
Computing and Informatics, Vol. 22, 2003, 257–283

CafeOBJ: LOGICAL FOUNDATIONS
AND METHODOLOGIES

Răzvan Diaconescu

Institute of Mathematics “Simion Stoilow”
PO Box 1-764, Bucharest 014700, Romania
e-mail: Razvan.Diaconescu@imar.ro

Kokichi Futatsugi

Graduate School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)
e-mail: kokichi@jaist.ac.jp

Kazuhiro Ogata

NEC Software Hokuriku, Ltd. / JAIST
e-mail: ogatak@acm.org

Abstract. CafeOBJ is an executable industrial strength multi-logic algebraic speci-
fication language which is a modern successor of OBJ and incorporates several new
algebraic specification paradigms. In this paper we survey its logical foundations
and present some of its methodologies.

Keywords: CafeOBJ, algebraic specification, institutions, abstract machines

1 INTRODUCTION

CafeOBJ is an executable industrial strength algebraic specification language which
is a modern successor of OBJ and incorporates several new algebraic specification

258 R. Diaconescu, K. Futatsugi, K. Ogata

paradigms. Its definition is given in [10], a presentation of its logical foundations
can be found in [12], and a presentation of some methodologies developed around
CafeOBJ can be found in [13, 14]. CafeOBJ is intended to be mainly used for
system specification, formal verification of specifications, rapid prototyping, or even
programming.

In the first part of this paper we survey the mathematical foundations of
CafeOBJ, while in the second part we survey some of its methodologies, including
some recent ones.

Let us briefly overview some of CafeOBJ most important features.

1.1 Equational Specification and Programming

Equational specification and programming is inherited from OBJ [23, 16] and con-
stitutes the basis of the language, the other features being somehow built on top
of it. As with OBJ, CafeOBJ is executable (by term rewriting), which gives an
elegant declarative way of functional programming, often referred as algebraic pro-
gramming.1 As with OBJ, CafeOBJ also permits equational specification modulo
several equational theories such as associativity, commutativity, identity, idempo-
tence, and combinations between all these. This feature is reflected at the execution
level by term rewriting modulo such equational theories.

1.2 Behavioural Specification

Behavioural specification [33, 34, 19, 20, 11, 24] provides a generalisation of ordinary
algebraic specification. Behavioural specification characterises how objects (and
systems) behave, not how they are implemented. This new form of abstraction can
be very powerful in the specification and verification of software systems since it
naturally embeds other useful paradigms such as concurrency, object-orientation,
constraints, nondeterminism, etc. (see [20] for details). Behavioural abstraction
is achieved by using specification with hidden sorts and a behavioural concept of
satisfaction based on the idea of indistinguishability of states that are observationally
the same, which also generalises process algebra and transition systems (see [20]).
CafeOBJ behavioural specification paradigm is based on coherent hidden algebra
(abbreviated ‘CHA’) of [11], which is both a simplification and extension of classical
hidden algebra of [20] in several directions, most notably by allowing operations
with multiple hidden sorts in the arity. Coherent hidden algebra comes very close
to the “observational logic” of Bidoit and Hennicker [24].

CafeOBJ directly supports behavioural specification and its proof theory through
special language constructs, such as

• hidden sorts (for states of systems),

1 Although this paradigm may be used as programming, from the applications point of
view, this aspect is secondary to its specification side.

CafeOBJ: Logical Foundations and Methodologies 259

• behavioural operations (for direct “actions” and “observations” on states of sys-
tems),

• behavioural coherence declarations for (non-behavioural) operations (which may
be either derived (indirect) “observations” or “constructors” on states of sys-
tems), and

• behavioural axioms (stating behavioural satisfaction).

The main behavioural proof method is based on coinduction. In CafeOBJ, coin-
duction can be used either in the classical hidden algebra sense [20] for proving
behavioural equivalence of states of objects, or for proving behavioural transitions
(which appear when applying behavioural abstraction to rewriting logic).

Besides language constructs, CafeOBJ supports behavioural specification and
verification by several methodologies. CafeOBJ currently highlights a methodology
for concurrent object composition which features high reusability not only of speci-
fication code but also of verifications [10, 25]. Behavioural specification in CafeOBJ

may also be effectively used as an object-oriented (state-oriented) alternative for
classical data-oriented specifications. Experiments seem to indicate that an object-
oriented style of specification even of basic data types (such as sets, lists, etc.) may
lead to higher simplicity of code and drastic simplification of verification process [10].

Behavioural specification is reflected at the execution level by the concept of
behavioural rewriting [10, 11] which refines ordinary rewriting with a condition en-
suring the correctness of the use of behavioural equations in proving strict equalities.

1.3 Rewriting Logic Specification

Rewriting logic specification in CafeOBJ is based on a simplified version of
Meseguer’s rewriting logic (abbreviated as ‘RWL’) [27] specification framework for
concurrent systems which gives a non-trivial extension of traditional algebraic spe-
cification towards concurrency. RWL incorporates many different models of con-
currency in a natural, simple, and elegant way, thus giving CafeOBJ a wide range
of applications. Unlike Maude [4], the current CafeOBJ design does not fully sup-
port labelled RWL which permits full reasoning about multiple transitions between
states (or system configurations), but provides proof support for reasoning about
the existence of transitions between states (or configurations) of concurrent systems
via a built-in predicate with dynamic definition encoding into equational logic both
the proof theory of RWL and the user defined transitions (rules). At the level of the
semantics, this amounts to the fact that the CafeOBJ RWL models are preorders
rather than categories. This avoids many of the semantical complications resulting
from the labelled version of RWL.

From a methodological perspective, CafeOBJ develops the use of RWL transi-
tions for specifying and verifying the properties of declarative encoding of algorithms
(see [10]) as well as for specifying and verifying transition systems. The restriction
of RWL to its unlabelled version is also motivated by the fact that RWL plays only
a secondary importance role in CafeOBJ methodologies.

260 R. Diaconescu, K. Futatsugi, K. Ogata

1.4 Module System

The principles of the CafeOBJ module system are inherited from OBJ which builds
on ideas first realized in the language Clear [2], most notably institutions [17, 15].
CafeOBJ module system features

• several kinds of imports,

• sharing for multiple imports,

• parameterised programming allowing

– multiple parameters,

– views for parameter instantiation,

– integration of CafeOBJ specifications with executable code in a lower level
language,

• module expressions.

However, the concrete design of the language revises the OBJ view on importation
modes and parameters [10].

1.5 Type System and Partiality

CafeOBJ has a type system that allows subtypes based on order sorted algebra (ab-
breviated ‘OSA’) [21, 18]. This provides a mathematically rigorous form of runtime
type checking and error handling, giving CafeOBJ a syntactic flexibility comparable
to that of untyped languages, while preserving all the advantages of strong typing.
CafeOBJ does not directly do partial operations but rather handles them by using
error sorts and a sort membership predicate in the style of membership equational
logic (abbreviated ‘MEL’) [28].

2 INSTITUTIONAL SEMANTICS

Today one of the fundamental principles of algebraic specification research and de-
velopment is that each algebraic specification and programming languge or system
has an underlying logic in which all language constructs can be rigorously defined as
mathematical entities and such that the semantics of specifications or programs is
given by the model theory of this underlying logic. All modern algebraic specifica-
tion languges, including CafeOBJ, follow strictly this principle, other two important
modern algebraic specification languages being Casl [31] and Maude [4].

