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Abstract. We introduce to readers a new matrix C for MixColumn operation for
AES algorithm for discussion. This matrix has significantly larger multiplicative
order, ord(C) = 340, than the used one which is 4 only. This makes so called XSL
attack less effective. It is possible to find such a matrix due to our new Euler-
Fermat-like theorem and its corollaries for regular circulant matrices over GF (ps).
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1 INTRODUCTION

After a very careful discussion, the new symmetric block cipher standard referred to
as AES was published. Its description can be found in [12]. Another reference book
is [3]. It is not surprising that this discussion is still going on. In this paper we con-
tribute to this aim from the point of view of the semigroup of matrices over GF (2s).

∗ This material is based upon the work supported under Grant No. VEGA 1/0161/03.
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For convenience of a reader, who is not interested in algebraic details, this paper
is organized as follows. In Section 2 we present a brief description of MixColumn

operation which is under our careful algebraic consideration. In Section 3 we present
our proposal to modify AES which consists of changing the matrix MixColumn to an-
other one satisfying all but one conditions from the design criteria of AES, and one
more. Algebraic details are left to the Appendix. There we present new results, so
called Euler-Fermat-like theorem for matrices over GF (2s), namely for semigroup Cn
of all n× n circulant matrices over GF (ps). In a special case we get a result which
can enlarge the multiplicative order of MixColumnmatrix significantly from 4 to 340.
This makes so called XSL attack less effective. In Section 4 we present a discussion
of effectivity of proposed matrix as well as results of our computer search for such
matrices.

2 AES AND ITS MIXCOLUMN OPERATION

In MixColumn operation multiplication by polynomial c(x) = 03x3+01x2+01x+02 is
used, and the result is reduced by polynomial x4+1 over GF (28). In AES algorithm,
GF (28) is represented as an extension GF (2)(θ) of the field GF (2) where θ is the
root of primitive polynomial x8+x4+x3+x+1. Then, for example, 05 ∈ GF (28) is,
in fact, θ2+1. This operation can be viewed as a multiplication by 4×4 matrix over
GF (28), thereto denoted as A. Its elements are written as two digit hexadecimal
numbers:

A =









02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02









.

To be clear, let a(x) = 04x3+42x2+01x+0C, then a(x)∗c(x) = 5Fx3+85x2+
CCx+ 5D. In matrix notation with polynomials as columns, a(x) = a3x

3 + a2x
2 +

a1x+ a0 is represented as (a0, a1, a2, a3)
T

A









0C
01
42
04









=









5D
CC
85
5F









.

Matrix A is circulant and invertible (regular). In AES it represents transfor-
mation of four 8-bit words to another four 8-bit words. The design criteria were as
follows [3]:

1. Regularity — The transformation must be invertible.

2. Symmetry — The transformation must be symmetric for all columns.
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3. Dimensions — The transformation is a bricklayer transformation operating on
4-byte columns.

4. Linearity — The transformation is preferably linear over GF (2).

5. Diffusion — The transformation has to have relevant diffusion.

6. Performance on 8-bit processors — The performance of the transformation on
8-bit processors has to be high.

Matrix A satisfies all of these criteria. The condition 5 for a linear transformation,
where wb(a) is is used to denote the number of non-zero values of four 8-bit numbers
a (weight of a), is based on the following notion.

Definition 1. The differential branch number of a linear transformation λ over
GF (2) 1 is given by

Bd(λ) = min
a6=0

{wb(a) + wb(λ(a))}. (1)

It is known [2] that for any linear transformation λ given by an n × n matrix
the branch number is upper bound by

Bd(λ) ≤ n+ 1.

Matrix A reaches upper bound with Bd(λ) = 5.

3 OUR PROPOSAL FOR A NEW MIXCOLUMN MATRIX

Criterion 2 from the previous section implies to use circulant matrices only (matrices
with the same rows are clearly not acceptable). A non-circulant matrix is more
vulnerable to so called “timing analysis” and “differential power analysis”.

Let F = GF (2)(θ). Murphy and Robshaw [11] observed that it is possible to
map AES into the field F

128 and then to use simple operations with elements of
GF (28) instead of bit represented S-boxes. The new algorithm is called BES. The
BES processes 1024 bit blocks using a key of the same size. They invented so called
XSL attack applicable to the BES as well, using a system of sparse equations over
GF (28). Applicability of this attack in practice is in question. A description of the
BES algorithm is very simple. For b ∈ F

128 the round function is as follows:

b 7→ MB · b(−1) + (kB)i, (2)

where inversion is componentwise in F, (kB)i are round keys and MB is matrix of
the type 128× 128 over F. The order of this matrix is small, namely 16, since the
order of A is 4 only. This weakness simplifies cryptanalysis of AES too.

Recently Courtois and Pieprzyk [1] published their new XSL attack on AES.
S-box of the algorithm can be described by quadratic boolean functions, and then
by solving this system of equations over GF (2) the key can be found.

1 Hence λ(a)⊕ λ(b) = λ(a⊕ b).
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Our proposal to modify AES consists of changing matrix A to another one satis-
fying conditions 1–5, and one more. Unfortunately, performance on 8-bit processors
(condition 6) is less effective in this case.

7. High multiplicative order of matrix — The multiplicative order of MixColumn
matrix must be at least the same as the number of rounds in AES, i.e. 10, 12,
or 14.

