
Computing and Informatics, Vol. 22, 2003, ??–??

FINE-GRAINED TOURNAMENT SELECTION
OPERATOR IN GENETIC ALGORITHMS

Vladimir Filipović

Faculty of Mathematics

Studentski trg 16

11 000 Belgrade, Serbia and Montenegro

e-mail: vladaf@matf.bg.ac.yu

Manuscript received 6 March 2002; revised 23 May 2003

Communicated by Enn Tyugu

Abstract. Tournament selection is one of the most popular selection operators in

Genetic Algorithms. Recently, its popularity is increasing because this operator is
well suited for Parallel Genetic Algorithms applications. In this paper, new selection
operator is proposed. The new operator, which should be an improvement of the
tournament selection, is named “Fine-grained Tournament Selection” (FGTS).

It is shown that classical tournament selection is a special case of the FGTS and
that new operator preserves its good features. Furthermore, theoretical estimations
for the FGTS are made. Estimations for the FGTS are similar to those for the
classical tournament selection. Finally, classical tournament selection, rank-based
selection and FGTS are experimentally compared on a real world NP-hard problem
and the obtained results are discussed.

Keywords: Genetic algorithms, tournament selection, theoretical estimations,
NP-hard problems, SPLP

1 GENETIC ALGORITHMS

Genetic algorithms (GA) are applied in some optimization problems: job shop
scheduling, traveling salesman, economic modeling, pipeline projecting etc. [?, ?].
They are also applied in machine learning, game theory; neural networks, in geo-
metric reasoning [?, ?, ?].

144 V. Filipović

GA are inspired by the Darwin’s evolution theory and the Mendel’s laws of
inheritance. If Darwin’s theory describes natural processes, then GA imitate natural
processes in attempting to solve particular problem.

It is widely accepted among authors in GA field is that only modifications that
have analogy in nature can significantly improve their performances [?, ?]. Such
modifications can be applied to various problem domains.

Great deal of popularity of GA is based on the fact that new solutions are
achieved through parallel process. Holland [?] observed the parallel nature of repro-
ductive paradigm and inherent efficiency of the parallel processing ten years before
formal genesis of the GA.

In addition, GA are easy to hybridize: they can be combined with other algo-
rithms that solve specific problem. New, hybrid algorithm has good features of both
base algorithms (explained in detail in [?]).

GA have the following structure:

• Search space — space of all possible solutions.

• Population — set of actual candidates for solution; elements of population are
individuals (items, or search nodes, or points in search space).

• String space — contains string representations of individuals in population.

• Functions that convert points in search space to the points in string space and
vice versa (coding and decoding).

• Set of genetic operators for generating new strings (and new individuals).

• Fitness function — evaluates fitness (degree of adaptation) for each individual
in population.

• Stochastic control — controls genetic operators and governs execution of GA.

Basic steps in GA are:

1. Initialization — the initial population is created (usually by random sampling).

2. Evaluation — fitness is calculated for individuals in the population.

3. Selection — surviving individuals are chosen from the population (usually ac-
cording to values of fitness function).

4. Recombination (includes crossover and mutation) — changes in the individual’s
representation.

5. Repeat steps 1 to 4 until the population fulfils finishing criteria.

The features that made distinction between GA and any other problem-solving
method are as follows:

• GA work with codes that represent parameters, not with the pure parameters.

• GA search in several points (population) simultaneously, therefore they are very
robust.

• GA use probabilistic rather than deterministic transition rules.

Fine-grained Tournament Selection Operator in Genetic Algorithms 145

• GA (in their pure form) do not exploit additional information about the nature
of a problem.

Simple Genetic Algorithm (SGA) represents starting point for all other modifica-
tions of GA. It has the following operators: one-point crossover, one-point mutation,
and roulette selection. Individuals in SGA have binary representation (binary string
of fixed length represents individual).

In order to improve SGA performances, the authors have used different modifi-
cations of SGA during:

• setting of stochastic parameters — controlling application of genetic operators
(see [?]).

• representation — transformation of the search space to the string space.
Examples of such modifications are Gray coding and multidimensional coding
(see [?]).

• initialization — formation of the string that represents an individual (see [?]).

• evaluation— computing fitness value of each individual in population (see [?, ?]).

• design of genetic operators - crossover, mutation (see [15]) and selection (see [?,
?] and [?]), etc.

• execution — reordering of the genetic operators (see [?, ?]).

• replacement of the individuals in population — steady state and elitist strategy
are the nost popular ones (see [?]).

• exploitation of explicit parallelism - Parallel GA (see [?, ?] and [?]).

The theory and modifications of GA are developing simultaneously. This theory
should give answers to questions concerning quality of proposed modifications (see [?,
?] and [?]).

2 SELECTION

Selection operator chooses individuals in the population that will survive. Better-
fitted individual will survive with higher probability. Authors usually design selec-
tion so that “luck” has influence, e.g. selection operator usually does not work in
a deterministic way. Therefore, worse fitted individuals sometimes win and pass
their genetic code. Hence, selection operator more precisely emulates phenomena
and processes in nature. In nature, very often, better-fitted individual does not
survive. In addition, better-fitted individuals (in that moment of time) do not carry
all the good genes.

Well-designed selection operator should maintain population diversity — that is
the key issue for achieving quality of seeking for the best solution and for avoiding
premature convergence.

GA (see [?]) have inherent conflicts between exploitation and exploration. Ex-

ploitation means that, during the solution searching, algorithm uses information

146 V. Filipović

obtained in the past (about previously visited points in search space) in order to
determine smaller regions that are promising for further search. Exploration is a pro-
cedure that obtains new information — it visits new regions in the search space in
order to find promising points or sub regions. In contrast to exploitation, exploration
includes jumps into the unknown.

