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1 INTRODUCTION

An important technique for increasing the reliability of software systems is to use
formal development methods. Formal methods provide mathematically based lan-
guages for specifying software systems and proof systems for verification purposes.
During the last decade a whole range of formal methods have been developed. One
of these is RAISE.
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The goal of this paper is to describe and motivate the logic of the RAISE specifi-
cation language, RSL. This logic is non trivial and interesting because the language
supports many different specification styles.

It should be noted that for a given, formal language the term ‘logic’ can be
used in two different but related senses. It may refer to the meanings of the ‘logical’
(truth-valued) expressions of a language. Alternatively, ‘logic’ may refer to the proof
system, to the inference rules by which one may reason about terms of the language.
In designing a language, choices made in the assignment of meanings to expressions
influence the possible design of the proof system. For this reason we have chosen to
use the term ‘logic’ as encompassing both senses.

In the remaining part of this section, we give a short introduction to RAISE
including a survey of the major specification styles supported by RSL. Then, in
Section 2, we describe the rationale behind the design choices made for the meanings
of ‘logical’ (truth-valued) expressions in RSL. Next, in Section 3, we outline how
RSL formally is given an axiomatic semantics in the form of a collection of inference
rules that defines well-formedness and meanings of RSL constructs. In Section 4 we
describe how a proof system is derived from the axiomatic semantics in such a way
that it is suitable for doing proofs in practice using a computer based tool. Finally,
in Section 5, we state our conclusions and report on new emerging proof tools.

1.1 RAISE Background

RAISE (“Rigorous Approach to Industrial Software”) is a product consisting of
a formal specification language (RSL) [31], an associated method [32] for software
development and a set of supporting tools.

The Method

The RAISE method is based on stepwise refinement using the invent and verify
paradigm. Specifications are written in RSL. The notion of refinement will be de-
scribed in Section 2.4.

The Language

RSL is a formal, wide-spectrum specification language that encompasses and inte-
grates different specification styles in a common conceptual framework. Hence, RSL
enables the formulation of modular specifications which are algebraic or model-
oriented, applicative or imperative, and sequential or concurrent. Below, we outline
the major syntactic aspects of the language.

A basic RSL specification is called a class expression and consists of declarations
of types, values, variables, channels, and axioms. Specifications may also be built
from other specifications by renaming declared entities, hiding declared entities, or
adding more declarations. Moreover, specifications may be parameterized.

User-declared types may be introduced as abstract sort types as known from
algebraic specification, e.g.
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type Colour

or may be constructed from built-in types and type constructors in a model-oriented
way, e.g.

type

Database = Key →m Nat-set,
Key = Text

In addition RSL provides predicative subtypes, union and short record types as
known from VDM, and variant type definitions similar to data type definitions in
ML.

Values may be defined in a signature-axiom style as known from algebraic spe-
cification, e.g.

value

black, white : Colour
axiom

black 6= white

in a pre-post style, e.g.

value

square root : Real → Real

square root(x) as r post r ≥ 0.0 ∧ r ∗ r = x
pre x ≥ 0.0

or in an explicit style as known from model-oriented specification, e.g.

value

reverse : Int∗ → Int∗

reverse(l) ≡
if l = 〈〉 then 〈〉 else reverse(tl l) ̂ 〈hd l〉 end

Functions may be imperative, reading from and/or writing to declared variables:

variable v : Int
value

add to v : Int → write v Unit

add to v(x) ≡ v := v + x

where Unit is the type containing the single value (). In the function type it is
stated which variables the function may access.

Functions may describe processes communicating synchronously with each other
via declared channels:
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channel i : Int, o : Bool

value

test : Int → in i out o Unit

test(x) ≡ let inval = in? in o!(inval=x) end

In Section 2 various kinds of value expressions and their meaning will be de-
scribed.

RSL has also been extended to support real time [15, 22, 13, 16].

Semantic Foundations of RSL

RSL is given a denotational [25] and an axiomatic semantics [26], and a subset of the
language is given an operational semantics [4]. The construction of the denotational
model and a demonstration of its existence is presented in [3].

Tool Support

The RAISE tools provide support for constructing, checking and verifying specifi-
cations and development relations, and for translating concrete specifications into
several programming languages.

History

RAISE was developed during the years 1985-1995 in the CEC funded ESPRIT
RAISE (315) and LaCoS (5383) projects. RAISE builds upon ideas reflected in
a number of other formal methods and languages. The model-oriented language fea-
tures were inspired by VDM [21] and Z [33], the algebraic features by algebraic spe-
cification languages like OBJ [10], Clear [5], ASL [36], ACT ONE [9] and Larch [14],
the concurrency features by CCS [28] and CSP [20], and the modularity features by
ML [24], Clear, ASL, ACT ONE and Larch.

Applications

RAISE has been used on many applications. The initial ones were within the LaCoS
project [6]. It has been used for many years at UNU/IIST, and a collection of case
studies from there, illustrating a wide range of styles of use, has been published
recently [7]. Also at the Technical University of Denmark, a range of applications
have been done, e.g. [18, 23, 19, 17].

2 THE RSL LOGIC

There are a number of possible choices for the logic of a specification language. In
this section we present the rationale behind the design of the RSL logic. Subsec-
tion 2.1 introduces the problem of potentially undefined expressions, 2.2 presents the
logic of the applicative subset of RSL, 2.3 extends this to imperative and concurrent
RSL, 2.4 presents the RSL definition of refinement and relates it to the logic, and
2.5 introduces the notion of confidence conditions.
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2.1 Definedness

A fundamental question to decide about a logic for a specification language is what
to do about problematic expressions like 1/0, or hd 〈〉, or while true do skip end.
Such expressions do not have very obvious denotations (meanings).

