55 1170/108/108

ibm 48/17/499 0.11 882/173/173

mark1 20/31/72 0.25 97/57/19 1.45 97/57/19

misex2 25/18/101 0.07 183/30/28 0.06 183/30/28

misex3c 14/14/1566 0.98 1306/253/197

misj 35/14/55 0.07 54/48/35

shift 19/16/200 0.07 388/105/100

spla 16/46/837 0.71 2558/643/251 6.65 1564/450/181

vg2 25/8/304 0.08 804/110/110 0.54 804/110/110

x9dn 27/7/315 0.08 1138/120/120 0.49 1138/120/120

Table 7. Runtimes and minimum solutions for the standard MCNC benchmarks

10.2 Test Problems with n ≥ 50

The MCNC benchmarks have relatively few input terms, few input variables (only
for 9 standard benchmarks does n exceed 50) and also a small number of don’t care
terms. To compare the performance and result quality achieved by the minimization
programs on larger problems, a set of problems with up to 200 input variables and
up to 200 terms was solved. In order to accomplish this we created a set of artificial



BOOM — A Heuristic Boolean Minimizer 41

BOOM – 1it.

bench i/o/p time lit/out/terms

alu2 10/8/241 0.02 268/79/68

alu3 10/8/273 0.02 279/68/66

alu4 14/8/1184 1.02 4449/636/577

b9 16/5/292 0.09 754/119/119

br1 12/8/107 0.02 215/45/20

br2 12/8/83 0.01 134/38/13

chkn 29/7/370 0.41 1598/141/140

cordic 23/2/2105 4.05 13825/914/914

ex4 128/28/654 14.01 1649/279/279

e64 65/65/327 15.06 2145/65/65

exep 30/63/643 3.66 1175/110/110

ibm 48/17/499 0.82 882/173/173

mark1 20/31/72 0.04 93/46/23

misex2 25/18/101 0.10 183/30/28

misex3c 14/14/1566 0.59 1335/242/209

misj 35/14/55 0.03 54/48/35

shift 19/16/200 0.06 388/105/100

spla 16/46/837 1.54 2821/517/285

vg2 25/8/304 0.15 804/110/110

x9dn 27/7/315 0.22 1138/120/120

Table 8. Runtimes and minimum solutions for the standard MCNC benchmarks

benchmark problems, which we denoted as BOOM Benchmarks [24, 25]. The truth
tables of these problems were generated by a random number generator, for which
only the number of input variables and the number of care terms were specified.
The number of outputs was set equal to 5, and the input matrix contained 20%
of don’t cares. The on-set and off-set of each function were kept approximately of
the same size. For each problem size (# of variables, # of terms) in Tables 9, 10
and 11, ten different samples were generated and solved and average values of the
ten solutions were computed.

The randomness of the benchmarks used here was chosen in order to have func-
tions with no special properties. This allows us to determine more easily the pro-
perties and scalability of the algorithms. One of the main reasons why BOOM was
developed was the need to synthesize the combinational logic for BIST, namely the



42 P. Fǐser, J. Hlavička

output decoder transforming the LFSR patterns into test patterns pre-generated
by an ATPG tool [26]. Both the LFSR and ATPG patterns mostly have a ran-
dom nature, and thus the randomly generated benchmarks simulate these practical
problems very well.

First the minimality of the result was compared. BOOM was always run itera-
tively, using the same total runtime as ESPRESSO needed to obtain a solution.
In the following three tables, the number of input variables n increass horizontally
and the number of input terms p is increased vertically. The first row of each cell in
Table 9 contains the BOOM results, the second row shows the ESPRESSO results.
The quality criterion selected for BOOM was the sum of the number of literals and
the output cost, which approximates the gate equivalents (GEs) [27]. We can see
that for all but one problem size (shaded cell) BOOM found a better solution than
ESPRESSO.