Selection operator exploits already obtained information about individual’s fit-
ness in the population during the adaptive process of looking for solution. Recom-
bination operators (especially mutation) change genetic material in the population
and directed search into the new regions. Therefore, population accepts new in-
dividuals and new alternatives (new opportunities for finding solution) that are
explored.

Optimal ratio between exploitation and exploration differs for different GA and
for different problems. Setting values of the stochastic parameters that control
genetic operators is one way to achieve balance between exploitation and exploration
(for a specific problem).

Several different ways to theoretically estimate quality of the proposed selection
are developed. Goldberg and Deb [?] introduced takeover time — number of genera-
tions needed for the best individual to spread over the whole population, assuming
that GA are executed without recombination. Neri also studied GA without recom-
bination operators [?]. Baeck analyzed the most popular selection operators and
their takeover time, too. Beside derivation of the takeover time in papers [?, ?, ?],
Baeck also derived probability of surviving selection for the fixed individual. Tidor
and De La Maza [?] analyzed whether selection is invariant to the translation and
scaling. In all these approaches, only small part of overall selection’s behavior is
being studied (somewhere the best individual, somewhere average fitness in popu-
lation). More precise and more general framework for analyzing specific selection
operator is analyzing the fitness distribution of population before and after applying
that selection operator, as Blickle and Thiele did in [?]. In order to analyze selection
operator, following quantities are defined and several claims are proved.

Probability of selecting (e.g. probability of being chosen) for fixed individual ak
during execution of selection method is denoted with ps(ak) . For the purposes of
theoretical analysis, it will be assumed that individuals in population are sorted in
descending order according to its fitness f(ak).

Population fitness distribution function, denoted as s : R → Z+
0, is the function

that projects arbitrary fitness value f ∈ R into the number of individuals in the
population with such fitness. Its continuous counterpart, denoted as s(f), is called
population fitness distribution function, too.

Suppose that nf is number of distinct fitness values in population and suppose
that fitness values are sorted in the ascending order, e.g. f1 < f2 < . . . < fnf−1 < fnf

.
Cumulative fitness distribution, denoted as S(fk), is number of the individuals in
population with fitness less or equal to fk:

Fine-grained Tournament Selection Operator in Genetic Algorithms 147

S(fk) =

0, k < 1
∑k

j=1(s(fj)), 1 ≤ k ≤ nf

n, k > nf

Continuous counterpart of the previously defined cumulative fitness distribution,

denoted as S(f), is: S(f) =
∫ fnf

f1
s(x)dx.

Now, it is possible to define selection. Selection method Ω is the function
that transforms fitness distribution s into other fitness distribution s′. So, s′ =
Ω(s, param), knowing that param is optional parameter list for specified selection
method. Expected fitness distribution upon applying selection method Ω, denoted
as Ω∗, is defined as mathematical expectation of fitness after selection method
execution, e.g. Ω∗(s, param) = E(Ω(s, param)). This equation is often denoted
as s∗ = Ω∗(s, param). The goal of the analysis is to anticipate s∗ that depends on
fixed fitness distribution s.

Mean population’s fitness distribution before selection, denoted as M , is M =
1
n

∑n
j=1 fj , and mean population’s fitness distribution after selection, denoted as M ∗,

is M ∗ = 1
n

∑nf

j=1 s(fj)fj. Furthermore, standard deviation of population’s fitness

distribution before selection, denoted as σ2, is σ2 = 1
nf

∑nf

j=1(s(fj)−M)2, and stan-

dard deviation of population’s fitness distribution after selection, denoted as σ∗2, is
σ∗2 = 1

n

∑n
j=1(fj −M ∗)2.

Continuous counterpart of the mean population’s fitness distribution before

selection, denoted as M , is: M = 1
n

∫ fnf

f1
s(f)fdf , and continuous counterpart

of the mean population’s fitness distribution after selection, denoted as M ∗, is

M = 1
n

∫ fnf

f1
s∗(f)fdf . Furthermore, continuous counterpart of the standard de-

viation of population’s fitness distribution before selection, denoted as (σ)2, is

(σ)2 = 1
n

∫ fnf

f1
s(f)(f −M)2df = 1

n

∫ fnf

f1
f 2s(f)df −M

2
.

Reproduction rate of the fixed selection method, denoted as R(f), is defined in
the following way:

R(f) =

{

s∗(f)
s(f)

, s(f) > 0

0, s(f) = 0

Loss of diversity for fixed selection method, denoted as pd, is the ratio between
the number of individuals in the population that are not chosen during selection
phase and overall number of individuals in the population. Loss of diversity is
a number between zero and one. It should be as low as possible because high loss
of diversity increases premature convergence risk.

Selection intensity (also denoted as selection pressure) is often used in different
contexts and for different properties of the selection method. The term “selection
intensity” is used in the same way as in the classical genetics.

Selection intensity I(Ω, s) for fixed selection method Ω and fitness distribution

s(f) is I(Ω, s) = M∗−M
σ

. It is clear that selection intensity depends on the initial
population fitness distribution and that different distributions will lead to different

148 V. Filipović

selection intensities for the same selection method. Standardized selection intensity

for fixed selection method Ω, denoted as I(Ω), is I(Ω) =
∫ −∞
−∞ Ω∗ (N(0, 1)(f))fdf .

Standardized selection intensity is the mathematical expectation of average fitness
population after application of selection method Ω to normalized Gaussian fitness

distribution N(0, 1)(f) (density is given with formula 1√
2π
e−

f2

2).