Expressions like these may seem more likely to arise in early specifications (like
the second) or in implementations (like the other two), but as RSL is a “wide
spectrum” language, intended to support both initial specification and development
to code, any of these kinds of expression may occur.

There are two facts to make clear from the start. First, in a reasonably expressive
language, such expressions cannot be avoided by purely mechanical means. The
equality of an integer expression with zero, for example, is not decidable. If we
wish to ensure such expressions do not occur then we will need to do proof. We
can choose to do such proof as part of “type checking”, as in PVS [30] for example,
or at some later time. In contrast, it is possible in a typed language mechanically
to either reject an expression as ill-typed (like 1 + true, for example) or assign it
a type. So our “problematic” expressions will have types.1

The second fact is that there is a variety of schemes available to deal with such
expressions in a logic. This is not a question of fundamental research, but of choosing
from the options available. The choices made will affect the ease with which people
can learn and use a language, and the ease of creating and using proof tools for that
language. There are two factors in particular that influenced the choices made in
the design of RSL:

1. As mentioned above, RSL is a “wide spectrum” language intended to support
development to specifications very close to programming languages. This in turn
means that the ability to conveniently translate to a programming language at
least the constructs likely to appear in such detailed specifications is something
to consider.

2. The design of RSL is as regular as possible. This means that apart from having
type Bool there are as few restrictions as possible placed on what kind of expres-
sions may occur in a predicate. In particular they do not need to be applicative:
they may have effects by accessing variables and even channels.

One possible approach to problematic expressions like 1/0 is to say that “every
expression denotes a value in its type, but it might not be possible or sensible to
say which”. In this approach 1/0 could be some unknown integer, but while true

do skip end would have to be equivalent to skip, since skip is the only value
in the type Unit. This (a) seems counter-intuitive and (b) seems to preclude any
analysis of termination since the logic would equate a non-terminating expression
with a terminating one.

1 In languages like RSL which allow overloading there may be a (finite) collection of
possible types, but this does not materially affect the following discussion.
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Some languages, Z [33] and B [1] for example, take the approach that all ex-
pressions denote. It is argued that this gives a simple and intuitive logic. Examples
like those based on non-termination can be considered as less relevant to Z, which
aims to define initial specifications rather than implementations, though this seems
less justified for B. These languages, unlike VDM [21] and RSL, for example, also
distinguish between Boolean expressions, predicates, and expressions of other types:
they have no Boolean type.

RSL, like VDM, from which came much of RSL’s inspiration, has a Boolean
type, Bool, and allows in its logic for expressions that might not denote values in
their types. The definedness of expressions then becomes a concept needed in the
proof theory. The semantics of such languages may, as in RSL’s case, be loose:
there are some expressions whose definedness is not specified, and 1/0 is an exam-
ple. A programming language implementation in which it raises an exception is
acceptable, as is one where it evaluates to 1, say. Looseness is not a critical issue:
much more important is how in writing and developing specifications we can avoid
such expressions occurring. We will return to this issue later in Section 2.5.

2.2 Applicative RSL

The discussion about logic for RSL becomes more complicated when we include
expressions that can write to variables, or access channels, i.e. expressions that can
have effects. We will try to give a simple exposition by dealing with applicative
expressions first, and explain the additions we need for imperative expressions later.
But we shall also try to avoid misleading readers by indicating in the first part where
the explanation is only for applicative expressions.

2.2.1 Equivalence

A basic issue when expressions might not denote values is the meaning of equality.
RSL has two “equality” symbols, ≡ and =. The first of these, equivalence, is more
relevant to the discussion on logic, and we will discuss equality = later in this section.

≡ is sometimes called a “strong” equality, as it allows undefined expressions to
be compared. It has the mathematical properties of a congruence, which means
that it is an equivalence relation (it is reflexive, transitive and commutative) and
(for applicative expressions) it allows substitution: an expression can be replaced
by an equivalent one in any context.

The important properties we shall need for equivalence are:

1. A defined expression is never equivalent to an undefined one, e.g. the equivalence

while true do skip end ≡ skip

is false.

2. Equivalence always returns true or false, i.e. it is always defined.
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Equivalence is in fact the same as semantic equality: two expressions are equi-
valent if they have the same semantics.

A logic that allows undefined expressions and includes a strong equality is often
referred to as “three valued”. We prefer to say that there are just two Boolean values
(true and false), and say that only defined expressions have values. There are three
‘basic’ undefined expressions in RSL: chaos (equivalent to while true do skip

end), stop (the external choice over the empty set) and swap (the internal choice
over the empty set). stop and swap arise in RSL because it includes concurrency,
and both represent forms of deadlock. In practice we normally want to avoid the
possibility of undefined expressions in specifications, and making the main choice
one between definedness and otherwise is mostly sufficient. We shall in our examples
for simplicity usually use chaos as the archetypal undefined expression.

2.2.2 Convergence

RSL includes concurrency, and so includes the notion of internal (nondeterminis-
tic) choice. This also arises if relations or mappings that are “non-functional” are
allowed. For example, what happens if the map [ 1 7→ 2, 1 7→ 3 ] is applied to the
value 1? In RSL the result is equivalent to the expression 2 ⌈⌉ 3. This expression is
defined, but will not always evaluate to the same result. We use the term convergent

to mean defined and having a unique value.
We shall see that definedness and convergence often arise in the proof theory

because we need them as conditions for rules to be sound. For example, we will see
that

A ∧ B ≡ B ∧ A when A and B are defined
A ∨ ∼A ≡ true when A is convergent

(In the non-applicative case these also need the effects of A and B to be at most
“read-only”.)