On the other hand, there is a very big number of algebraic specification languages
in use, some of them tailored to specific classes of applications, hence a large class of
logics underlying algebraic specification languages. However much of the algebraic
specification phenomena is independent of the actual language and its underlying
logic. This potential to do algebraic specification at a general level is realized by

CafeOBJ: Logical Foundations and Methodologies 261

the theory of institutions [17], which is a categorical abstract model theoretic meta-
theory of logics originally intended for specification and programming, but also very
suitable for model theory [9, 8, 36].

The use of the concept of institution in algebraic specification is manifold:

• It provides a rigorous concept of logic underlying algebraic specification lan-
guages, a logic thus being a mathematical entity.

• It provides a framework for developing basic algebraic specification concepts
and results independently of the actual underlying logic. This leads to greater
conceptual clarity, apropriate uniformity and unity, with the benefit of a simpler
and more efficient top-down approach on algebraic specification theory which
contrasts the conventional bottom-up approach.

• It provides a framework for rigorous translations, encodings, and representations
between algebraic specification systems via various morphism concepts between
institutions.

2.1 Institutions

Institution theory assumes some familiarity with category theory. We generally use
the same notations and terminology as Mac Lane [26], except that composition is
denoted by “;” and written in the diagrammatic order. The application of functions
(functors) to arguments may be written either normally using parentheses, or else
in diagrammatic order without parentheses, or, more rarely, by using subscripts or
superscripts. The category of sets is denoted as Set, and the category of categories2

as Cat. The opposite of a category C is denoted by Cop. The class of objects of
a category C is denoted by |C|; also the set of arrows in C having the object a as
source and the object b as target is denoted as C(a, b).

Definition 1. An institution (Sign, Sen,Mod, |=) consists of

1. a category Sign, whose objects are called signatures,

2. a functor Sen : Sign → Set, giving for each signature a set whose elements are
called sentences over that signature,

3. a functor Mod : Signop → Cat giving for each signature Σ a category whose
objects are called Σ-models, and whose arrows are called Σ-(model) homomor-
phisms, and

4. a relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sign|, called Σ-satisfaction,

such that for each morphism ϕ : Σ → Σ′ in Sign, the satisfaction condition

M ′ |=Σ′ Sen(ϕ)(e) iff Mod(ϕ)(M ′) |=Σ e

2 We steer clear of any foundational problem related to the “category of all categories”;
several solutions can be found in the literature (see for example [26]).

262 R. Diaconescu, K. Futatsugi, K. Ogata

holds for each M ′ ∈ |Mod(Σ′)| and e ∈ Sen(Σ). We may denote the reduct functor
Mod(ϕ) by ↾ϕ and the sentence translation Sen(ϕ) simply by ϕ(). When M =
M ′↾ϕ we say that M ′ is an expansion of M along ϕ.

The signatures of the institution provide the syntactic entities for the speci-
fication language, the models provide possible implementations, the sentences are
formal statements encoding the properties of the implementations, and the satisfac-
tion relation tells when a certain implementation satisfies a certain property.

The institution underlying CafeOBJ is defined in [12].

2.2 Specifications

The concept of CafeOBJ specification is a special case of structured specification
in an arbitary institution instantiated to the CafeOBJ institution. Our institution-
independent structured specifications follows [35], however CafeOBJ specifications
can be constructed by employing only a subset of the specification building opera-
tions defined in [35].3

Definition 2. Given an institution (Sign, Sen,Mod, |=), its structured specifica-
tions (or just specifications for short) are defined from the finite presentations by
iteration of the specification building operators presented below. The semantics of
each specification SP is given by its signature Sig[SP] and its category of models
Mod[SP], where Mod[SP] is a full subcategory of Mod(Sig[SP]).

PRES. Each finite presentation (Σ, E) (i.e. Σ is a signature and E is a finite set of
Σ-sentences) is a specification such that

• Sig[(Σ, E)] = Σ, and

• Mod[(Σ, E)] = Mod(Σ, E).4

UNION. For any specifications SP1 and SP2 such that Sig[SP1] = Sig[SP2] we
can take their union SP1 ∪ SP2 with

• Sig[SP1 ∪ SP2] = Sig[SP1] = Sig[SP2], and

• Mod[SP1 ∪ SP2] = Mod[SP1] ∩Mod[SP2].

TRANS. For any specification SP and and signature morphism ϕ : Sig(SP) → Σ′

we can take its translation along ϕ denoted by SP ⋆ ϕ and such that

• Sig[SP ⋆ ϕ] = Σ′, and

• Mod[SP ⋆ ϕ] = {M ′ ∈ Mod(Σ′) | M ′↾ϕ ∈ Mod[SP]}.

FREE. For any specification SP′ and signature morphism ϕ : Σ → Sig[SP′] we can
take the persistently free specification of SP′ along ϕ denoted SP′ϕ and such that

3
CafeOBJ specifications do not involve the “derivation” building operation.

4 Mod(Σ, E) is the subcategory of all Σ-models satisfying all sentences in E.

CafeOBJ: Logical Foundations and Methodologies 263

• Sig[SP′ϕ] = Sig[SP′], and

• Mod[SP′ϕ] =
{M ′ ∈ Mod[SP′] | M ′ strongly persistently βSP′ ;Mod(ϕ)-free }, where βSP′

is the subcategory inclusion Mod[SP′] → Mod(Sig[SP′]).

The strongly persistent freeness property says that for each N ′ ∈ Mod[SP′] and
for each model homomorphism h : M ′↾ϕ → N ′↾ϕ there exists an unique model
homomorphism h′ : M ′ → N ′ such that h′↾ϕ = h.

Definition 3. A specification morphism ϕ : SP1 → SP2 between specifications
SP1 and SP2 is a signature morphism ϕ : Sig[SP1] → Sig[SP2] such that M↾ϕ ∈
Mod[SP1] for each M ∈ Mod[SP2].

Specifications and their morphisms form a category Spec.

With the exception of ‘including’ or ‘using’ imports (see [10]), any CafeOBJ

specification construct can be reduced to the kernel specification building language
of Definition 2. In the case of initial denotations, ‘including’ and ‘using’ imports
can be included by adding corresponding variants of the building operation FREE.

For example, CafeOBJ imports correspond to specification inclusions (a simple
import can be obtained as union (UNION) between a structured specification and
a presentation (PRES)), module parameters to specification injections, ‘views’ to ar-
bitrary specification morphisms, parameter instantiations to specification pushouts
(obtained by translations (TRANS) and union (UNION)), modules with initial de-
notation are obtained as free specifications (FREE), etc.

3 THE CAFEOBJ INSTITUTION

3.1 Grothendieck Institutions

3.1.1 Institution Morphisms

CafeOBJ is a multi-logic language. This means that different features of CafeOBJ
require different underlying institutions. For example, behavioural specification has
coherent hidden algebra [11] as underlying institution, while rewriting logic speci-
fication has rewriting logic as underlying institution. Both institutions are in fact
extensions of the more conventional equational logic institution. On the other hand,
they can be combined to ‘coherent hidden rewriting logic’ which extends both of
them. Other features of CafeOBJ require other institutions. Therefore, consequently
to its multi-logic aspect, CafeOBJ involves a system of institutions and extension
relationships between them rather than a single institution.

The solution to the multi-logic aspect of CafeOBJ is given by the concept of
Grothendieck institution which flattens the underlying system of institutions to
a single institution in which the flattened components still retain their identity.
Grothendieck institutions have been invented in [7], but their spirit already ap-
peared in [5], and although initially motivated by CafeOBJ semantics, they provide

264 R. Diaconescu, K. Futatsugi, K. Ogata

the solution for the semantics of any multi-logic language. For example, CASL,
when used together with its extensions, has also adopted Grothendieck institutions
as its semantics [29].