3 TOURNAMENT SELECTION

Tournament selection is one of the most popular selection operators. Its popula-
rity has been growing in the recent time, because this operator is well suited for
applications in Parallel Genetic Algorithms (more details in [?, ?]).

Tournaments are small competitions among the individuals. In tournament
selection, an individual passes into the next generation if it is better fitted than
opponents randomly selected from the population. Tournament size Ntour is the
selection parameter.

Algorithm (written in pseudo Pascal) looks as follows:

Input: Population a (size of array a is n), tournament size Ntour, Ntour ∈ N

Output: Population after selection a′ (size of array a′ is n)
Tournament Selection:
begin

for i := 1 to n do
a[i]′ := best fitted among Ntour individuals randomly selected from population a;

return a′

end

Execution time for this algorithm is O(nNtour). Usually, Ntour does not depend
on n, so algorithm is linear and time is O(n) for fixed Ntour. Thus, tournament
selection differs from explicitly ranking schemes such as linear ranking (see [?]) and
exponential ranking, because it does not need to sort the population during its work
first.

Different authors analyzed theoretical features of the tournament selection and
they deduced the following important formulas [?, ?] and [?].

Probability of selecting fixed individual (where k denotes position of that fixed
individual in population, assuming that population is sorted by fitness in non-
ascending order):

ps(ak) =
1

nNtour

(

kNtour − (k − 1)Ntour

)

. (3.1)

Expected distribution of fitness after execution of tournament selection:

s∗(fk) = Ω∗
tour(s, Ntour)(fk) = n

(

S(fk)

n

)Ntour

−
(

S(fk−1)

n

)Ntour

 . (3.2)

Fine-grained Tournament Selection Operator in Genetic Algorithms 149

Expected continuous distribution of fitness after execution of tournament selec-
tion:

s∗(f) = Ω∗
tour(s, Ntour)(f) = Ntours(f)

(

S(f)

n

)Ntour−1

. (3.3)

Reproduction rate in tournament selection:

Rtour(f) = Ntour

(

S(f)

n

)Ntour−1

. (3.4)

Loss of diversity in tournament selection:

pd,tour = Ntour
− 1

Ntour−1 −Ntour
− Ntour

Ntour−1 . (3.5)

Standardized selection intensity for the tournament selection:

I(tour, Ntour) = Itour(Ntour) =
∫ +∞

−∞
Ntourx

1√
2π

e−
x2

2

(

∫ x

−∞

1√
2π

e−
y2

2 dy

)Ntour−1

dx.

(3.6)

4 FINE-GRAINED TOURNAMENT SELECTION

In spite of many good characteristics of the tournament selection, there is one major
problem: the ratio between exploration and exploitation cannot be set precisely,
which is crucial for using this selection method in practice. The ratio between
exploration and exploitation governs the search process in GA. Level of exploration
(looking for new solutions) and exploitation (using previously acquired knowledge)
is determined by Ntour in the tournament selection.

The parameter Ntour can be one of few integer values (usually 2–3 values are
good candidates). Very often, the search process converges too slow with smaller
tournament size and too fast with bigger tournament size. It is desirable to create
a selection method that preserves good features of the tournament selection and (at
the same time) allows that setting of the ratio between exploration and exploitation
becomes more precise.

Fine-grained Tournament Selection (denoted as FGTS) is an improvement of the
tournament selection. FGTS is controlled by real value parameter Ftour (the desired
average tournament size) instead of the integer parameter Ntour (the tournament
size). Similarly to the tournament selection, an individual is chosen if it is the best
individual on the tournament. However, unlike tournament selection, size of the
tournament is not unique in the whole population, i.e., tournaments with different
number of competitors can be held within one step of the selection.

The parameter Ftour governs the selection procedure; therefore, average tourna-
ment size in population should be as close to Ftour as possible.

It is already noticed that, among many modifications of SGA, the modifications
where analogy with phenomena and processes in the nature exists have most general

150 V. Filipović

applicability [?, ?]. In nature, large number of animal species (higher primates) live
in groups (known as herds, flocks or packs) where only the fittest male individual
in the group spreads his genetic material to new generation. Determining who is
the fittest in the group is made by holding the tournament. Therefore, the tourna-
ment selection has the analogy in the processes in nature. Knowing the fact that
cardinality of groups is not the same in all regions, it can be concluded that FGTS
(allowing that the size of simultaneous tournaments is not the same everywhere)
emulates processes in nature better than the classical tournament selection.

During FGTS design, several implementations are created and tested. Chosen
FGTS implementation creates tournaments whose sizes vary at the most by one.
Other tested FGTS implementations (those that are not chosen) have more complex
structure, require slightly more time for execution, without any improvement in the
quality of obtained results.

Therefore, sizes of the tournaments are Ftour
− = [Ftour], Ftour

+ = [Ftour] + 1.
The size of all of n held tournaments is either Ftour

− or Ftour
+. The number of

tournaments with size Ftour
− (denoted as n−) and the number of tournaments with

size Ftour
+ (denoted as n+), have to fulfill two conditions: their sum should be n

and average tournament size should be as close to real value Ftour as possible:

{

n+ + n− = n
n+Ftour

+ + n−Ftour
− = nFtour

The explicit formulas for n+ and n− are obtained by solving these equations.
The algorithm (written in pseudo Pascal) looks as follows:

Input: Population a (size of array a is n), desired average tournament size Ftour, Ftour ∈ R

Output: Population after selection a′ (size of array a′ is n)
Fine Grained Tournament Selection:
begin

Ftour
− := trunc(Ftour);

Ftour
+ := trunc(Ftour) + 1;

n− := trunc (n * (Ftour
+ - Ftour));

n+ := n - n−;
/* tournaments with size Ftour

− */
for i := 1 to n− do

a[i]′ := best fitted among Ftour
− individuals randomly selected from population a;

/* tournaments with size Ftour
+ */

for i := n− + 1 to n do
a[i]′ := best fitted among Ftour

+ individuals randomly selected from population a;
return a′

end

Execution time for this algorithm is O(nFtour). Due to the fact that Ftour usually
does not depend on n, the algorithm is linear and the time is O(n).