p/n 50 100

50 110/41/25 (58)
122/54/27/3.89

96/35/23 (90)
104/45/23/10.29

100 284/86/52 (46)
289/104/51/19.31

229/68/42 (94)
231/84/42/77.07

150 474/132/76 (43)
481/158/76/54.76

389/101/63 (101)
384/125/62/282.80

200 678/177/101 (51)
686/209/101/162.62

553/137/83 (116)
539/165/81/730.91

p/n 150 200

50 90/32/21 (147)
92/41/21/24.87

84/29/20 (199)
89/39/20/41.99

100 217/61/40 (140)
213/80/39/199.17

207/57/38 (140)
201/74/37/246.21

150 362/92/61 (116)
345/113/56/646.20

381/90/64 (64)

322/107/52/1066.14

200 492/125/75 (207)
480/149/72/1913.65

469/110/71 (277)
450/136/68/3372.66

Entry format: BOOM: # of literals/output cost/# of implicants (# of iterations)
ESPRESSO: # of literals/output cost/# of implicants/time in seconds

Table 9. Solution of Boom Benchmarks — comparing the result quality

A second group of experiments for n ≥ 50 was performed to compare the run-
times. Again, the randomly generated problems from [24] were solved, but this time
BOOM was running until a solution of the same or better quality as ESPRESSO was
reached. The quality criterion selected was again the sum of the number of literals
and the output cost. The results given in Table 10 show that for all samples the
same or better solution was found by BOOM in a shorter time than by ESPRESSO.



BOOM — A Heuristic Boolean Minimizer 43

p/n 50 100

50 170/0,64 (12)
176/3,89

145/1,89 (21)
149/10,29

100 388/7,15 (23)
393/19,31

313/25,5 (48)
315/77,07

150 631/20,38 (25)
639/54,76

506/153,84 (70)
509/282,8

200 890/71,97 (31)
895/162,62

697/467,63 (86)
704/730,91

p/n 150 200

50 131/14,52 (73)
133/24,87

126/3,26 (25)
128/41,99

100 291/38,91 (56)
293/199,17

273/86,51 (83)
275/246,21

150 456/374,68 (105)
458/646,20

427/974,40 (161)
429/1066,14

200 625/1026,28 (149)
629/1913,65

582/1759,27 (220)
586/3372,66

Entry format: BOOM: # of literals+output cost/time in seconds (# of iterations)
ESPRESSO: # of literals+output cost/time in seconds

Table 10. Solution of Boom Benchmarks — comparing the runtime

10.3 Solution of Very Large Problems

A third group of experiments aims at establishing the limits of applicability of
BOOM. For this purpose, a set of very large test problems was generated and solved
by BOOM. Each problem was a single-output function in this case. For problems
with more than 200 input variables we could not use ESPRESSO, because the
runtimes were too long (several hours). Hence when investigating the limits of
applicability of BOOM, it was not possible to verify the results by any other method.
The results of this test are listed in Table 11, where the average time in seconds
needed to complete one iteration for various problem sizes is shown. We can see that
a problem with 1000 input variables and 2000 care minterms was solved by BOOM
in about 20 seconds.

11 TIME COMPLEXITY EVALUATION

As for most heuristic and iterative algorithms, it is difficult to evaluate the time
complexity of the proposed algorithm analytically. An experimental evaluation has
been therefore performed.



44 P. Fǐser, J. Hlavička

p/n 200 400 600 800 1000

200 0.06 0.11 0.17 0.26 0.26

400 0.25 0.34 0.52 0.77 0.88

600 0.45 0.80 1.15 1.44 1.96

800 0.88 1.43 2.05 2.69 3.35

1000 1.32 2.10 3.07 4.21 4.42

1200 1.91 3.28 4.69 6.30 7.27

1400 2.69 4.48 6.04 7.72 8.96

1600 3.56 5.78 8.58 10.57 11.69

1800 4.51 7.73 10.56 12.52 16.34

2000 5.64 10.02 13.17 17.45 20.17

Table 11. Time for one iteration on very large problems

11.1 Influence of the Problem Size

The average time needed to complete one pass of the algorithm for various sizes
of the input truth table was measured. The number of experiments of each size
was 10. The truth tables were generated randomly, following the same rules as in
paragraphs 10.2 and 10.3. Figure 12 shows the growth of an average runtime as
a function of the number of care minterms (20–300) where the number of input
variables is changed as a parameter (20–300). The curves in Figure 12 can be
approximated with the square of the number of care minterms.