Institution morphism [17] provide the necessary concept for relating different
institutions:

Definition 4. An institution morphism
(Φ, α, β) : (Sign′, Sen′,Mod′, |=′) → (Sign, Sen,Mod, |=) consists of

1. a functor Φ : Sign′ → Sign,

2. a natural transformation α : Φ; Sen ⇒ Sen′, and

3. a natural transformation β : Mod′ ⇒ Φop;Mod

such that for any signature Σ′ the following satisfaction condition holds

M ′ |=′
Σ′ αΣ′(e) iff βΣ′(M ′) |=Σ′Φ e

for any model M ′ ∈ Mod′(Σ′) and any sentence e ∈ Sen(Σ′Φ).
An adjoint institution morphism is an institution morphism such that the func-

tor Φ : Sign′ → Sign has a left adjoint.5

The institutions and their morphisms with the obvious composition form a ca-
tegory denoted Ins.

This type of structure preserving institution mapping, introduced already in the
seminal paper [17], has a forgetful flavour in that it maps from a “richer” institution
to a“poorer” institution. The dual concept of institution mapping, called comor-
phism [22] in which the mapping between the categories of signatures is reversed,
can be interpreted in the actual examples as embedding a “poorer” institution into
a “richer” one. Any adjunction between the categories of signatures determines
a ‘duality’ pair of institution morphism and institution comorphism; this has been
observed first time in [38] and [1]. Below we may notice that all institution mor-
phisms involved in the semantics of CafeOBJ are adjoint.

3.1.2 Indexed Institutions

Let us now recall the concept of indexed category [32]. A good reference for indexed
categories also discussing applications to algebraic specification theory is [37]. An
indexed category [37] is a functor B : Iop → Cat; sometimes we denote B(i) as Bi

(or Bi) for an index i ∈ |I | and B(u) as Bu for an index morphism u ∈ I . The
following ‘flattening’ construction providing the canonical fibration associated to an
indexed category is known under the name of the Grothendieck construction, and
plays an important role in mathematics. Given an indexed category B : Iop → Cat,
let B♯ be the Grothendieck category having 〈i, Σ〉, with i ∈ |I | and Σ ∈ |Bi|, as

5 Adjoint institution morphisms have been previously called ‘embedding’ institution
morphisms in [5] and [7].

CafeOBJ: Logical Foundations and Methodologies 265

objects and 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉, with u ∈ I(i, i′) and ϕ : Σ → Σ′Bu, as arrows.
The composition of arrows in B♯ is defined by 〈u, ϕ〉; 〈u′, ϕ′〉 = 〈u;u′, ϕ;(ϕ′Bu)〉.

Indexed institutions [7] extend indexed categories to institutions.

Definition 5. Given a category I of indices, an indexed institution J is a functor
J : Iop → Ins.

For each index i ∈ |I | let us denote the institution J i by (Signi,Modi, Seni, |=i)
and for each index morphism u ∈ I let us denote the institution morphism J u by
(Φu, αu, βu).

3.1.3 Grothendieck Institutions

Grothendieck institutions [7] extend the flattening Grothendieck construction from
indexed categories to indexed institutions.

Definition 6. The Grothendieck institution J ♯ of an indexed institution J : Iop →
Ins is defined as follows:

1. its category of signatures Sign♯ is the Grothendieck category of the indexed
category of signatures Sign : Iop → Cat of the indexed institution J ,

2. its model functor Mod♯ : (Sign♯)op → Cat is given by

• Mod♯(〈i, Σ〉) = Modi(Σ) for each index i ∈ |I | and signature Σ ∈ |Signi|,
and

• Mod♯(〈u, ϕ〉) = βu
Σ′ ;Modi(ϕ) for each 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉,

3. its sentence functor Sen♯ : Sign♯ → Set is given by

• Sen♯(〈i, Σ〉) = Seni(Σ) for each index i ∈ |I | and signature Σ ∈ |Signi|, and

• Sen♯(〈u, ϕ〉) = Seni(ϕ);αu
Σ′ for each 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉,

4. M |=♯
〈i,Σ〉 e iff M |=i

Σ e for each index i ∈ |I |, signature Σ ∈ |Signi|, model

M ∈ |Mod♯(〈i, Σ〉)|, and sentence e ∈ Sen♯(〈i, Σ〉).

By the satisfaction condition of the institution J i for each index i ∈ |I | and the
satisfaction condition of the institutionmorphism J u for each index morphism u ∈ I :

Proposition 1. J ♯ is an institution and for each index i ∈ |I |, there exists a cano-
nical institution morphism (Φi, αi, βi) : J i → J ♯ mapping any signature Σ ∈ |Signi|
to 〈i, Σ〉 ∈ |Sign♯| and such that the components of αi and βi are identities.

By [5, 7], under adequate conditions, the important properties of institutions
(including theory colimits, free construction, called liberality, model amalgamation,
called exactness, inclusion systems) can be ‘globalized’ from the components of the
indexed institution to the Grothendieck institution.

266 R. Diaconescu, K. Futatsugi, K. Ogata

If one replaces institution morphisms to institution comorphisms, one can define
the so-called ‘comorphism-based’ Grothendieck institutions [30]. When the institu-
tion morphisms of the indexed institution are adjoint, the Grothendieck institution
and the corresponding comorphism-based Grothendieck institution are isomorphic.
It will be easy to notice that this actually happens in the case of CafeOBJ.

3.2 The CafeOBJ Cube

Now we are ready to define the actual CafeOBJ institution as the Grothendieck
institution of the indexed institution below, called the CafeOBJ cube. (The actual
CafeOBJ cube consists of the full arrows, the dotted arrows denote the morphisms
from components of the indexed institution to the Grothendieck institution.)

HA

MSA RWL

HRWL

OSRWL

HOSRWL

CafeOBJ

HOSA

OSA

H = hidden
A = algebra
O = order
M =many
S = sorted
RWL = rewriting logic

The details of the institutions of the CafeOBJ cube can be found in [12]. Below
we present them briefly.

The institution MSA of many-sorted algebra has the so-called ‘algebraic signa-
tures’ (consisting of sets of sort symbols and sorted function symbols) as signatures,
algebras interpreting the sort symbols as sets and the function symbols as func-
tions, and (possibly conditional) universally quantified equations as sentences. The
satisfaction between algebras and equations is the standard Tarskian satisfaction.

As in other algebraic specification languages, conditions of equations are encoded
as Boolean-values terms, hence in reality MSA should be thought as a constraint
equational logic in the sense of [6]. Alternatively, one may adopt membership equa-
tional logic [28] as the base equational logic institution.

OSA extends the MSA institution with order sortedness such that the set of
sorts of a signature is a partially ordered set rather than a discrete set, and alge-
bras interpret the subsort relationship as set inclusion. The forgetful institution
morphism from OSA to MSA just forgets the order sortedness.

The institution RWL has the same signatures as MSA but the models interpret
the sort symbols as preorders and the function symbols as preorder functors (i.e.
functors between preorders). Besides equations, RWL has other sentences too, the
so-called ‘transitions’ which can be regarded as of one-directional equations not
obeying the symmetry rule. Their satisfaction by the models is determined by the

CafeOBJ: Logical Foundations and Methodologies 267

preorder relation between the interpretation of the terms of the transition. The
forgetful institution morphism from RWL to MSA essentially forgets the preorder
relationship between the elements of models.