However, the case of defined but nondeterministic is (a) rare and (b) dealt with
by other rules, so in practice we always use convergence even though definedness is
occasionally sufficient.

2.2.3 Connectives

How do we define the logical connectives ∧ (and), ∨ (or), ∼ (not) and ⇒ (im-
plies)? The approach in VDM is to use a logic called LPF [2], the “Logic of Partial
Functions”. The intuition in LPF’s definition of ∧, for example, is that for an ex-
pression A ∧ B, if either A or B evaluates to false the whole expression should be
false, even if the other is undefined. If either evaluates to true then the expression
evaluates, if at all, to the value of the other. So it is undefined if one is true and
the other undefined, or both are undefined. Note that this explanation is symmetric
in A and B, and indeed in LPF, as in classical logic, ∧ is symmetric (commutative).
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The main problem with LPF is that ∧ is hard to implement in a programming
language, because it requires parallel evaluation of the two component expressions,
such that if one evaluates to false then the whole evaluation immediately terminates
and returns false. For mainly this reason, RSL chose instead to define the logical
connectives in terms of if-expressions, in a “conditional logic”.

A ∧ B ≡ if A then B else false end

A ∨ B ≡ if A then true else B end

A ⇒ B ≡ if A then B else true end

∼A ≡ if A then false else true end

These are not new inventions. This version of ∧, for example, appears as cand
in some languages, as andalso in some others.

So if-expressions are fundamental, and we need to explain what they mean. We
do this formally in terms of proof rules, but here is the intuitive explanation of the
meaning of if A then B else C end (in the applicative case):

1. If A is undefined, then the expression is equivalent to A.

2. Otherwise, if A is nondeterministic (so it must be true ⌈⌉ false) the expression
is equivalent to B ⌈⌉ C.

3. Otherwise, if A is true then the expression is equivalent to B, and if A is false
then the expression is equivalent to C.

This coincides with the meaning of if-expressions in programming languages, and
has the immediate consequence that if-expressions, and hence the logical connectives,
are easy to implement. This is the main advantage of RSL’s conditional logic. The
main disadvantage is that we lose the unconditional commutativity of ∧ and ∨. For
example:

chaos ∧ false ≡ chaos

but
false ∧ chaos ≡ false

∧ and ∨ are in general only commutative when both the components are defined.
This is by no means the only case where we need to be concerned with de-

finedness, and we decided that the implementability of our logic was the overriding
concern.

Incidentally, many other rules of classical logic hold for conditional logic. For
example, ∧ and ∨ are associative, and what is sometimes used as the definition of
⇒ holds:

A ⇒ B ≡ ∼A ∨ B.

All the laws of classical logic hold when expressions are convergent. The ones
needing convergence are commutativity and “excluded middle”. LPF also needs
definedness for “excluded middle”.
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2.2.4 Quantifiers

RSL includes the quantifiers ∀, ∃, and ∃!. They all quantify over values in the ap-
propriate type. Hence they say nothing about undefined expressions. For example,
we can say, correctly, that

∀ x : Bool • x = true ∨ x = false

without being able to conclude anything about an undefined expression such as
chaos being either true or false.

2.2.5 Functions

λ-expressions only admit beta reduction (application) when applied to values in
their domain. E.g.

λ (x : Int, y: Int) • x

cannot be applied to (0, chaos) to give 0. In fact the semantics of function appli-
cation is standard call by value: if any argument expression is undefined then so is
the application.

2.2.6 Axioms

In RSL axioms may be declared. In addition, all value declarations are short for
value signatures plus axioms. For example, suppose we have the value declaration

value

factorial : Nat
∼

→ Nat

factorial(n) ≡
if n = 1 then 1 else n ∗ factorial(n−1) end

pre n ≥ 1

This is short for

value

factorial : Nat
∼

→ Nat

axiom

∀ n : Nat •

factorial(n) ≡
if n = 1 then 1 else n ∗ factorial(n−1) end

pre n ≥ 1

and in turn “e pre p” is short for “(p ≡ true) ⇒ e”. The inclusion of “≡ true” is
just a technique to ensure that if p is undefined the precondition reduces to false.

So when can we use this axiom to “unfold” an application of factorial to replace
it with its defining expression? We want to use the equivalence within the axiom,
remembering that ≡ is a congruence, i.e. allows substitution. We see that:
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1. The actual parameter must be a value in the type Nat, i.e. it must be a non-
negative integer, because of the meaning of ∀. We cannot unfold, say, facto-
rial(chaos) or factorial(−1).

2. The precondition must then be equivalent to true. We cannot unfold, say,
factorial(0).

So the rules of the logic ensure that the apparent aim of the specifier, that
factorial should only be applied to strictly positive integers, is respected.

2.2.7 Equality

We need to define the symbol =. In RSL its definition is just like that of any other
infix operator, such as +. RSL adopts a general “left-to-right” evaluation rule, so
the meaning of

A = B

is

1. Evaluate A. If it is undefined so is the whole expression.

2. Otherwise, evaluate B. If it is undefined so is the whole expression.

3. Otherwise, compare the results of evaluating A and B and return true if they
are the same value, false otherwise.

= is therefore given a definition in terms of the underlying = for the carrier set
of every type in RSL. If either of A or B is undefined then so is the equality. If either
of them is nondeterministic then so is the equality. Otherwise, in the applicative
case, it is the same as ≡.

The other important feature of = is that it is implementable. Such an equality is
sometimes called “programming language equality”, as its evaluation is the same as
in programming languages (except that many languages decline to fix the evaluation
order, preferring the convenience of compiler writers to the confidence of users).

Is it confusing to have both = and ≡? The advice to users is simple: always use
= in your expressions, and take care to avoid undefinedness. Users should only write
≡ in function definitions, where it is part of the syntax, and as the main equality in
axioms.