0 50 100 150 200 250 300

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

300

260

220

180

140

100

60

20

T
im

e
[s

]

Terms

Fig. 12. Time complexity (1)



BOOM — A Heuristic Boolean Minimizer 45

The minimization time thus grows quite rapidly with the number of care terms.
This fact complicates the minimization of functions with a large number of defined
terms to some extent. Hence, BOOM is more suitable for minimizing very sparse
functions, where the number of care terms is low.

Figure 13 shows the runtime growth depending on the number of input va-
riables (20–300) for various numbers of defined minterms (20–300). Although there
are some fluctuations due to the low number of samples, the time complexity is
almost linear. Figure 14 shows a three-dimensional representation of the above
curves.

The fact that the time complexity grows linearly with the number of input
variables (while keeping the number of defined terms) expresses the main advantage
of the BOOM algorithm. As the size of the Boolean space of the function grows
exponentially with the number of input variables, the time complexity of most of the
common minimization algorithms grows exponentially too. In BOOM there is no
chance for an exponential time grow, as there are no algorithms with an exponential
complexity used in BOOM (except of the situation when the exhaustive IE is used).
This allows us to minimize functions with an extremely large number of inputs very
efficiently.

0 50 100 150 200 250 300

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

300

260

220

180

140

100
60

20

T
im

e
[s

]

Input variables

Fig. 13. Time complexity (2)



46 P. Fǐser, J. Hlavička

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8
2
0

6
0

1
0
0

1
4
0

1
8
0

2
2
0

2
6
0

3
0
0

20

120

220

Terms

Input variables

T
im

e
[s

]

Fig. 14. Time complexity (3)

11.2 Influence of Don’t Cares

The influence of the number of don’t care states in the field of input variables on the
runtime was studied on a set of problems generated by a random number generator
for n = 20, 50 and 80, with m = 5 and 200 terms. The percentage of don’t cares
was changed in the range from 0 to 35%. Here 0% denotes the situation when only
minterms were used in the function definition. At the other end, 35% of don’t cares
means that slightly more than one third of all values of the input variables were
undefined.

The growth of the runtime for ESPRESSO and for BOOM is shown in Figure 15,
where the number of input variables is indicated in parentheses. We can see that
although ESPRESSO runtime grows to 5000 s for 80 input variables, the BOOM
runtime remains almost constant within the used scale for all problem sizes. The
influence on the runtime is visualized even more clearly in Figure 16, showing the
relative slowdown of BOOM and of ESPRESSO caused by the don’t cares. We can
see that the relative slowdown of BOOM for the highest percentage of don’t cares
is about 7.5, whereas for ESPRESSO it is up to 100.

We can conclude from this observation that ESPRESSO is extremely sensitive
to the dimensionality of the source terms; the minimization time grows rapidly with
the growing number of input don’t cares. On the other hand, BOOM is almost
insensitive to the dimension of the terms. Thus, BOOM can be efficiently used to
minimize functions with a large portion of don’t cares in the source terms.



BOOM — A Heuristic Boolean Minimizer 47

0 5 10 15 20 25 30 35 40

0

1000

2000

3000

4000

5000

ESPRESSO(20)

ESPRESSO(80)

ESPRESSO(50)

BOOM (20,50,80)

T
im

e
[s

]

DC Rate [%]

Fig. 15. Runtimes for ESPRESSO (dashed lines) and BOOM (solid line) for various per-
centages of DCs

0 5 10 15 20 25 30 35

0

20

40

60

80

100

20

50

80

S
lo

w
-d

o
w

n

DCs Rate [%]

BOOM

ESPRESSO

Fig. 16. Relative slowdown [%] for various percentages of DCs

11.3 Duration of Individual Steps

To optimize the time needed for the minimization, it is important to know the
contribution of the individual steps of BOOM introduced in Figure 1 to the overall
runtime. This aspect was studied on different types of problems. A typical structure
of the runtime composition is shown in Figure 17, which plots the data collected
during the minimization of a problem with 20 input variables, 5 outputs and 300 care
terms. The percentage of input don’t care values was set to 10%. We can observe



48 P. Fǐser, J. Hlavička

that the first three steps (CD-Search, IE, IR) represent a very small portion of the
overall time, and that the duration of these steps sinks both absolutely (from 0.5
to 0.2 s) and relatively in proportion to the rest of the minimization run.