Signatures of the institution HA of ‘coherent hidden algebra’ [11] are special
MSA signatures in which the set of sort symbols is divided into ‘visible’ sorts for
the data and ‘hidden sorts’ for states (of abstract machines) and we mark a sub-
set of the function symbols as ‘behavioural’. Behavioural function symbols must
have exactly one hidden sort in the arity. Besides ordinary strict equations, HA has
also ‘behavioural equations’ and ‘coherence declarations’. An algebra satisfies a be-
havioural equation when all strings of applications of behavioural functions to the
interpretation of the sides of the equation give the same results in the visible sorts.
Coherence declarations can be regarded as just abbreviations for a special type of
conditional behavioural equations (see [11, 12] for details). There is a forgetful in-
stitution morphism from HA to MSA forgetting the distinction between visibile and
hidden.

These extensions of MSA towards three different paradigms can be all combined
into HOSRWL (see [12] for details). All institutions of the CafeOBJ cube can be
seen as sub-institution of HOSRWL by the adjoint comorphisms corresponding to
the forgetful institution morphisms.

Various extensions of CafeOBJ can be further considered by transforming the
CafeOBJ cube into a ‘hyper-cube’ and by flattening it to a Grothendieck institution.

Some comparison between CafeOBJ on one hand, and CASL and Maude on the
other hand, two efforts very close to CafeOBJ, can be made at the level of their
underlying institutions. Maude is based on labelled rewriting logic, built on top of
membership equational logic, while CASL is based on order sorted partial first order
logic.

3.3 Proof Calculus

The proof calculus of CafeOBJ is obtained by flattening the ‘indexed’ proof calculus
corresponding to the CafeOBJ cube, consisting of well known proof calculi for each of
the CafeOBJ institutions. Recall that while the equational and rewriting logic proof
calculi are sound and complete, the behavioural proof calculus is only sound [3]. It
is rather easy to remark that by falttening, the soundness and the completeness of
the proof calculus can be ‘globalized’ from the components of the indexed logic to
the Grothendieck logic.

4 DESCRIPTION AND VERIFICATION OF DATA TYPES

Data types are described in terms of initial algebra [42]. In this section, three data
types are used to explain how to describe data types and how to verify lemmas on
the data types. Each of the data types is declared in one module. The data types are
process IDs, labels and queues. The three data types are used in the next section,
where we discuss a mutual exclusion program using a queue.

268 R. Diaconescu, K. Futatsugi, K. Ogata

Suppose that we need an arbitrary number of process IDs instead of a fixed
number of specific process IDs. Therefore, process IDs are declared as follows:

mod* PID {

[Pid]

op _=_ : Pid Pid -Bool {comm}

var I : Pid

eq (I = I) = true .

}

The module denotes an arbitrary set of process IDs, which is designated by keyword
mod*. The keyword indicates that the module is a loose semantics declaration,
meaning an arbitrary model (implementation) that respects all requirements written
in the module.

Labels are the names given to atomic commands in the program. We need three
specific labels, which are l1, l2 and cs. Therefore, labels are declared as follows:

mod! LABEL {

[Label]

ops l1 l2 cs : -Label

op _=_ : Label Label -Bool {comm}

var L : Label

eq (L = L) = true .

eq (l1 = l2) = false .

eq (l1 = cs) = false .

eq (l2 = cs) = false .

}

The module denotes the exact three labels, which is designated by keyword mod!.
The keyword indicates that the module is a tight (initial) semantics declaration,
meaning the smallest model (implementation) that respect all requirements written
in the module.

Queues of arbitrary data types are defined, instead of those of a specific data
type. Such queues are declared in a parameterized module. Therefore, we need to
declare a module that is used as a formal parameter of the parameterized module.
The module is declared as follows:

mod* EQTRIV {

[Elt]

op _=_ : Elt Elt -Bool {comm}

}

The formal parameter indicates the constraint of actual parameters with which
the parameterized module is instantiated, but does not indicate a specific module.
Therefore, module EQTRIV should be interpreted by loose semantics.

Then, the parameterized module is declared as follows:

CafeOBJ: Logical Foundations and Methodologies 269

mod! QUEUE (D :: EQTRIV) {

[Queue]

op empty : -Queue

op __ : Elt.D Queue -Queue

op put : Queue Elt.D -Queue

op get : Queue -Queue

op top : Queue -Elt.D

op empty? : Queue -Bool

op _\in_ : Elt.D Queue -Bool

var Q : Queue

vars X Y : Elt.D

eq put(empty,X) = X empty .

eq put((Y Q),X) = Y put(Q,X) .

eq get(empty) = empty .

eq get((X Q)) = Q .

eq top((X Q)) = X .

eq empty?(empty) = true .

eq empty?((X Q)) = false .

eq X \in empty = false .

eq X \in (X Q) = true .

ceq X \in (Y Q) = X \in Q if not(X = Y) .

}

Constant empty and juxtaposition operator __ are the constructors of queues. We
want queues to be made from these two constructors only. Therefore, module QUEUE
should be interpreted by tight semantics.

Besides, in the next section, we need lemmas on queues, which are as follows:

Lemma 1 (of queues). For any q : Queue and any x, y : Elt.D,

(not empty?(q) and top(q) = x) implies (top(put(q, y)) = x) , (1)
not empty?(put(q, x)) , (2)
empty?(q) implies (not x \in q) , (3)
x \in put(q, x) , (4)
(x \in q) implies (x \in put(q, y)) . (5)

The first three are proved by case analyses only, and the remaining by structural
induction on queues. All proofs are done by writing proof scores in CafeOBJ. Proof
scores of (1) and (5) are shown in this paper.

In a module, say LEMMA, operators lemma1 and lemma5 are declared as follows:

op lemma1 : Queue Elt.D Elt.D -Bool

op lemma5 : Queue Elt.D Elt.D -Bool

Equations that let lemma1 and lemma5 denote (1) and (5) are declared as follows:

eq lemma1(Q,X,Y) = (not empty?(Q) and top(Q) =

X implies top(put(Q,Y)) = X) . eq lemma5(Q,X,Y) =

(X \in Q implies X \in put(Q,Y)) .

270 R. Diaconescu, K. Futatsugi, K. Ogata

where Q, X and Y are CafeOBJ variables for Queue, Elt.D and Elt.D, respectively.

In module LEMMA, three constants are also declared as follows:

op q : -Queue

ops x y : -Elt.D

Constant q is used to denote an arbitrary Queue, and constants x and y to denote
an arbitrary Elt.D in proof scores. The case can be split into multiple ones by
declaring equations on these constants in proof scores. Let us consider that the case
is split into two: one where q is empty, and the other where q is not. The former
can be denoted by declaring the following equation:

eq q = empty .

The latter can be denoted by declaring the following equation:

eq (q = empty) = false .

There is another way of denoting the latter. To do this, two more constants that
also denote arbitrary objects should be declared as follows:

op z : -Elt.D

op qq : -Queue

Then, the latter can be denoted by declaring the following equation:

eq q = z qq .

Moreover, the latter can be split into two more: one where z equals x, and the other
where z does not. This case split can be done by declaring the following equations,
each equation for each case:

eq z = x . eq (z = x) = false .

It is time that you could read the proof scores of (1) and (5). The proof score
of (1) is as follows:

open LEMMA -- Case 1

eq q = empty .

red lemma1(q,x,y) .

close

open LEMMA -- Case 2

op z : -Elt.D .

op qq : -Queue .

eq q = z qq .

red lemma1(q,x,y) .

close

Command red reduces a given term by regarding declared equations as left-to-right
rewrite rules. In either case, we expect the given term to be reduced to true, and
it is actually done.