We have seen that (for applicative expressions), when expressions are defined
and deterministic, equality and equivalence coincide, so there should be no problem.
What happens if a user accidentally forgets to check for definedness? Take the RSL
version of an example quoted by Stoddart et. al. [34], for example:

value

s : Int-infset
axiom

card s = 5
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Are there any models (implementations) of this specification in which the set s
is infinite? (In languages in which all values denote there may be such models, which
is why the example is quoted.)

If s is infinite, then in RSL card s is undefined. So the axiom expression is
apparently undefined, following our rules for equality. So what does it mean to have
an undefined axiom? In fact we avoid this question: every axiom implicitly has an
“≡ true” added (like the precondition we discussed earlier). So if s is infinite the
axiom would reduce to false, and we conclude there can be no such model: s must
be finite as we presumably expected.

There are a few other places where “≡ true” is included to make sure that
undefined predicates reduce to false. As well as in axioms and preconditions, these
are postconditions and restrictions. Restrictions are the predicates following the
“bullet” in quantified expressions, implicit let-expressions, comprehensions, com-
prehended expressions, and for-expressions.

2.3 Imperative and Concurrent RSL

When we consider expressions that can have effects i.e. that can read or write va-
riables, input from or output to channels, we need to extend the logic a little. In
this section we explain the extensions.

First it is perhaps worth noting another problem with the LPF approach if
expressions may be imperative. We noted earlier that LPF has to assume some kind
of parallel evaluation rule to allow, for example, for one expression in a conjunction to
be undefined when the other is false. But if the expressions may write to variables
it is unclear how to deal with such effects with LPF’s parallel evaluation. What
should be the effect on the variable v, for example, of evaluating:

(v := v + 1 ; true) ∧ (v := v − 1 ; false)

Imperative specifications, like imperative programs, depend very heavily on eva-
luation order.

2.3.1 Equivalence

The general semantics of expressions is that they may have effects as well as returning
results. For two expressions to be equivalent we require that they have equivalent
effects as well as equivalent results.

The equivalence expression “e1 ≡ e2” expresses a purely logical equivalence. It
evaluates to true if the expressions would have the same effects, and would return
the same results: there is no actual evaluation. Hence, unlike equality, evaluating
an equivalence does not generate any effects.

If v is an integer variable, then in some context, after assigning to v, we may
know that “v ≡ 1”. But clearly we cannot assert this in an arbitrary context,
because v may have been assigned some other value there. To obtain a congruence
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relation we introduce an extra connective “always” ✷. The expression “✷ p” means
“p is true in any state”, i.e. regardless of the contents of variables. Thus “✷ e1 ≡
e2” is a congruence: it allows e1 to be replaced by e2 in any context.

✷ is implicitly included in all axioms. Since constant and function definitions
are just shorthands for signatures and axioms, it is therefore implicit in any value
definition. In practice users do not need to write it.

2.3.2 Equality

For expressions with effects the difference between equality and equivalence becomes
more marked. As we remarked earlier, an equality is evaluated left-to-right. At the
end only the result values are compared. Therefore if the expression on the left has
effects, these can affect the result of the expression on the right.

Suppose we have an integer variable v and we declare a function to increment
it and return its new value:

variable

v : Int
value

increment : Unit → write v Int

increment() ≡ v := v + 1 ; v

Now consider the two expressions

increment() ≡ increment()
and
increment() = increment()

The first is equivalent to true, and its evaluation does not change v. We say
that ≡ has only a “hypothetical” evaluation. Even when expressions have effects,
≡ remains reflexive.

The second has an effect of increasing v twice, as both the increment applications
are evaluated. And we see that the result of the equality must be false: whatever
the initial value of v, the result on the right will be one greater than the result on
the left. We can summarise by concluding

(increment() ≡ increment()) ≡ true

and
(increment() = increment()) ≡ (v := v + 2; false)

The second result may seem surprising, but it is consistent with most program-
ming languages. This does not mean, of course, that one would encourage anyone
to write expressions in such a style!
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2.3.3 Evaluation Order

The possibility of effects means that we need to be clear about the evaluation order
of all expressions. For example, there is an evaluation rule for if-expressions:

if A then B else C end ≡ let x = A in if x then B else C end end

where the identifier x is chosen so as not to be free in B or C (or such free occurrences
would become bound in the let-expression). Such rules, using let-expressions, are
very common in the proof rules of RSL, and we need to be clear what the semantics
of let-expressions is. Using the let-expression above as an example, its evaluation is
as follows:

1. A is evaluated. If it is undefined, then so is the whole expression. Otherwise, it
may have effects, and will return a value. Since A must be a Boolean expression,
this value must be either true or false. (If A is nondeterministic, we still get
one of these, but we don’t know which.)

2. The value returned by A is bound to the identifier x, and then we evaluate the
second expression in the let-expression, i.e. the if-expression in this example. So
we will then evaluate either B or C according to the value returned by A.

For example, using our previous discussion about the increment function, we
could conclude that

if increment() = increment() then B else C end ≡ v := v + 2 ; C

2.3.4 Reasoning Style

It is common in specification methods to use an axiomatic, “equational” style of rea-
soning for applicative constructs, as one does in mathematics. In RSL we typically
use the same style of reasoning, based on equivalences, for imperative sequential and
for concurrent descriptions as well as for applicative ones. Other methods typically
use reasoning based on Hoare logic or weakest preconditions (wp) for sequential
imperative descriptions, and perhaps temporal logic for concurrent ones. This is
mostly a question of style rather than substance: RSL includes pre- and postcon-
ditions, and reasoning in terms of these is possible, and appropriate in particular
for discussing iterative expressions (loops). But we generally find that equational
reasoning can be used for all styles of specification.