The following claims establish a link between the FGTS and the classical tour-
nament selection.

Fine-grained Tournament Selection Operator in Genetic Algorithms 151

Theorem 4.1. If the parameter Ftour (desired average tournament size) is an in-
teger, then FGTS is the same as the classical tournament selection, i.e. FGTS is
a superset of classical tournament selection.

Proof. If Ftour is an integer, then the following is true for FGTS: Ftour
− = Ftour,

Ftour
+ = Ftour + 1, n− = n, n+ = 0. Therefore, n tournaments of the integer size

Ftour are held during the selection, which is exactly the same procedure as in the
classical tournament selection. 2

Theorem 4.2. The difference between average size of tournaments held during one
step of FGTS and the parameter Ftour has upper bound 1/n.

Proof. The average tournament size in FGTS (denoted as Ftour

′

) is Ftour

′

=
n+Ftour

++n−Ftour
−

n
. The value Ftour

′

can be expressed as

Ftour

′

= n+Ftour
++n−(Ftour

+−1)
n

= nFtour
+−n−

n
= Ftour

+ − n−

n

= [Ftour] + 1− [n(1−(Ftour−[Ftour]))]
n

.
(4.1)

Since x− 1 ≤ [x] ≤ x, it follows:

[Ftour] + 1− n(1−(Ftour−[Ftour]))−1
n

≤ Ftour

′ ≤ [Ftour] + 1− n(1−(Ftour−[Ftour]))
n

Ftour − 1
n
≤ Ftour

′ ≤ Ftour.

The theorem is proved by substituting the above inequality into the expression
|Ftour − Ftour

′|. 2

The following theoretical estimations are of the same kind as estimations in
equations 3.1.–3.6. that are deduced for the classical tournament selection.

Proposition 4.3. For fixed individual ak the probability of being chosen during
FGTS (individual is in position k in population that is implicitly sorted by fitness
in descending order) can be calculated as follows:

ps(ak) =
n+

nFtour
+

(

kFtour
+ − (k − 1)Ftour

+
)

+
n−

nFtour
−

(

kFtour
− − (k − 1)Ftour

−
)

.

Proof. Suppose that Ftour is parameter of the selection method and Ftour
+, Ftour

−,
n+, n− are calculated according to previous formulas. Equation 3.1 states that
fixed individual ak is chosen in the tournament of size s(s ∈ N) with probabili-
ty pchose(ak) = 1

ns (k
s − (k − 1)s). In the FGTS with parameter Ftour, probability

that tournament has size Ftour
+ is n+

n
and that tournament has size Ftour

− is n−

n
.

According to total probability formula,

ps(ak) =
n+

n

1

nFtour
+

(

kFtour
+ − (k − 1)Ftour

+
)

+
n−

n

1

nFtour
−

(

kFtour
− − (k − 1)Ftour

−
)

.

Claim follows directly from the last equation. 2

152 V. Filipović

Proposition 4.4. FGTS is invariant to the translation and scaling.

Proof. In FGTS, individual is selected due to its relative position, not due to the
explicit fitness. Translation and scaling of the population does not change indivi-
dual’s relative position, therefore FGTS is invariant to both translation and scaling.

2

Proposition 4.5. Expected distribution of fitness s∗ = Ωftour
∗(s, Ftour) after exe-

cution of the FGTS, with desired average tournament size Ftour applied to the fitness
distribution s is

s∗(fk) = Ωftour
∗(s, Ftour)(fk) =

n+

nFtour
+

(

(S(fk))
Ftour

+ − (S(fk−1))
Ftour

+
)

+
n−

nFtour
−

(

(S(fk))
Ftour

− − (S(fk−1))
Ftour

−
)

.

Proof. First, the expected number of individuals with fitness less or equal to fk
(denoted as S∗(fk)) is calculated. Fixed individual with fitness less or equal to fk
wins the tournament, if all competing individuals in the tournament have fitness fk
or less. Probability for choosing individual with fitness less or equal to fk is S(fk)

n
.

Therefore, the expected number of individuals that survive FGTS and have fitness
less or equal to fk is

S∗(fk) = n+

(

S(fk)

n

)Ftour
+

+ n−

(

S(fk)

n

)Ftour
−

.

From the definition of expected fitness distribution can be derived s∗(fk) =
S∗(fk)− S∗(fk−1); thus:

s∗(fk) = Ωftour
∗(s, Ftour)(fk) =

n+

(

S(fk)

n

)Ftour
+

+ n−

(

S(fk)

n

)Ftour
−

−

n+

(

S(fk−1)

n

)Ftour
+

+ n−

(

S(fk−1)

n

)Ftour
−

 .

Moreover, the following can be obtained:

s∗(fk) = Ωftour
∗(s, Ftour)(fk) =

n+

(

S(fk)

n

)Ftour
+

−
(

S(fk−1)

n

)Ftour
+

+n−

(

S(fk)

n

)Ftour
−

−
(

S(fk−1)

n

)Ftour
−

 .

Claim follows directly from the last equation. 2

Fine-grained Tournament Selection Operator in Genetic Algorithms 153

Note. The previous claim shows the influence of the value of the parameter Ftour

on the selection method. It can be shown that Proposition 4.3. is special case of
Proposition 4.5 (the case when fitness function is injective). In that case, for each
k ∈ {1, 2, . . . , n} is s(fk) = 1; therefore S(fk) = k.