The proof score of (5) is as follows:

CafeOBJ: Logical Foundations and Methodologies 271

open LEMMA -- Base case

eq q = empty .

red lemma5(q,x,y) .

close

open LEMMA -- Inductive case 1

op z : -Elt.D .

op qq : -Queue .

eq q = z qq .

eq z = x .

red lemma5(q,x,y) .

close

open LEMMA -- Inductive case 2

op z : -Elt.D .

op qq : -Queue .

eq q = z qq .

eq (z = x) = false .

red lemma5(qq,x,y) implies lemma5(q,x,y) .

close

The term lemma5(qq,x,y) denotes the inductive hypothesis.
Proof scores of (2), (3) and (4) can be written in a similar way. Once we prove

these lemmas, we can declare them as equations in module QUEUE. The equations
are as follows:

ceq (top(put(Q,Y)) = X) = true if not empty?(Q) and top(Q) = X .

eq empty?(put(Q,X)) = false .

ceq X \in Q = false if empty?(Q) .

eq X \in put(Q,X) = true .

ceq X \in put(Q,Y) = true if X \in Q .

which correspond to (1), (2), (3), (4) and (5), respectively.

Notes on equality between terms. CafeOBJ provides built-in equality operator
==. Given two terms s and t which sorts are the same, s == t is reduced to true if
the results of reducing the two terms are the same, and to false otherwise, even if the
two terms might denote the same data. If you are confident that your specification
is confluent, it might be safe to use _==_. Besides, if _==_ is used, more case split
should be done. Suppose that two constants are used in a proof score, which are
declared as follows:

ops x y : -Elt.D

In the proof score, x is treated as different from y if _==_ is used, provided that
no equations on x and y such as (eq x = y .) are declared. Therefore, we should
consider another case where x equals y. If user-defined operator _=_, instead of
==, is used as in this section, x and y are treated as a completely arbitrary Elt.D,

272 R. Diaconescu, K. Futatsugi, K. Ogata

namely that x may be the same as y or different from y, provided that no equations
on x and y are declared.

5 DESCRIPTION AND VERIFICATION OF ABSTRACT MACHINES

Abstract machines are described in terms of coherent hidden algebra [11]. In this
section, a system in which multiple processes execute a parallel program is used
to explain how to describe abstract machines and how to verify that they have
properties. The program supposedly solves the mutual exclusion problem, namely
that it allows at most one process to enter the critical section, where resources such
as I/O devises that have to be accessed by at most one process at any given time
are used. The parallel program for process i is as follows:

l1: put(queue,i)
l2: repeat until top(queue) = i
Critical Section
cs: get(queue).

Process i repeatedly executes this program, namely if the process at label cs executes
get(queue), it moves to label l1. queue is a queue of process IDs, which is shared by
all processes. Process ID i is put into the queue at the end by put(queue,i), and the
top of the queue is obtained and deleted by top(queue) and get(queue), respectively.
These operations are supposed to be done atomically. Besides, each iteration of the
loop at label l2 is also supposed to be atomic.

5.1 Observational Transition Systems

The system under consideration is modeled in terms of a restricted type of coherent
hidden algebra, which is called observational transition systems, or OTSs. OTSs are
affected by UNITY [40].

We assume that there exists a universal state space called Υ. We also suppose
that each data type used has been defined beforehand, including the equivalence
between two data values v1, v2 denoted by v1 = v2. An OTS S = 〈O, I, T 〉 consists
of:

• O : A set of observable values. Each o ∈ O is a function o : Υ → D, where D
is a data type and may be different for each observable value. Given an OTS
S and two states υ1, υ2 ∈ Υ, the equivalence between two states, denoted by

υ1 =S υ2, w.r.t. S is defined as υ1 =S υ2
def
= ∀o ∈ O.o(υ1) = o(υ2).

• I : The set of initial states such that I ⊂ Υ.

• T : A set of conditional transition rules. Each τ ∈ T is a function τ : Υ/=S →
Υ/=S on equivalence classes of Υ w.r.t. =S . Let τ(υ) be the representative
element of τ([υ]) for each υ ∈ Υ and it is called the successor state of υ w.r.t. τ .
The condition cτ for a transition rule τ ∈ T , which is a predicate on states, is

CafeOBJ: Logical Foundations and Methodologies 273

called the effective condition. The effective condition is supposed to satisfy the
following requirement: given a state υ ∈ Υ, if cτ is false in υ, namely τ is not
effective in υ, then υ =S τ(υ).

An OTS is described in CafeOBJ. Observable values are denoted by CafeOBJ ob-
servations, and transition rules by CafeOBJ actions.

An execution of S is an infinite sequence υ0, υ1, . . . of states satisfying:

• Initiation : υ0 ∈ I.

• Consecution : For each i ∈ {0, 1, . . .}, υi+1 =S τ(υi) for some τ ∈ T .

A state is called reachable w.r.t. S iff it appears in an execution of S. Let RS be
the set of all the reachable states w.r.t. S.

All properties considered in this section are invariants, which are defined as
follows:

invariant p
def
= (∀υ ∈ I. p(υ)) ∧ (∀υ ∈ RS .∀τ ∈ T .(p(υ) ⇒ p(τ(υ)))) ,

which means that predicate p is true in any reachable state of S. Let x be all free
variables except for one for states in p. We suppose that invariant p is interpreted as
∀x.(invariantp) in this paper.

5.2 Description of the System

Two kinds of observable values and three kinds of transition rules are used to model
the system under consideration, which are as follows:

• Observable values

– queue denotes the queue shared by all processes, which is initially empty;

– pci (i ∈ Pid) denotes the label of a command that process i will execute
next, which is initially l1.

• Transition rules

– wanti (i ∈ Pid) denotes the command corresponding to label l1;

– tryi (i ∈ Pid) denotes the command corresponding to label l2;

– exiti (i ∈ Pid) denotes the command corresponding to label cs.

Pid is a set of process IDs.

The OTS modeling the system is described in module QLOCK, which imports
modules LABEL, PID and QUEUE(PID). QUEUE(PID) is the module that is QUEUE

instantiated with PID. The signature of QLOCK is as follows:

274 R. Diaconescu, K. Futatsugi, K. Ogata

[Sys]

-- any initial state

op init : -Sys

-- observations

bop pc : Sys Pid -Label

bop queue : Sys -Queue

-- actions

bop want : Sys Pid -Sys

bop try : Sys Pid -Sys

bop exit : Sys Pid -Sys

The state space Υ is represented by hidden sort Sys, observable values queue and
pci by observations queue and pc, respectively, and transition rules wanti, tryi and
exiti by actions want, try and exit, respectively. Constant init denotes any initial
state of the OTS.

Equations defining the three actions show, where S is a CafeOBJ variable for Sys,
and I and J for Pid. Action want is defined with equations as follows:

op c-want : Sys Pid -Bool

eq c-want(S,I) = (pc(S,I) = l1) .

--

ceq pc(want(S,I),J) = (if I = J then l2 else pc(S,J) fi)

if c-want(S,I) .

ceq queue(want(S,I)) = put(queue(S),I)

if c-want(S,I) .

ceq want(S,I) = S

if not c-want(S,I) .

Operator c-want denotes the effective condition of transition rule wanti.

Action try is defined with equations as follows:

op c-try : Sys Pid -Bool

eq c-try(S,I) = (pc(S,I) = l2 and top(queue(S)) = I) .

--

ceq pc(try(S,I),J) = (if I = J then cs else pc(S,J) fi)

if c-try(S,I) .

eq queue(try(S,I)) = queue(S) .

ceq try(S,I) = S

if not c-try(S,I) .

Operator c-try denotes the effective condition of transition rule tryi.

Action exit is defined with equations as follows:

CafeOBJ: Logical Foundations and Methodologies 275

op c-exit : Sys Pid -Bool

eq c-exit(S,I) = (pc(S,I) = cs) .