2.4 Refinement in RSL

Since RSL is a modular language, refinement is aimed in particular at allowing
substitution. If a module A, say, depends on another module B, say, then if we
have a module B′ that refines B, substituting B′ for B should produce a module A′
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that refines A by construction. Refinement is required to be monotonic with re-
spect to module composition. It is then possible to use separate development [32]
to develop specifications expressed in several modules: modules can be developed
independently, and provided each development can be shown to be a refinement
then putting the refined modules together will refine the specification as a whole.

A definition of refinement in RSL is that class expression B′ refines class expres-
sion B provided:

1. the signature of B′ includes that of B

2. all the properties of B hold in B′

The signature of a class consists of the type identifiers declared in it with the
types (if any) for which they are abbreviations, the value, variable and channel
identifiers with their types, and the object identifiers with the signatures of their
classes. The properties of a class are defined in the book on the RAISE method [32].

The first condition for refinement ensures that substituting B′ for B in some
context will not generate type errors. It leads to a somewhat more restricted notion
of refinement than in some languages that don’t meet RSL’s requirement to support
separate development. Identifiers have to remain the same (though this can easily be
fixed by RSL’s renaming construct). Types that are abbreviations have to maintain
the same abbreviation: if we declare in B, say,

type T = Int-set

then we cannot in B′ refine type T to be, say, the type of lists of integers (Int∗),
because in general we would get type errors when substituting B′ for B to make
A′. There is a standard technique in the RAISE method [32] for overcoming this
problem, by first abstracting the original definition. We change the definition of T
in B to:

type T
value setof : T → Int-set

Both the type T and the function setof are left abstract. The abstraction ex-
presses that a set can be extracted from a T value, rather than saying a T value is
a set. Other definitions in B will also need changing, of course, using setof. Then
we can define in B′:

type T = Int∗

value

setof : T → Int-set

setof(t) ≡ elems t

These definitions in B′ refine those in B.
A feature of RSL is that the language can itself express the properties of any

class expression. This in turn means that the logical conditions for refinement can
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be expressed in RSL, and indeed the RAISE tool [11] can generate these as an RSL
theory.

The second condition for refinement effectively says that anything that can be
proved about a class can be proved about a class that refines it. So the stronger the
properties of a module the less “room” there is to refine it. This is why, in particular,
we adopt a particular kind of theory for functions. The definition for factorial given
earlier in Section 2.2 says nothing about what the factorial function is when the
arguments are not in the domain type Nat or do not satisfy the precondition: the
given definition only applies for strictly positive arguments. It is then possible to
refine factorial, if desired, by defining factorial(0) and even factorial for negative
arguments. In fact unless the function is declared with a domain type that is maxi-
mal (one that has no subtypes, such as Int rather than Nat), and without any
precondition, it is impossible in RSL to say what its domain is. This is intentional:
if we could calculate the domain it would be a property of the definition, and allow
for no refinement that enlarged the domain.

Another feature of the logic of RSL is that it can distinguish between determi-
nism and nondeterminism. To be more precise, consider

value

f() : Unit
∼

→ Int

axiom

f() = 1 ∨ f() = 2 (1)

We term this a loose specification: it has more than one model, and so more
than one refinement. In fact there are three: one where f() always returns 1, another
where f() always returns 2, and a third:

f() : Unit
∼

→ Int

f() ≡ 1 ⌈⌉ 2 (2)

Here f is nondeterministic, and its theory is different from either of the others.
So the “more deterministic” refinement ordering supported by some specification
languages is not supported by RSL (though it is often not clear when people speak of
nondeterminism whether they mean looseness (1) or nondeterminism (2): often they
actually mean looseness). Nondeterminism is important in analysing concurrency,
so we need to be clear about the distinction between it and looseness.

2.5 Confidence Conditions

We return to the “problematic expressions” we started discussing at the start of this
Section 2. We have discussed how the logic of RSL can deal with undefined expres-
sions. We can also see how to write expressions that are safe from undefinedness.
For example, suppose we have an RSL finite map (many-one relation) m with Int

domain type and Text range type. Suppose we want to specify that all the texts in
the map are non-empty. If we write
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∀ x : Int • m(x) 6= ′′′′

then m(x) may be undefined for values of x not in the domain of the map. As
it happens, in this case, the implicit “≡ true” in the quantified expression takes
care of the undefinedness, but (a) we don’t encourage users to write specifications
based on such details of the logic, and (b) the “≡ true” will not be there when
we transform this into an implementation with a loop, say, and we should perhaps
help the implementor a little. So there is a general rule that you never write a map
application without making sure that it is guarded by a check that the argument
is in the domain. So there should be a “x ∈ dom m” condition, which may be
the left of an implication or conjunction, the condition of an if-expression (with the
application in the then part), or part of a precondition of the function definition
in which the application occurs. Here (remembering the other rule of thumb that
∀ expressions almost always use ⇒) we should obviously have written

∀ x : Int • x ∈ dom m ⇒ m(x) 6= ′′′′

and we see that the conditional logic means that the application is only evaluated
when the map argument is in the map’s domain.

Guard conditions, like “x ∈ dom m” for the application “m(x)”, are called
“confidence conditions” in RSL. We use this term because it is not always necessary
to include them if our aim is just to avoid undefinedness: the quantified expression
above is an example. But if we always include them then we have more confidence
that the specification does not include undefined expressions, which means in turn
that it is less likely to be inconsistent. The RAISE tool [11] includes a “confidence
condition generator” that generates the confidence conditions for a range of poten-
tially undefined expressions. Map arguments being in domains, list arguments being
in index sets, and partial operator and function arguments being in domain types
and satisfying preconditions, are in practice the most important ones. Checking
that they hold in the contexts that generate them is not in general decidable, and
it needs proof tools to discharge them formally.