Proposition 4.6. Let us assume that s(f) represents continuous fitness distribu-
tion. After FGTS execution (desired average size of the tournament is Ftour), ex-
pected continuous distribution of fitness s∗(f) = Ωftour

∗(s, Ftour) is

s∗(f) = Ωftour
∗(s, Ftour)(f) =

s(f)

(

n+Ftour
+

nFtour
+

(

S(f)
)Ftour

+−1
+

n−Ftour
−

nFtour
−

(

S(f)
)Ftour

−−1
)

.

Proof. The individual with fitness less or equal to f wins the tournament in case
that all competing individuals in the tournament have fitness f or less. Knowing

that probability of choosing an individual with fitness less or equal to f is S(f)
n

, it
can be obtained that:

S∗(f) = n+

(

S(f)

n

)Ftour
+

+ n−

(

S(f)

n

)Ftour
−

.

According to the definition in chapter 2, S(f) =
∫ f
f1
s(x)dx and differencing gives

s(f) =
d(S(f))

df
.

Therefore, s∗(f) is derivation of S∗(f), by f ; thus:

s∗(f) =
d
(

S∗(f)
)

df
=

d

(

n+

(

S(f)
n

)Ftour
+

+ n−
(

S(f)
n

)Ftour
−
)

df

s∗(f) =
n+Ftour

+

nFtour
+

(

S(f)
)Ftour

+−1 dS(f)

df
+

n−Ftour
−

nFtour
−

(

S(f)
)Ftour

−−1 dS(f)

df
.

2

Theorem 4.7. Reproduction rate in the FGTS is

Rtour(f) =
n+Ftour

+

nFtour
+

(

S(f)
)Ftour

+−1
+

n−Ftour
−

nFtour
−

(

S(f)
)Ftour

−−1
.

Proof. It can be concluded directly from the definition of reproduction rate and the
previous proposition (proposition 4.6):

Rtour(f) =
s∗(f)

s(f)
=

s(f)
(

n+Ftour
+

nFtour
+

(

S(f)
)Ftour

+−1
+ n−Ftour

−

nFtour
−

(

S(f)
)Ftour

−−1
)

s(f)
.

2

154 V. Filipović

Note. The previous theorem indicates that individuals with the lowest fitness have
the lowest reproduction rate and that the best fitted individuals have the highest
reproduction rate. In other words, reproduction rate for the FGTS is increasing
function of the fitness.

Theorem 4.8. Standardized selection intensity for the FGTS is

I(ftour, Fftour) =
∫ +∞

−∞
x

1√
2π

e
−x2

2

n+Ftour
+

nFtour
+

(

∫ x

−∞

1√
2π

e
−y2

2 dy

)Ftour
+−1

+

n−Ftour
−

nFtour
−

(

∫ x

−∞

1√
2π

e
−y2

2 dy

)Ftour
−−1

 dx.

Proof. Directly from the definition of the standardized selection intensity and from
Proposition 4.5. 2

FGTS, like tournament selection, can easily be decentralized.

5 COMPARISION OF THE SELECTION OPERATORS

APPLIED ON NP-HARD PROBLEM

Introduction of FGTS is justified only if it gives better results during genetic search
than the classical tournament selection. Therefore, it is necessary to compare per-
formances of the selection operators on some real-world problem (see [?]).

Combinatorial optimization problems are important part of the global optimiza-
tion. One such problem is Simple Plant Location Problem (SPLP). This problem is
also known as Uncapacitated Warehouse Location Problem or Uncapacitated Faci-
lity Location Problem.

Consider a set I = {1, . . . , m} of candidate sites for facility location, and a set
J = {1, . . . , n} of customers. Each facility i ∈ I has a fixed cost fi. Every customer
j ∈ J , has a demand bj, and cij is the unit transportation cost from facility i to
customer j.

Without loss of generality, the customer demands can be normalized to bj = 1
(proved in [?]). It has to be decided which facilities will be established, and the
quantities that will be supplied from facility i to customer j, such that the total
cost (including fixed and variable costs) is minimized.

Mathematically, the SPLP is

min

m
∑

i=1

n
∑

j=1

cijxij +
m
∑

i=1

fiyi

subject to

(∀j ∈ J)
m
∑

i=1

xij = 1

Fine-grained Tournament Selection Operator in Genetic Algorithms 155

(∀i ∈ I) (∀j ∈ J) (0 ≤ xij ≤ yi ∧ yi ∈ {0, 1})
where

• xij represents the quantity supplied from facility i to customer j,

• yi indicates whether facility i is established (yi = 1) or not (yi = 0).

Let the set of established facilities be E = {i|yi = 1} with cardinality e = |E|.
Although some special cases of the SPLP are solvable in polynomial time, in

general, SPLP is a NP-hard problem (proved in [?]). GA are successfully used to
solve some NP-hard problems (papers [?, ?, ?, ?] are examples of such approach).
That approach allows solving SPLP instances of moderate and large size within
acceptable time interval.

This problem is successfully solved in [?, ?, ?] and it is experimentally concluded
in those papers that the best results (for solving SPLP problem instances) is obtained
with the following scheme:

• The binary encoding of facility sites is used for representation. Each individual
is represented by the binary string, where one denotes that particular facility is
established, while zero shows it is not. The array yi (i = 1, . . . , m) is obtained
from the individual string. This array indicates the established facilities. Since
the capacity of the facilities has no limit, if every customer chooses the most
suitable facility (with minimal transportation cost), the total cost is minimal.