--

ceq pc(exit(S,I),J) = (if I = J then l1 else pc(S,J) fi)

if c-exit(S,I) .

ceq queue(exit(S,I)) = get(queue(S))

if c-exit(S,I) .

ceq exit(S,I) = S

if not c-exit(S,I) .

Operator c-exit denotes the effective condition of transition rule exiti.

5.3 Verification of the System

We verify that the system under consideration has the following invariant:

Claim 1 (Mutual Exclusion).

invariant (pc(s, i) = cs and pc(s, j) = cs implies i = j) . (1)

This invariant means that at most one process can executes the critical section at
any given time. To prove the invariant, we need three more invariants, which are as
follows:

Claim 2.

invariant (pc(s, i) = cs implies top(queue(s)) = i) , (2)
invariant (pc(s, i) = l2 or pc(s, i) = cs implies not empty?(queue(s))) , (3)
invariant (pc(s, i) = l2 implies i \in queue(s)) . (4)

5.3.1 How to Construct Proof Scores

We briefly describe how to construct proof scores of invariants [49]. Suppose that all
predicates and action operators takes only states as their arguments for simplicity.
Invariants are often proved by induction on the number of transition rules applied.
Suppose that we prove that the system has “invariant p1(s)” by induction on the
number of transition rules applied, where s is a free variable for states.

It is often impossible to prove invariant p1(s) alone. Suppose that it is possible
to prove invariant p1(s) together with n − 1 other predicates. Let the n − 1 other
predicates be p2(s), . . . , pn(s). That is, we prove invariant p1(s) ∧ . . . ∧ pn(s). Let
p(s) be p1(s) ∧ . . . ∧ pn(s).

Let us consider an inductive case in which it is shown that any transition rule
denoted by CafeOBJ action operator a preserves p(s). To this end, it is sufficient
to show p(s) ⇒ p(a(s)). This formula can be proved compositionally. The proof of
the formula is equivalent to the proofs of the n formulas:

p(s) ⇒ p1(a(s)),
...

p(s) ⇒ pn(a(s)) .

276 R. Diaconescu, K. Futatsugi, K. Ogata

Moreover, it suffices to prove the following n formulas, if possible, instead of the
previous n formulas:

p1(s) ⇒ p1(a(s)),
...

pn(s) ⇒ pn(a(s)) .

But, some of them may not be proved because their inductive hypotheses are too
weak. Let pi(s) ⇒ pi(a(s)), where 0 ≤ i ≤ n, be one of such formulas. Let SIH i be
a formula that is sufficient to strengthen the inductive hypothesis pi(s). SIH i can
be pi1(s) ∧ . . . ∧ pik , where 1 ≤ i1, . . . , ik ≤ n. Then, all we have to do is to prove
(SIH i ∧ pi(s)) ⇒ pi(a(s)).

Besides, we may have to split the case into muptiple subcases in order to
prove (SIH i ∧ pi(s)) ⇒ pi(a(s)). Suppose that the case is split into l subcases.
The l subcases are denoted by l formulars case i1, . . . , case il, which should satisfy
(case i1 ∨ . . . ∨ case il) = true. Then, the proof can be replaced with the l formulas:

(case i
1 ∧ SIH i ∧ pi(s)) ⇒ pi(a(s)),

...
(case il ∧ SIH i ∧ pi(s)) ⇒ pi(a(s)),

SIH i may not be needed for some subcases.
Proof scores of invariants are based what has been discussed. Let us consider

that we write proof scores of the n invariants discussed. We first write a module,
say INV, where pi(s) (i = 1, . . . , n) is expressed as a CafeOBJ term as follows:

op inv1 : H -Bool

· · ·
op invn : H -Bool

eq inv1(S) = p1(S) .

· · ·
eq invn(S) = pn(S) .

where H is a hidden sort and S is a CafeOBJ variable for H. Term pi(S) (i = 1, . . . , n)
denotes pi(s).

We are going to mainly describe the proof of the ith invariant. Let init denote
any initial state of the system. To show that pi(s) holds in any initial state, the
following proof score is written:

open INV

red invi(init) .

close

We next write a module, say ISTEP, where two constants s, s′ are declared,
denoting any state and the successor state after applying a transition rule in the
state, and the predicates to prove in each inductive case are expressed as a CafeOBJ
term as follows:

CafeOBJ: Logical Foundations and Methodologies 277

op istep1 : -Bool

· · ·

op istepn : -Bool

eq istep1 = inv1(s) implies inv1(s
′) .

· · ·

eq istepn = invn(s) implies invn(s
′) .

In each inductive case, the case is usually split into multiple subcases. Suppose
that we prove that any transition rule denoted by CafeOBJ action operator a pre-
serves pi(s). As described, the case is supposed to be split into the l subcases
case i1, . . . , case

i
l. Then, the CafeOBJ code showing that the transition rule preserves

pi(s) for case
i
j (j = 1, . . . , l) looks like this:

open ISTEP

Declare constants denoting arbitrary objects.

Declare equations denoting caseij .

Declare equations denoting facts if necessary.

eq s′ = a(s) .

red istepi .

close

Constants may be declared for denoting arbitrary objects. Equations are used to
express case ij . If necessary, equations denoting facts about data structures used, etc.
may be declared as well. The equation with s′ as its left-hand side specifies that s′

denotes the successor state after applying the transition rule denoted by a in the
state denoted by s.

If istepi is reduced to true, it is shown that the transition rule preserves pi(s)
in this case. Otherwise, we may have to strengthen the inductive hypothesis in the
way described. Let SIHi be the term denoting SIH i. Then, instead of istepi, we
reduce the term (SIHi and invi(s)) implies invi(s

′), or SIHi implies istepi .
The way to construct proof scores can be also applied to proofs of data types.

5.3.2 Proof Scores

We partly show the proof of invariant (1). In module INV, the following operator is
declared and defined:

op inv1 : Sys Pid Pid -Bool

eq inv1(S,I,J) = (pc(S,I) = cs and pc(S,J) = cs implies I = J) .

In the module, constants i and j for Pid are declared.
In module ISTEP, the following operator denoting the predicate to prove in each

inductive case is declared and defined:

op istep1 : Pid Pid -Bool

eq istep1(I,J) = inv1(s,I,J) implies inv1(s’,I,J) .

Let us consider the inductive case where we show that any transition rule denoted
by action try preserves the predicate of invariant (1). We use constant k for Pid,

278 R. Diaconescu, K. Futatsugi, K. Ogata

which is used as the second argument of try. In this inductive case, the state space
is split into five sub-spaces, which is shown as follows:

1 i = k j = k

2 c-try(s,k) not(j = k)

3 not(i = k) j = k

4 not(j = k)

5 not c-try(s,k)

Each case is denoted by the predicate obtained by connecting ones appearing in the
row with conjunction.

In this paper, the proof score of case 2 is shown, which is as follows:

open ISTEP

-- arbitrary objects

op k : -Pid .

-- assumptions

-- eq c-try(s,k) = true .

eq pc(s,k) = l2 .

eq top(queue(s)) = k .

--

eq i = k .

eq (j = k) = false .

-- successor state

eq s’ = try(s,k) .

-- check if the predicate is true.

red inv2(s,j) implies istep1(i,j) .

close

In this proof score, invariant (2) is used to strengthen the inductive hypothesis
denoted by inv1(s,i,j).

5.3.3 Remarks

Although the invariants discussed in this section do not seem worth verifying just
because they seem trivial, the same method with which they are verified can be
applied to non-trivial problems such that distributed systems and security proto-
cols have more interesting properties [44, 45, 46, 47]. It is worth stating that we
found that 2KP and 3KP electronic payment protocols [39] do not have a desired
property [48] while we were trying to verify it with the method described in this
section.