Confidence conditions are usually best checked by inspection: they act as re-
minders. Unfortunately, as the specifier’s skill increases the “hit rate” of conditions
requiring attention becomes low, so the possibility of missing them during inspection
rises. We now have proof tool support for discharging many of them automatically.

3 THE AXIOMATIC SEMANTICS: A LOGIC FOR DEFINITION

In this section we explain how RSL is given a proof theory [26] that provides the
axiomatic semantics of RSL.

3.1 Purpose and Role

The purpose of the proof theory is to provide formation rules for determining whether
a specification is well-formed (type correct etc.) and proof rules for reasoning about
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specifications, e.g. deciding whether two RSL terms are equivalent (have the same
meaning) or deciding whether an RSL specification is a refinement of another RSL
specification.

The role of the proof theory is to provide an axiomatic semantics that defines
the meaning of RSL while the role of the denotational semantics [25] is just to ensure
consistency of the proof theory by providing a model. The reason for taking this
view of roles is the fact that the proof theory is needed anyway (since we should be
able to reason about specifications) and it is much more comprehensible than the
denotational one (since its meta language is much simpler). The RSL type checker
implements the formation rules, while the RAISE justification editor implements
a proof system (see Section 4) that is derived from the axiomatic semantics.

3.2 The Form of the Axiomatic Semantics Definition

The axiomatic semantics consists of a collection inference rules of the form

premise1 ... premisen
conclusion

where the upper part consists of a possibly empty list of formulae called the premises
and the lower part consists of a formula called the conclusion. The most important
kinds of formulae are those for expressing static semantics of RSL terms, refinement
of RSL terms and equivalences between RSL terms. The formulae may contain term
variables.

As usual the inference rules can be instantiated by consistently replacing term
variables with actual, variable free terms of the same syntactic category. A rule
represents all its legal instantiations. An instantiated rule expresses that if the
(instantiated) premises hold then also the (instantiated) conclusion holds.

3.3 The Collection of Inference Rules

In this section we give examples of important classes of inference rules.

Formation Rules

For each RSL term that is not defined to be a context independent shorthand (see
next paragraph), there is an inference rule defining its static semantics. For instance,
the rule

context ⊢ true :� Bool

states that the RSL term true is well-formed and has type Bool as its static se-
mantics. This rule is simple having no premises and not referring to the context2,

2 A context provides assumptions about identifiers and operators. In its most basic
form a context is an RSL class expression.
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but many rules have static premises expressing that sub-terms are well-formed, have
appropriate types, only refer to names declared in the context, etc.

The formation rules provide a decidable test for whether terms are well-formed.

Context Independent Equivalence Rules

There is a class of inference rules defining a context independent equivalence rela-
tion, ∼= . Intuitively ⊢ term1

∼= term2 asserts that the two terms term1 and term2 are
equivalent in all respects, i.e. have the same properties (attributes, static semantics
and dynamic meaning) and can be substituted for each other anywhere.

The context independent equivalence rules typically express algebraic laws like
commutativity of the concurrency operator:

⊢ value expr1 ‖ value expr2 ∼=
value expr2 ‖ value expr1

A subclass of the rules, the context independent expansion rules, have the role
of expressing that certain RSL terms are shorthands for others. For instance, the
rule

⊢ value expr1 ∧ value expr2 ∼=
if value expr1 then value expr2 else false end

states that a conjunction of the form value expr1 ∧ value expr2 is a shorthand for
if value expr1 then value expr2 else false end (cf. the discussion of the meaning of
the RSL connectives in Section 2.2.3).

When a term is defined to be a shorthand, there do not need to be any other
rules having a conclusion concerning that term – all properties are to be derived
from the term that it is a shorthand for. For a term that is not a shorthand, there
will typically be several rules having a conclusion concerning that term.

Context Dependent Equivalence Rules

There is another class of inference rules defining a context dependent equivalence
relation, ≃ for stating that in a given context two terms are equivalent in the more
weak sense that they have the same meaning (which may depend on the context),
but not necessarily the same static properties. For example, their free variables
might differ. An example of such a rule is:

context ⊢ value expr :� opt access desc string Bool

context ⊢ read-only-convergent value expr

context ⊢
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if value expr then value expr else true end ≃
true

It states that in a given context the value expression if value expr then value expr
else true end is equivalent to true, if (1) the constituent value expr is well-formed
and has type Bool, and (2) the constituent value expr is readonly and convergent.
The first condition in the rule ensures that the equivalence between the two terms
can only be proved when these are both well-formed. Otherwise, the rule would not
be sound (one could e.g. prove if 1 then 1 else true end ≃ true). The second
condition in the rule ensures that the if-expression does not have any side effects
and is convergent. Otherwise, one could e.g. prove if x := 1; true then x := 1; true
else true end ≃ true.

As in the context independent case, there is a subclass of the rules the role of
which is to define shorthands.

Refinement Rules

A collection of inference rules define the refinement relation.

Auxiliary Rules

There are several collections of rules defining auxiliary functions and relations that
are used in the premises of the other rules.

For instance, there is a collection of rules defining attribute functions, new and
free that take an RSL term as argument and return the set of identifiers and
operators that are declared and occur free in the term, respectively. These are used
in premises of other rules to express restrictions on identifiers or operators appearing
in the conclusion.

3.4 Relation to Denotational Semantics

RSL has been given a denotational semantics in [25]. This denotational semantics
can in an obvious way be extended to also covering the formulae of the meta language
of the axiomatic semantics. For instance, the meaning of a formula of the form
value expr can be defined to have the same as the meaning as the value expression
✷(value expr ≡ true).