• The choice of the data structure is very important for the fast implementation of
objective value function. Beside transportation cost matrix, this implementation
also uses the indexed lists of facility sites. Two different methods for computing
objective value have been proposed. The choice of particular method depends
on the number of established facilities e. The threshold is e0 = c

√
m, where

c is constant from interval [0.4, 0.5]. Its value is obtained experimentally to
achieve the best performance. If e is large (e > e0), the algorithm is looking
for the first facility in indexed list where is yi = 1. The established facility
that is found has minimal transportation cost for given customer. In the case
of small number e, previous procedure gives poor results, so another strategy is
performed: instead of using indexed lists, this procedure uses array of ordinals.
The array o contains only established facilities. Looking for the most suitable
facility for each customer is done by searching array of ordinals.

• Uniform crossover is used as crossover operator. It uses a randomly created
crossover mask. If the crossover mask has value one in the specific bit position,
then the offspring’s bit in that position will be copied from the first parent.
Otherwise, if the mask has value zero in that bit position, then the offspring’s
bit will be copied from the second parent. A new crossover mask is generated
for each pair of parents, with probability punif that a bit is one. The probability
that a bit is zero is 1 − punif . In this implementation, the crossover rate is
pcross = 0.85, and the probability of uniform crossover is punif = 0.3.

156 V. Filipović

• The simple mutation with rate pmut that exponentially decreases from 0.4
n

to 0.15
n

is used as mutation operator. To provide faster execution, the simple mutation
operator is performed by using a Gausian distribution. Only the muted genes
are processed by this method. The number of muted genes is relatively small in
comparison to entire population. Hence, the run-time performance of a simple
mutation operator is improved without changing its nature.

• The population size is Npop = 150 individuals. GA are implemented with
steady-state replacement of generations by using elitist strategy. In every gene-
ration, only 1/3 of population (50 individuals) is replaced and 2/3 of population
(Nelite = 100 individuals) remain from the previous generation. So, 50 worst
ranked individuals in the population are replaced by the new ones. These new
individuals (1/3 of population) are generated by means of the crossover and mu-
tation. Every elite individual is passed directly into the next generation, giving
one copy of it. To prevent undeserved domination of elite individuals over the
population their fitness is decreased by the formula

fi =

{

fi − f, fi > f
0, fi ≤ f

1 ≤ i ≤ Nelite, where f = 1
Npop

∑Npop

i=1 fi is average fitness in entire population.

Duplicate individual strings are discarded, and more diversity of the population
is maintained to avoid premature convergence. Particular individual is discarded
by setting its fitness to zero.

• First generation is randomly initialized in order to maintain the maximal diver-
sity of the population.

• Maximum number of generations is Ngener = 2000, except in the case of large-
scale test instances, where is Ngener = 4000. The finishing criterion is based on
the number of consecutive generations with unchanged best individual. If that
number exceeds the value

Nrepeat =

{

2
√
mn, for ORLIB instances√
mn, for generated instances

execution of GA is stopped.

• It is not possible to prove optimality of the obtained solution by GA. If the
optimal solution is known in advance, it can be used for error measurement. In
the case when optimal solution is not known in advance, the best solution by
GA is used for error measurement.

• The run-time performance of GA in this implementation is also improved by
caching (see [?, ?]). The caching technique decreases run-rime and has no influ-
ence on other aspects of GA. It is used to avoid attempts to compute the same
objective value. If an objective value is computed for a particular string and

Fine-grained Tournament Selection Operator in Genetic Algorithms 157

the same string appears again, the cached values are used to avoid repetition of
computing.

• Rank based selection (with rank 2.5 for the best individual down to 0.7 for the
worst, by step 0.012), is used as the selection operator. For SPLP, this selection
scheme successfully prevents premature convergence in local optima and losing
the genetic material.

The instances 41–134 and A to C (used in this section) are taken from ORLIB [?].

Problem instance Size File sizes

41–44, 51, 61–64, 71–74 16x50 10KB

81–84, 91–94, 101–104 25x50 15KB

111–114, 121–124, 131–134 50x50 31KB

A–C 100x1000 1.2MB

Table 1. Parameters for SPLP instances taken from ORLIB

Almost all ORLIB instances have not sufficient size to test behavior of algorithm
on large-scale instances properly. Thus, selection strategies are tested on problem
instances generated and described in [?]. The instances, shown in Table 2, have
a small number of useless facility sites (facility sites that have no chance to be
established), and a very large number of suboptimal solutions. Therefore, solving
by dual based and other Branch-and-Bound techniques is very difficult for generated
instances.

Problem instance Size File sizes

MO1-MO5 100x100 100KB

MP1-MP5 200x200 400KB

MQ1-MQ5 300x300 900KB

MR1-MR5 500x500 2.4MB

MS1-MS5 1000x1000 9.5MB

Table 2. Parameters for generated instances

In comparison among selection operators over SPLP problem instances, all pre-
viously determined parameters (those already proven as the best) are adopted with-
out change. Three types of selection methods are compared:

• Rank based selection, with parameters that are previously described.

• Classical tournament selection, with tournament size Ntour ∈ {5, 6}.
• Fine-grained tournament selection with desired average tournament size Ftour ∈
{4.5, 5.5, 5.6, 5.8, 6.2, 6.4}.

Application of the FGTS on SPLP gives better results in comparison to classical
tournament selection (see Table 3). These improvements are not small and become

158 V. Filipović

even bigger on large problem instances. Moreover, FGTS shows better results than
the previous champion (linear ranking).

Results from these tables are obtained by running GA on Pentium III/600MHz
PC, with 330MB memory size. All these values are averages determined from 20 in-
dependent runs per problem instance.

Due to better visibility, results are summarized per instance group. Columns in
tables represent problem instance groups and rows represent selection type.