OTSs can be extended to deal with time constraints [41, 43].

REFERENCES

[1] Arrais, M.—Fiadeiro, J. L.: Unifying Theories in Different Institutions. In Magne
Haveraaen, Olaf Owe, and Ole-Johan Dahl, editors, Recent Trends in Data Type

CafeOBJ: Logical Foundations and Methodologies 279

Specification, Lecture Notes in Computer Science, pp. 81–101. Springer, 1996. Pro-

ceedings of 11th Workshop on Specification of Abstract Data Types. Oslo, Norway,
September 1995.

[2] Burstall, R.—Goguen, J.: The Semantics of Clear, a Specification Language. In
Dines Bjorner, editor, Proceedings, 1979 CopenhagenWinter School on Abstract Soft-
ware Specification, pp. 292–332. Springer, 1980. Lecture Notes in Computer Science,
Volume 86; based on unpublished notes handed out at the Symposium on Algebra
and Applications, Stefan Banach Center, Warsaw, Poland, 1978.

[3] Buss, S.—Roşu, G.: Incompleteness of Behavioural Logics. In Horst Reichel, edi-
tor, Coalgebraic Methods in Computer Science, Volume 33 of Electronic Notes in
Theoretical Computer Science, pp. 61–79. Elsevier Science, 2000.

[4] Clavel, M.—Eker, S.—Lincoln, P.—Meseguer, J.: Principles of Maude. Elec-
tronic Notes in Theoretical Computer Science, 4, 1996. Proceedings, First Inter-
national Workshop on Rewriting Logic and its Applications. Asilomar, California,
September 1996.

[5] Diaconescu, R.: Extra Theory Morphisms for Institutions: Logical Semantics for
Multi-Paradigm Languages. Applied Categorical Structures, Vol. 6, 1998, No. 4,

pp. 427–453. A preliminary version appeared as JAIST Technical Report IS-RR-
97-0032F in 1997.

[6] Diaconescu, R.: Category-Based Constraint Logic. Mathematical Structures in
Computer Science, Vol. 10, 2000, No. 3, pp. 373–407.

[7] Diaconescu, R.: Grothendieck Institutions. Applied Categorical Structures, Vol. 10,
2002, No. 4, pp. 383–402. Preliminary version appeared as IMAR Preprint 2-2000,
ISSN 250-3638, February 2000.

[8] Diaconescu, R.: Institution-Independent Ultraproducts. Fundamenta Informaticæ,
2003.

[9] Diaconescu, R.: An Institution-Independent Proof of Craig Interpolation Theorem.
Studia Logica, Vol. 76, 2004, No. 1.

[10] Diaconescu, R.—Futatsugi, K.: CafeOBJ Report: The Language, Proof Tech-
niques, and Methodologies for Object-Oriented Algebraic Specification, Volume 6 of
AMAST Series in Computing. World Scientific, 1998.

[11] Diaconescu, R.—Futatsugi, K.: Behavioural Coherence in Object-Oriented Al-

gebraic Specification. Universal Computer Science, Vol. 6, 2000, No. 1, pp. 74–96.
First version appeared as JAIST Technical Report IS-RR-98-0017F, June 1998.

[12] Diaconescu, R.—Futatsugi, K.: Logical Foundations of CafeOBJ. Theoretical
Computer Science, Vol. 285, 2002, pp. 289–318.

[13] Diaconescu, R.—Futatsugi, K.—Iida, S.: Component-Based Algebraic Specifi-
cation and Verification in CafeOBJ. In Jeannette M. Wing, Jim Woodcock, and Jim
Davies, editors, FM’99 – Formal Methods, Volume 1709 of Lecture Notes in Computer
Science, pp. 1644–1663. Springer, 1999.

[14] Diaconescu, R.—Futatsugi, K.—Iida, S.: CafeOBJ Jewels. In Kokichi Futat-
sugi, Ataru Nakagawa, and Tetsuo Tamai, editors, Cafe: An Industrial-Strength
Algebraic Formal Method. Elsevier, 2000.

280 R. Diaconescu, K. Futatsugi, K. Ogata

[15] Diaconescu, R.—Goguen, J.—Stefaneas, P.: Logical Support for Modularisa-

tion. In Gerard Huet and Gordon Plotkin, editors, Logical Environments, pp. 83–130.
Cambridge, 1993. Proceedings of a Workshop held in Edinburgh, Scotland, May 1991.

[16] Futatsugi, K.—Goguen, J.—Jouannaud, J.-P.—Meseguer, J.: Principles of
OBJ2. In Proceedings of the 12th ACM Symposium on Principles of Programming
Languages, pp. 52–66. ACM, 1985.

[17] Goguen, J.—Burstall, R.: Institutions: Abstract Model Theory for Specification
and Programming. Journal of the Association for Computing Machinery, Vol. 39,
1992, No. 1, pp. 95–146.

[18] Goguen, J.—Diaconescu, R.: An Oxford Survey of Order Sorted Algebra. Ma-
thematical Structures in Computer Science, Vol. 4, 1994, No. 4, pp. 363–392.

[19] Goguen, J.—Diaconescu, R.: Towards an Algebraic Semantics for the Object
Paradigm. In Harmut Ehrig and Fernando Orejas, editors, Recent Trends in Data
Type Specification, Volume 785 of Lecture Notes in Computer Science, pp. 1–34.
Springer, 1994.

[20] Goguen, J.—Malcolm, G.: A Hidden Agenda. Technical Report CS97-538, Uni-
versity of California at San Diego, 1997.

[21] Goguen, J.—Meseguer, J.: Order-Sorted Algebra I: Equational Deduction for
Multiple Inheritance, Overloading, Exceptions and Partial Operations. Theoretical
Computer Science, Vol. 105, 1992, No. 2, pp. 217–273. Also, Programming Research
Group Technical Monograph PRG–80, Oxford University, December 1989.

[22] Goguen, J.—Roşu, G.: Institution Morphisms. Formal Aspects of Computing,
Vol. 13, 2002, pp. 274–307.

[23] Goguen, J.—Winkler, T.—Meseguer, J.—Futatsugi, K.—Jouannaud,

J.-P.: Introducing OBJ. In Joseph Goguen and Grant Malcolm, editors, Software
Engineering with OBJ: algebraic specification in action. Kluwer, 2000.

[24] Hennicker, R.—Bidoit, M.: Observational Logic. In A. M. Haeberer, editor, Al-
gebraic Methodology and Software Technology, number 1584 in LNCS, pp. 263–277.
Springer, 1999. Proc. AMAST’99.

[25] Iida, S.—Futatsugi, K.—Diaconescu, R.: Component-Based Algebraic Speci-
fication: Behavioural Specification for Component-Based Software Engineering. In
Behavioral specifications of businesses and systems, pp. 103–119. Kluwer, 1999.

[26] MacLane, S.: Categories for the Working Mathematician. Springer, second edition,
1998.

[27] Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency.
Theoretical Computer Science, Vol. 96, 1992, No. 1, pp. 73–155.

[28] Meseguer, J.: Membership Algebra as a Logical Framework for Equational Specifi-
cation. In F. Parisi-Pressice, editor, Proc. WADT’97, number 1376 in Lecture Notes
in Computer Science, pp. 18–61. Springer, 1998.

[29] Mossakowski, T.: Foundations of Heterogeneous Specification. In WADT2002.

[30] Mossakowski, T.: Comorphism-Based Grothendieck Logics. In K. Diks and
W. Rytter, editors, Mathematical foundations of computer science, Volume 2420
of LNCS, pp. 593–604. Springer, 2002.