Soundness and completeness wrt. the denotational semantics is discussed in
Section 5.

4 THE RSL PROOF SYSTEM: A LOGIC FOR PROOF

When we consider a suitable logic for doing proof our concerns become more prac-
tical. We have to take care of soundness, of course: we must not enable the proof of
invalid theorems. But what the user will in practice be most concerned with is the
ability to prove valid theorems, and preferably being able to do so automatically.
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This raises the question of completeness. It seems obvious at first that the
proof system should be complete (all valid theorems should be provable). But in
practice it seems worth sacrificing completeness in a few places to get more ease of
proof in the vast majority of cases. We in fact sacrificed completeness in favour of
a simplified language for proof rules. In particular, the language does not include
contexts, which are in general much more easily handled implicitly by a tool, and as
a consequence RSL’s local-expressions, which allow local definitions, are not catered
for with full generality.

So the proof system is sound but incomplete compared to the axiomatic seman-
tics, though most of the incompleteness is handled by a tool.

4.1 Justification Editor

The proof rules are intended for application by a tool, the RAISE justification editor.
We can therefore immediately assume a mechanism for type-checking, and make
a general assertion that a proof rule may be applied only to well-formed expressions,
and application only succeeds when it gives a result that is also well-formed. The
tool also handles the context, the bindings of names to their definitions, which further
simplifies the rule language.

The general form of a rule is the inference rule introduced in Section 3. But
most of the proof rules take the form

term1 ≃ term2 when term3

where term3 (termed the side condition) is the conjunction of the premises. The
context is the same for all the terms. Such a rule allows an expression matching
term1 to be replaced by the corresponding instantiation of term2 (or vice versa),
provided the instantiated term3 can be proved. The important point about the
justification editor is that it allows proof rules to be applied to sub-expressions of a
goal. The basic style of proof is to

• select a sub-expression (mouse drag),

• show the applicable proof rules (menu),

• select and apply a rule (mouse clicks).

The applicable rules are selected by syntax, and are generally few in number, so
supporting easy selection. This allows a very user-controlled, natural, and flexible
style of proof.

Side conditions generate separate proof obligations, so that a proof becomes a
tree. The branches can be proved in any order, so one may choose whether to check
a side condition first, in order to check a strategy is applicable, or proceed with the
main proof first, in order to check a strategy is appropriate.

The term justification was coined for a proof in which not all steps have to be
proved formally. The tool accepts the informal assertion that a goal is true, or that
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an expression may be replaced by another asserted as equivalent. The tool keeps
track of such informal steps. A justification may be stored and then loaded again,
for the proof to be reviewed, or pretty-printed, or for informal steps to perhaps be
made formal.

4.2 Proof Rule Language

The language for expressing proof rules is in fact a small extension of RSL. A corre-
spondingly small extension to the type checker allows proof rules to be type checked.
The justification editor supports the input of proof rules: they are mostly not built-
in. This allows for greater transparency, and the main document listing the rules [12]
is in fact generated from the input given to the justification editor.

The proof rule language has a number of rules for instantiation of term variables
that are implicit in their names. For example, names differing only in the number of
primes must have the same maximal type, while names may otherwise have different
types. Names starting with “p ” may only be matched by pure expressions, those
starting with “ro ” may only be matched by read-only expressions, those involving
“eb” must be Boolean expressions, etc.

For example, the rule for if-expressions mentioned in Section 3 is written

[ if annihilation1 ]
if eb then eb else true end ≃ true

when convergent(eb) ∧ readonly(eb)

The first line is the rule name (which appears in selection menus). There are
various naming conventions, which indicate that this rule may be used to “annihi-
late” or remove an if expression. (Or, applied right-to-left, to introduce one.) The
side condition uses two of the “special functions” that are used in many proof rules.
Their (partial) evaluation is built into the justification editor, so that readonly, for
example, will generally be discharged automatically when it holds. convergent can
be more difficult to prove, of course.

“convergent(eb)” is just an abbreviation for “eb post true”. Special functions
typically express simple concepts but may have more complicated definitions. There
are special functions, for example, to express the conditions necessary for a new
binding not to capture free names (no capture), for a replacement binding only to
capture names that the previous one did (no new capture), and for an expression
to match a pattern (matches).

Of particular importance in a language with effects (assignments to variables,
input and output), are rules showing the order of evaluation. Without these many
constructs would be ambiguous. There is a general “rule-of-thumb” that evaluation
is left-to-right. More formally it is defined by “ evaluation” rules. The evaluation
of an if-expression, for example, is given by
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[ if evaluation ]
if eb then e else e′ end ≃

let id = eb in if id then e else e′ end end

when no capture(id, e) ∧ no capture(id, e′)

This rule is always applicable left-to-right — the side condition only requires
the choice of an identifier not free in e or e′ — and shows that the guard condition
is evaluated before anything else. If eb does not terminate then neither will the let-
expression. Otherwise eb will evaluate to either true or false and the corresponding
if annihilation rule can be applied. To deal with the case that eb is nondeterministic
we have

[ let int choice ]
let b = e ⌈⌉ e′ in e1 end ≃

let b = e in e1 end ⌈⌉ let b = e′ in e1 end

To show that the rules are sound, we divide them into “basic” rules, which are
just rewritings of the definitional rules from Section 3, and “derived” rules, which
should be derivable from the basic ones. There are just over 200 basic rules, and
currently well over 2000 derived ones, which shows the importance of convenience
in proof.