Table 3 contains the results for rank based selection, tournament selection
(Ntour = 5, 6) and FGTS (Ftour = 4.5, 5.5, 5.6, 5.8, 6.2, 6.4) for all instances. Every
cell in the table has two values. The upper value is the average number of generations
and lower value is the average running time (in seconds).

In all executions of every problem instance, the result that is equal to optimal or
previously best-known solution is obtained. The best times for each instance group
in table are bolded.

Selection 41–74 81–104 111–134 A–C MO MP MQ MR MS
Rank based 17.7 33.6 109.2 1328 112.4 181.7 269.9 423.7 879.4

(r = 2.5 to 0.7) 0.10 0.17 0.51 16.28 0.59 1.18 2.69 4.68 23.18
FGTS 10.4 34.4 145.3 1633 76.8 131.6 205.9 347 746.9

(Ftour = 4.5) 0.07 0.17 0.65 16.78 0.46 0.83 1.51 3.47 17.24
T 9.1 49.1 128.9 1433 85.2 128.6 206.2 357 732.4

(Ntour = 5) 0.06 0.21 0.52 12.72 0.36 0.67 1.28 3.14 15.78
FGTS 9 53.5 136.6 1209 96.4 127.9 208.6 340.6 756.1

(Ftour = 5.5) 0.06 0.24 0.62 12.24 0.49 0.79 1.51 3.31 16.77

FGTS 8.8 41.3 136.3 1694 83.6 131.5 192.1 343.4 723.6

(Ftour = 5.6) 0.05 0.18 0.55 12.47 0.35 0.55 0.93 2.52 14.47

FGTS 8.9 46.6 151.2 2347 92.2 122.8 204.4 345.7 766.2
(Ftour = 5.8) 0.05 0.20 0.61 16.81 0.38 0.51 0.99 2.53 14.94

T 8.8 67.1 146 1078 96.7 131.3 210.4 332.4 743.8
(Ntour = 6) 0.05 0.30 0.65 10.74 0.49 0.81 1.50 3.19 16.31

FGTS 8.5 77.1 164.4 1890 83.5 122.6 207 345.6 740.5
(Ftour = 6.2) 0.05 0.34 0.73 18.22 0.43 0.76 1.47 3.31 16.16

FGTS 8.8 87.1 148.6 2076 87.4 130.7 200.3 340.7 721.3
(Ftour = 6.4) 0.05 0.38 0.66 20.06 0.44 0.81 1.42 3.24 15.65

Table 3. Comparison of selection operators for ORLIB instances 41–74, 81–104, 111–134
and A–C and for generated instances MO, MP, MQ, MR, MS

In most cases, the best results (or results that are very close to the best) are
produced by FGTS, with (Ftour = 5.6) (marked with double line). Improvement to
other selection method is significant (usually 10%–20%). The improvement grows
with the size of the instances.

6 CONCLUSION

In this paper Fine-grained Tournament Selection (FGTS) is presented. FGTS is
generalization of the classical tournament selection and it keeps all its good features.

FGTS is applied to Simple Plant Location Problem (SPLP). Such approach is
very successful in practice and is recommended for large-scale problem instances

Fine-grained Tournament Selection Operator in Genetic Algorithms 159

(more than 1000 facility locations and customers). On SPLP, FGTS significantly
outperforms both the rank based and the classical tournament selection.

It would be interesting to design and analyze more sophisticated FGTS op-
erators, that have more than two sizes of tournament and where the number of
competitors in specific tournament depends on fitness landscape (defined in [14])
and/or network topology (in the case of Parallel Genetic Algorithms).

REFERENCES

[1] Baeck, T.—Hoffmeister, F.—Schwefel H. P.: A Survey of Evolution Strate-
gies. In: Proc. of the 4th Int. Conf. on Genetic Alghorithms — ICGA ’91, pp. 2–9.

[2] Baeck, T.—Hoffmeister, F.: Extended Selection Mechanisms in Genetic Al-
gorithms. In: Proceedings of the Fourth International Conference on Genetic Al-
ghorithms — ICGA ’91, Morgan Kaufmann, San Mateo, CA, 1991, pp. 92–99.

[3] Baeck, T.: Self-adaptation in Genetic Algorithms. In: Proceedings of the First
European Conference on Artificial Life, MIT Press, 1992.

[4] Baeck, T.: Selective Pressure in Evolutionary Algorithms: A Characterization of

Selection Mechanisms. In: Proceedings of the First IEEE Conference on Evolutionary
Computation — ICEC ’94, 1994, pp. 57–62.

[5] Baeck, T.: Generalized Convergence Models for Tournament and (λ, µ)−Selection.
In: Proceedings of the Sixth International Conference on Genetic Alghorithms —

ICGA ’95, Morgan Kaufmann, San Mateo, CA, 1995, pp. 2–8.

[6] Bauer, R. J. Jr.: Genetic Alghorithms and Investment Strategies, John Wi-
ley&Sons, Inc, New York, 1984.

[7] Beasley, J. E.: Lagrangean heuristic for location problems. European Journal of
Operational Research, Vol. 65, 1993, pp. 383–399.

[8] Beasley, J. E.: Obtaining Test Problems via Internet. Journal of Global Optimiza-
tion, Vol. 8, 1996, pp. 429–433, http://mscmga.ms.ic.ac.uk/info.html.

[9] Blickle, T.—Thiele, L.: A Mathematical Analysis of Tournament Selection.
In: Proceedings of the Sixth International Conference on Genetic Alghorithms —
ICGA ’95, Morgan Kaufmann, San Mateo, CA, 1995, pp. 9–16.

[10] Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms, Kluwer Aca-
demic Publishers, Boston, 2000.