A relatively steady part of the time is represented by the Dominance Check,
which lasts for some 2 s. The most important part of the overall time is consumed by
the solution of the Covering Problem. This is the only phase that tends to grow with
the number of iterations, because the number of implicants to be processed grows
with every iteration. The two interesting discontinuities (zero values of CP solution
time) are due to the fact that no new implicants were generated in iterations 625
and 655.

0 100 200 300 400 500 600 700

0

2

4

6

8

10

12

14

CD-Search
IE
IR

CP Solution

Dominance check

T
im

e
[s

]

Iterations

Fig. 17. Execution time of individual steps

12 CONCLUSIONS

An original Boolean minimization method, based on a new approach to implicant
generation, has been presented. Its most important features are its applicability
to functions with several hundreds of input variables and very short minimization
times for sparse functions. The function to be minimized is defined by its on-set and
off-set (which may consist of minterms and terms of higher dimensions), whereas
the don’t care set needs not be specified explicitly. The properties of the BOOM
minimization tool were demonstrated on examples. Its application is advantageous
above all for functions with a large number of input variables and a large number of
don’t care states where it beats other methods, like ESPRESSO, both in minimality



BOOM — A Heuristic Boolean Minimizer 49

of the result and in runtime. The PI generation method is very fast and can easily
be used in an iterative manner. Extensive tests on different benchmarks (MCNC,
randomly generated problems) were performed in order to determine the strengths
and weaknesses of the BOOM system.

The dimension of the problems solved byBOOM can easily be increased over1000,
because the runtime grows linearly with the number of input variables. For problems
of very high dimension, success largely depends on the size of the care set, because
the runtime grows roughly with the square of its size.

The BOOM minimization tool was programmed in C++ and is available for
a public use at [23].

REFERENCES

[1] Quine, W. V.: The Problem of Simplifying Truth Functions. Amer. Math. Monthly,
Vol. 59, 1952, No. 8, pp. 521–531.

[2] McCluskey, E. J.: Minimization of Boolean functions. The Bell System Technical
Journal, Vol. 35, 1956, No. 5, pp. 1417–1444.

[3] Brayton, R. K. et al.: Logic Minimization Algorithms for VLSI Synthesis. Boston,
MA, Kluwer Academic Publishers, 1984.

[4] Hachtel, G. D.—Somenzi, F.: Logic Synthesis and Verification Algorithms.
Boston, MA, Kluwer Academic Publishers, 1996, pp. 564.

[5] Rudell, R. L.—Sangiovanni-Vincentelli, A. L.: Multiple-Valued Minimization
for PLA Optimization. IEEE Trans. on CAD, Vol. 6, 1987, No. 5, pp. 725–750.

[6] McGeer, P. et al.: ESPRESSO-SIGNATURE: A New Exact Minimizer for Logic
Functions. In Proc. of the Design Automation Conf. ’93.

[7] Nguyen, L.—Perkowski, M.—Goldstein, N.: Palmini — Fast Boolean Min-
imizer for Personal Computers. In Proc. of the Design Automation Conf. ’87,
pp. 615–621.

[8] Coudert, O.—Madre, J. C.: Implicit and Incremental Computation of Primes
and Essential Primes of Boolean Functions. Proc. of 29th DAC, Anaheim CA, USA,
June 1992, pp. 36–39.

[9] Coudert, O.—Madre, J. C.—Fraisse, H.: A New Viewpoint on Two-Level
Logic Minimization. Proc. of 30th DAC, Dallas TX, USA, June 1993, pp. 625–630.

[10] Fǐser, P.—Hlavička, J.: Efficient Minimization Method for Incompletely Defined
Boolean Functions. Proc. 4th Int. Workshop on Boolean Problems, Freiberg (Ger-
many), Sept. 21–22, 2000, pp. 91–98.

[11] Fǐser, P.—Hlavička, J.: Implicant Expansion Method used in the BOOM Mini-
mizer. Proc. IEEE Design and Diagnostics of Electronic Circuits and Systems Work-
shop (DDECS’01), Gyor (Hungary), 18–20. 4. 2001, pp. 291–298.