4.3 Context Rules

No distinction between basic and derived rules is made in the justification editor,
as it is generally uninteresting for the user. A distinction that is made is between
the rules of RSL and the rules that the users may apply because they are axioms of
their specifications, termed context rules. For example, when proving something in
the context of the axiom

axiom

[ is in empty ] ∀ x : Elem • ∼is in(x, empty)

(where the type Elem, the constant empty and the function is in are also declared
in the context) the context rule

[ is in empty ]
is in(e, empty) ≃ false

when convergent(e) ∧ pure(e) ∧ isin subtype(e, Elem)

is available. Note the way the universal quantifier gives rise to a term variable “e”.
Value definitions, since they are equivalent to signatures and axioms, also generate
context rules.

Some type definitions also give rise to context rules. Variant types generate
induction rules, and disjointness rules asserting that different constructors generate
different values. Record types are treated as singleton variants, and so also generate
induction rules.
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5 CONCLUSIONS

5.1 Definition Versus Proof

We can now summarise the main differences between rules used for definition and
those used for proof:

• The defining rules need to be concerned with well-formedness (scope and type)
rules, while the rules for proof can assume terms are well-formed.

• If the defining rules were the only definition they would necessarily be considered
sound and complete, because they would be the only reference. But we also have
a denotational semantics and can conclude, conventionally, that with respect to
that semantics they need to be sound, and it is desirable that they also be
complete.

Rules for proof are more concerned with utility. The smaller a set of defining
rules we have, the more easily can we show it to be sound. In general, as long as
the search problem is manageable, the larger the set of rules for proof we have
the easier proofs will be.

• A simple meta language for proof rules helps users understand, choose and apply
rules. Context information is best handled by tools rather than by direct mani-
pulation. This leads, in the case of RSL, to incompleteness for local-expressions,
which contain definitions.

There are some questions about how we achieve completeness and soundness for
a language as large as RSL. This is not to claim RSL to be particularly large, merely
that any rich language will have similar problems.

5.2 Soundness

The defining proof rules can either be asserted as the true definition, and so declared
as sound a priori, or else proved against the denotational semantics [27]. In the first
case it would still be desirable to check the denotational semantics against the proof
rules. But it is difficult to see how this can be done in any but an informal manner.
The denotational semantics is some 350 pages of formulae, and there are a number
of known errors in it (and an unknown number of others!) It is, however, thought
that there are no substantial problems with this document, and that the errors
could be “fixed” without radical change. One can therefore take the view that the
defining proof rules form an axiomatic semantics, and the denotational semantics
provide the evidence of existence of a model satisfying these properties. This is
largely the view taken in the book on the RAISE method [32], where specifications
are described in terms of their signatures and logical properties, and refinement
between specifications correspondingly defined in terms of signature inclusion and
property entailment. It is a useful feature of RSL that its logic is powerful enough
to itself express the properties needed to show refinement.
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5.3 Completeness

Completeness for a set of proof rules is rather easier to deal with. First, there are
language constructs that are defined in terms of others. So, for example, the five
kinds of value definition in the language can all be expressed as one, a signature
plus an axiom.

For the constructs that are left one defines a collection of “normal forms” and
adds rules to show how other forms may be made normal. Then the operators are
defined in terms of the normal forms. This is the way the defining rules for RSL
were written.

Completeness is relative, of course, to rules for the built-in types, including
Bool, Int, and Real. The definitional rules ignore rules for these types completely.
In proof one would expect to use standard definitions of such types.

5.4 Proof via Translation

The original RAISE tools mostly discussed in this paper are being superseded by
a new tool which is much more portable [11]. The new tool provides support for
proof via translation [8] to PVS [30], thus making available the power of the PVS
proof engine. This approach, based on a “shallow” embedding of RSL into PVS,
can only provide a limited proof system because PVS is applicative — imperative
and concurrent RSL is excluded. PVS also has a different logic from RSL that
excludes undefinedness and nondeterminism (the “every expression denotes a value”
approach described in Section 2), so special care in the translation, including the
generation of extra lemmas based on confidence conditions, is needed to ensure the
translation is sound. A “deep” embedding into PVS would entail the modelling of
RSL’s semantics in the PVS logic. This may be possible, and might be useful for
exercises in checking RSL proof rules, but would be unlikely to produce a tool useful
in practice for performing proofs about RSL specifications.

The PVS translator does not need many proof rules for RAISE, because the
target constructs of the translation are either built in to PVS (like arithmetic),
defined by built-in expansions (like abstract data types), or defined in the PVS
prelude (like sets and lists). A few additional constructs (including maps) are defined
in an “RSL prelude”. This only contains a few theorems, most of the definitions
being constructive.

As an exercise the applicative proof rules of the justification editor — just
over 1000 — were (by hand, but using a number of emacs macros) translated into
PVS and proved. These rules turned out to contain 11 erroneous rules, arising from
6 mistakes. Two of these were inadequate side conditions allowing division by zero.
Since this is technically undefined in RSL the rules could not lead to contradictions.
But the other 4 mistakes, involving 8 rules, were formally unsound. The difficulties
of ensuring correctness of formal systems of any size is again illustrated, as is the
critical importance of using tools to gain confidence.
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The use of PVS and its proof engine improves the capability of automatic proof,
which was a weakness of the justification editor. It may be possible to improve
this further with special tactics designed for RSL (especially for proving confidence
conditions). PVS also provides a possibility of replaying proofs after changes to
the specification, a feature of the justification editor that was never implemented.
Inventing proofs initially is often hard, but redoing them by hand after changes is
extremely tedious.

In another project, proof support is provided via a translation from an applica-
tive subset of RSL to Isabelle/HOL [29]. This translation is based on an institution
representation from an institution of RSL to an institution of Higher Order Logic
and proved sound with respect to the denotational semantics of RSL. The concept
of institutions is described in [35].
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