[11] De Jong, K. A.—Sarma J.: On Decentralizing Selection Algorithms. In: Pro-
ceedings of the Sixth International Conference on Genetic Alghorithms — ICGA ’95,
Morgan Kaufmann, San Mateo, CA, 1995, pp. 17–25.

[12] De La Maza, M.—Tidor, B.: An Analysis of Selection Procedures with Particular
Attention Paid to Proportional and Boltzmann Selection. In: Proceedings of the Fifth
International Conference on Genetic Alghorithms — ICGA ’93, Morgan Kaufmann,
San Mateo, CA, 1993, pp. 124–131.

[13] Filipovic, V.—Tosic, D.—Kratica, J.: Experimental Results in Applying of
Fine-grained Tournament Selection. In: Proceedings of the 10th Congress of Yugoslav
Mathematicians, Belgrade, 2001, pp. 331–336.

160 V. Filipović

[14] Forest, S.—Mitchell, M.: Relative Building-Block Fitness and the Building-

Block Hypothesis. In: Foundation of Genetic Alghorithms 2 — FOGA 2, Morgan
Kaufmann, San Mateo, CA, 1992, pp. 109–126.

[15] Goldberg, D. E.: Genetic Alghorithms in Search, Optimization&Machine Learn-
ing, Addison-Wesley Publishing Company Inc, Reading, MA, 1989.

[16] Goldberg, D. E.—Deb, K.: A Comparative Analysis of Selection Schemes Used
in Genetic Algorithm. In: Rawlins B. (Eds.): Foundations of Genetic Alghorithms —
FOGA , Morgan Kaufmann, San Mateo, CA, 1991, pp. 69–93.

[17] Harvik, G. R.: Finding Multimodal Solutions Using Restricted Tournament Selec-
tion. In: Proceedings of the Sixth International Conference on Genetic Alghorithms—
ICGA ’95, Morgan Kaufmann, San Mateo, CA, 1995. pp. 24–31.

[18] Holland, J. H.: Adaptation in Natural and Artificial Systems. MIT Press, Cam-
bridge, Massachusetts, 1992.

[19] Kratica, J.—Filipovic, V.—Tosic, D.: Solving the Uncapacitated Warehouse
Location Problem by SGA with Add-Heuristic. In: Proceedings of the XV ECPD
International conference on material handling and warehousing, Faculty of Mechanical
Engineering, Belgrade, 1998, pp. 2.28–2.32.

[20] Kratica, J.: Improving Performances of the Genetic Algorithm by Caching. Com-
puters and Artificial Intelligence, Vol. 18, 1999, No. 3, pp. 271–283.

[21] Kratica, J.: Improvement of Simple Genetic Algorithm for Solving the Uncapa-

citated Warehouse Location Problem. Advances in Soft Computing — Engineering
Design and Manufacturing, Springer-Verlag London Ltd., 1999, pp. 390–402.

[22] Kratica, J.—Tosic, D.—Filipovic, V.—Ljubic, I.: Genetic Algorithm for De-
signing a Spread-Spectrum Radar Polyphase Code. In: Proceedings of the 5th Online
World Conference on Soft Computing Methods in Industrial Applications — WSC5,
September 2000, pp. 191–197.

[23] Kratica, J.—Filipovic, V.—Tosic, D.—Ljubic, I.: Solving the Simple Plant
Location Problem by Genetic Algorithm. RAIRO Operations Research, Vol. 35, 2001,
No. 1, pp. 127–142.

[24] Kratica, J.—Tosic, D.—Filipovic, V.—Ljubic, I.: A Genetic Algorithm for
the Uncapacitated Network Design Problem. Soft Computing in Industry — Recent
Applications, Springer-Verlag, Berlin, 2002, pp. 329–338.

[25] Kuo, T.—Hwang, S.Y.: A Genetic Algorithm with Disruptive Selection. In: Pro-
ceedings of the Fifth International Conference on Genetic Alghorithms — ICGA ’93,
Morgan Kaufmann, San Mateo, CA, 1993, pp. 65–69.

[26] Michalewicz, Z.: Genetic Alghorithms + Data Structures = Evolution Programs,

third edition, Springer, Berlin, 1995.

[27] Neri, F.—Saitta, L.: Analysis of Genetic Alghorithms Evolution under Pure Selec-
tion. In: Proceedings of the Sixth International Conference on Genetic Alghorithms—
ICGA ’95, Morgan Kaufmann, San Mateo, CA, 1995, pp. 32–41.

[28] Reevs, C. R.: Genetic Alghorithms and Neighbourhood Search. In: Evolutionary
Computing, AISB Workshop Leeds, april 1994, pp. 115–130.

Fine-grained Tournament Selection Operator in Genetic Algorithms 161

[29] Thierens, D.—Goldberg, D.: Convergence Models of Genetic Algorithm Selec-

tion Schemes. In: Parallel Problem Solving from Nature — PPSN III, Lecture Notes
in Computer Science 866, Springer-Verlag, Berlin, 1994, pp. 119–129.

[30] Whitley, D.: The GENITOR Algorithm and Selection Pressure: Why Rank-Based

Allocation of Reproductive Trials is Best. In: Proceedings of the Third International
Conference on Genetic Alghorithms — ICGA ’89, Morgan Kaufmann, San Mateo,
CA, 1989, pp. 116–123.

Vladimir Filipovi� (born in 1968) received his Master degree
in computer science from the Department of Computer Science
of the Faculty of Mathematics in Belgrade, on the theme “Propo-
sition for improvement tournament selection operator in genetic
algorithms”. He works as a teaching assistant at the above
department. His research interests include evolutionary algo-
rithms, Web services (SOAP), operational research and software
design.