[12] Hlavička, J.—Fǐser, P.: A Heuristic Method of Two-Level Logic Synthesis. Proc.
The 5th World Multiconference on Systemics, Cybernetics and Informatics SCI’2001,
Orlando, Florida (USA) 22–25. 7. 2001, Vol. XII, pp. 283–288.



50 P. Fǐser, J. Hlavička

[13] Fǐser, P.—Hlavička, J.: On the Use of Mutations in Boolean Minimization. Proc.

Euromicro Symposium on Digital Systems Design, Warsaw (Poland) 4.–6. 9. 2001,
pp. 300–307.

[14] Hlavička, J.—Fǐser, P.: BOOM— a Heuristic Boolean Minimizer. Proc. ICCAD-

2001, San Jose, Cal. (USA), 4.–8. 11. 2001, pp. 439–442.

[15] http://eda.seodu.co.kr/ chang/download/espresso/.

[16] McCluskey, E. J.: Logic Design Principles. Prentice-Hall, Englewood Cliffs, 1986.

[17] Chatterjee, M.—Pradhan, D. J.: A Novel Pattern Generator for Near-Perfect
Fault Coverage. Proc. of VLSI Test Symposium 1995, pp. 417–425.

[18] Touba, N. A.—McCluskey, E. J.: Transformed Pseudo-Random Patterns for
BIST. CRC Technical Report No. 94-10, 1994.

[19] Rudell, R. L.: Logic Synthesis for VLSI Design. Ph.D. Thesis, UCB/ERL M89/49,
1989.

[20] Serv́ıt, M.: A Heuristic Method for Solving Weighted Set Covering Problems. Dig-
ital Processes, Vol. 1, 1975, No. 2, pp. 177–182.

[21] Coudert, O.: Two-Level Logic Minimization: An Overview, Integration. The VLSI
Journal, 17-2, pp. 97–140, Oct. 1994.

[22] ftp://ic.eecs.berkeley.edu.

[23] http://service.felk.cvut.cz/vlsi/prj/BOOM.

[24] http://service.felk.cvut.cz/vlsi/prj/BoomBench.

[25] Fǐser, P.—Hlavička J.: A Set of Logic Design Benchmarks. Proc. IEEE Design
and Diagnostics of Electronic Circuits and Systems Workshop (DDECS’02), Brno
(Czech Rep.), 17.–19. 4. 2002, pp. 324–327.

[26] Fǐser, P.—Hlavička J.: Column-Matching Based BIST Design Method. Proc.
7th IEEE European Test Workshop (ETW’02), Corfu (Greece), 26.–29. 5. 2002,
pp. 15–16.

[27] Hartmann, J.—Kemnitz, G.: How to Do Weighted Random Testing for BIST.
Proc. of International Conference on Computer-Aided Design (ICCAD), pp. 568–571,
1993.

Petr Fi�ser received the MSc. degree in electrical engineering
at the Czech Technical University in Prague in 2002, currently
is a PhD. student at the same university, faculty of Computer
Science and Engineering. His main areas of interest are Boolean
minimization, decomposition, build-in self-test (BIST) and de-
sign for testability (DFT).



BOOM — A Heuristic Boolean Minimizer 51

Jan Hlavi�ka (1942–2002) graduated from Faculty of Elec-

trical Engineering, Czech Technical University in 1964. He re-
ceived his PhD and DSc degrees from the same university in 1971
and 1987, respectively, and was appointed Associate Professor
and Professor by the same institution in 1985 and 1991, respec-
tively. During his fruitful scientific career, he was with the Re-
search Institute for Mathematical Machines in Prague, Siemens
Munich, and Department of Computer Science and Engineering
of the Faculty of Electrical Engineering, CTU Prague. He was
the visiting professor at TH Ilmenau (Germany), Universit de

Montréal (Canada) and Hochschule fr Bauwesen Cottbus (Germany). He is the author
and co-author of numerous scientific papers. His research interests indluded fault-tolerant
computing testing and diagnostics of digirtal circuits an systems,computer architecture,
error coding, self-checking circuits.