CafeOBJ: Logical Foundations and Methodologies 281

[31] Mossakowski, T.: Relating CASL with Other Specification Languages: the Insti-

tution Level. Theoretical Computer Science, Vol. 286, 2002, pp. 367–475.

[32] Paré, R.—Schumacher, D.: Indexed Categories and their Applications, Volume
661 of Lecture Notes in Mathematics, chapter Abstract Families and the Adjoint
Functor Theorems, pp. 1–125. Springer, 1978.

[33] Reichel, H.: Behavioural Equivalence – a Unifying Concept for Initial and Fi-
nal Specifications. In Proceedings, Third Hungarian Computer Science Conference.
Akademiai Kiado, 1981. Budapest.

[34] Reichel, H.: Initial Computability, Algebraic Specifications, and Partial Algebras.
Clarendon, 1987.

[35] Sannella, D.—Tarlecki, A.: Specifications in an Arbitrary Institution. Informa-
tion and Control, Vol. 76, 1988, pp. 165–210. Earlier version in Proceedings, Inter-
national Symposium on the Semantics of Data Types, Lecture Notes in Computer
Science, Volume 173, Springer, 1985.

[36] Tarlecki, A.: Quasi-Varieties in Abstract Algebraic Institutions. Journal of Com-
puter and System Sciences, Vol. 33, 1986, No. 3, pp. 333–360. Original version, Uni-
versity of Edinburgh, Report CSR-173-84.

[37] Tarlecki, A.—Burstall, R.—Goguen, J.: Some Fundamental Algebraic Tools
for the Semantics of Computation, Part 3: Indexed categories. Theoretical Com-
puter Science, Vol. 91, 1991, pp. 239–264. Also, Monograph PRG–77, August 1989,
Programming Research Group, Oxford University.

[38] Wolter, U.: Institutional Frames. In Recent Trends in Data Type Specification.
Proceedings, Volume 906 of Lecture Notes in Computer Science, pp. 469–482. Springer
Verlag, London, 1995.

[39] Bellare, M.—Garay, J. A.—Hauser, R.—Herzberg, A.—Krawczyk, H.—

Steiner, M.—Tsudik, G.—Van Herreweghen, E.—Waidner, M.: Design,

Implementation and Deployment of the iKP Secure Electronic Payment System.
IEEE Journal of Selected Areas in Communications, Vol. 18, 2000, No. 4, pp. 611–627.

[40] Chandy, K. M.—Misra, J.: Parallel Program Design: A Foundation. Addison-
Wesley, Reading, MA, 1988.

[41] Futatsugi, K.—Ogata, K.: Real-Time Systems. In: Rewriting, Proof, and
Computation, Proceedings of the 1st International Symposium, RPC 2001, 2001,
pp. 60–79.

[42] Goguen, J.: Theorem Proving and Algebra. MIT Press, Cambridge, MA (to ap-
pear).

[43] Ogata, K.—Futatsugi, K.: Modeling and Verification of Distributed Real-Time
Systems Based on CafeOBJ. In: Automated Software Engineering, Proceedings of
the 16th International Conference, ASE 2001, IEEE CS Press, 2001, pp. 185–192.

[44] Ogata, K.—Futatsugi, K.: Formally Modeling and Verifying Ricart&Agrawala
Distributed Mutual Exclusion Algorithm. In: Quality Software, Proceedings of the
2nd Asia-Pacific Conference, APAQS 2001, IEEE CS Press, 2001, pp. 357–366.

[45] Ogata, K.—Futatsugi, K.: Formal Analysis of Suzuki&Kasami Distributed
Mutual Exclusion Algorithm. In: Formal Methods for Open Object-Based Dis-

282 R. Diaconescu, K. Futatsugi, K. Ogata

tributed Systems, Proceedings of the IFIP TC6/WG6.1 Fifth International Confe-

rence, FMOODS 2002, Kluwer Academic Publishers, 2002, pp. 181–195.

[46] Ogata, K.—Futatsugi, K.: Formal Analysis of the iKP Electronic Payment Pro-
tocols. In: Software Security – Theories and Systems, Proceedings of the Mext-NSF-
JSPS International Symposium, ISSS 2002, LNCS 2609, Springer, 2003.

[47] Ogata, K.—Futatsugi, K.: Formal Verification of the Horn-Preneel Micropay-
ment Protocol. In: Verification, Model Checking and Abstract Interpretation, Pro-
ceedings of the 4th International Conference, VMCAI 2003, LNCS 2575, Springer,
2003, pp. 238–252.

[48] Ogata, K.—Futatsugi, K.: Flaw and Modification of the iKP Electronic Payment
Protocols. Information Processing Letters, Vol. 86, 2003, pp. 57–62.

[49] Ogata, K.—Futatsugi, K.: Proof Scores in the OTS/CafeOBJmethod. Submitted
to FMOODS 2003.

Răzvan Diaonesu received his PhD from the Faculty of
Mathematical Sciences, University of Oxford in 1994 and is now
Professor at the Institute of Mathematics of the Romanian Aca-
demy. His main research results are in the areas of categorical
abstract model theory, algebraic specification and formal me-
thods for system engineering, logic programming. He received
several international research awards such as the J. William Ful-
bright and a US National Research Council awards. During the
CafeOBJ project he was working at Japan Advanced Institute
for Science and Technology as designer of the CafeOBJ language.

Kokichi Futatsugi is a professor at Graduate School of In-
formation Science, JAIST (Japan Advanced Institute of Science
and Technology). Before getting a full professorship at JAIST
in 1993, he was working for ETL (Electrotechnical Lab.) of
Japanese Government and was assigned to be Chief Senior Re-
searcher of ETL in 1992. His research interests include formal
methods, software requirements& specifications, language& sys-
tem design, concurrent and cooperative computing. His primary
research goal is to design and develop new computer languages

which can open up new application areas, and/or improve the
current software technology. His current approach for this goal is CafeOBJ formal speci-
fication language. He was an associate editor of TOSEM (ACM Transactions of Software
Engineering and Methodology) from 1995 to 2001. He is a member of the advisory board of
the journal Higher-Order and Symbolic Computation (http://www.wkap.nl/journals/
hosc), and a member of the editorial board of the Journal of Object Technology
(http://www.jot.fm). Professor Futatsugi worked for many international conferences,
symposiums, workshops as a PC chair or a PC member. The following shows a part
of them: The PC chair of International Workshop on Rewriting Logics and Its Applica-
tions, September 18–20, 2000, Kanazawa, Japan. The PC chair of OBJ/CafeOBJ/Maude

CafeOBJ: Logical Foundations and Methodologies 283

Workshop at The World Congress on Formal Methods (FM’99), September 20–21, 1999,

Toulouse, France. A PC Co-Chair of 20th International Conference on Software Engineer-
ing, April 20–25, 1998, Kyoto, Japan. A PC Co-Chair of Second International Symposium
on Object Technologies for Advanced Software, March 11–15, 1996, Kanazawa, Japan.

Kazuhiro Ogata is a research expert at NEC Software Ho-
kuriku, Ltd. He is also a visiting researcher at JAIST (Japan
Advanced Institute of Science and Technology). He got his PhD
in engineering from Graduate School of Science and Technolo-
gy, Keio University in 1995. He was a research associate at
JAIST from 1995 to 2001 and a researcher at SRA Key Techno-
logy Laboratory, Inc. from 2001 to 2002. His research interests
include parallel and distributed programming languages and sys-

tems, their formal analyses, and formal methods and tools for
the analyses.