By adding this condition, our aim is to change A with order 4, since for any
four-tuple of 8-bit numbers a0, a1, a2, a3 the following is valid:

A4









a3
a2
a1
a0









=









a3
a2
a1
a0









. (3)

This might allow us to simplify AES, and introduce cryptanalysis like in [11]. Hence
the higher order could bring higher security of AES. When searching for appropriate
matrix the difficulties are mostly with condition 5. Next we show that there are ma-
trices (almost) satisfying all of required 7 conditions. Namely, matrix C associated
to the polynomial 05x3 + 01x2 + 01x+ 02, and its Jordan’s form JC is

C =









02 05 01 01
01 02 05 01
01 01 02 05
05 01 01 02









JC =









07 00 00 00
01 07 00 00
00 01 07 00
00 00 01 07









.

From Corollary 2 in the Appendix below we know the upper bound for the order
which is 4(28 − 1) = 1020 in this case. Thus, one can find the order of C simply
by finding C, C2, C3, C4 while the resulting matrix is not diagonal with some
c ∈ GF (2s) on the diagonal. Let Cr, r ≤ 4 be the first such exponent, and t the
order of c in the field GF (2s). Then, clearly, rt ≤ 1020 is the order of the matrix C.
In our case ord(C) = 340.

Lemma 1. The differential branch number of C is 5 (i.e. the same as for A).

Proof. If x = (x3, x2, x1, x0)
T is of weight 4, then b = (b3, b2, b1, b0)

T = C · x has
weight at least 1, otherwise C would be singular.

Let for now x be of weight 3. We must show that b is of weight at least 2.
First observe that since C is nonsingular, b has weight greater than 0. Let b be of
weight 1 now, and without loss of generality let b3 6= 0. If D = C−1, then associated
polynomial is

d(x) = 29x3 +DAx2 + 85x+ A3.

Matrix D = (dij)
j=1..4
i=1..4 contains no zero and
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D









b3
0
0
0









=









b3d11
b3d21
b3d31
b3d41









=









x3

x2

x1

x0









.

Since x does not contain zero as well, this is a contradiction to our supposition that
x is of weight 3.

Analogously one could prove that for x of weight 2 or 1 respectively, b is of
weight at least 3 or 4. �

4 CONCLUSIONS

The sum of Hamming weights of binary written coefficients of the polynomial d(x) is
greater than the sum the same weights for the polynomial c(x)−1 = 0Bx3 +0Dx2 +
09x+ 0E. Hence, deciphering in AES with replaced matrix C is less effective than
that with the original matrix A (for description of effectivity see [2]). Next we shall
discuss this in details.

Let xtime denote the multiplication of an element of GF (28) by 02, and by
EXOR we denote the time for 8-bit operation XOR. Then multiplication by A−1

takes 4 × 18 operations xtime and 4 × 7 operations EXOR. Multiplication by D =
C−1 takes 4 × 21 operations xtime and 4 × 11 operations EXOR. Hence deciphering
with D is less effective than that with A−1, approximately by 7/25 = 0.28. But
ord(A) < ord(C) = 340, i.e. condition 7 is satisfied.

Thus we found a matrix which is less effective in high performance on 8-bit
processors (condition 6 above) but satisfies one new criterion for its multiplicative
order. This new criterion makes the XSL attack less effective.

It is possible to perform exhaustive search for suitable matrices in two steps.
Firstly we found matrices

1. with no zeroes;

2. with the differential branch number equal to 5;

3. column multiplication by matrix C should take at most 4×18 xtime operations
and 4× 14 EXOR operations.

Then we selected the matrices where column multiplication by C, and by its
inverse matrix D should take at most 4 × 19 xtime operations and 4 × 18 EXOR

operations together.

We found 176 matrices satisfying these criteria with different multiplicative or-
der. Only 16 out of them have their order 340. (Other matrices have their order 4
which we are trying to avoid.) The polynomials for matrices of order 340 are listed
in the following Table 1.
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Polynomial c(x) xtime EXOR Inverse d(x) xtime EXOR

01x3 + 05x2 + 03x1 + 23 8 4 58x3 + 0ax2 + 01x1 + 06 11 4
01x3 + 06x2 + 58x1 + 0a 11 4 03x3 + 23x2 + 01x1 + 05 8 4
01x3 + 0ax2 + 58x1 + 06 11 4 03x3 + 05x2 + 01x1 + 23 8 4
01x3 + 23x2 + 03x1 + 05 8 4 58x3 + 06x2 + 01x1 + 0a 11 4
03x3 + 05x2 + 01x1 + 23 8 4 01x3 + 0ax2 + 58x1 + 06 11 4
03x3 + 23x2 + 01x1 + 05 8 4 01x3 + 06x2 + 58x1 + 0a 11 4
05x3 + 01x2 + 23x1 + 03 8 4 06x3 + 01x2 + 0ax1 + 58 11 4
05x3 + 03x2 + 23x1 + 01 8 4 06x3 + 58x2 + 0ax1 + 01 11 4
06x3 + 01x2 + 0ax1 + 58 11 4 05x3 + 01x2 + 23x1 + 03 8 4

06x3 + 58x2 + 0ax1 + 01 11 4 05x3 + 03x2 + 23x1 + 01 8 4
0ax3 + 01x2 + 06x1 + 58 11 4 23x3 + 01x2 + 05x1 + 03 8 4
0ax3 + 58x2 + 06x1 + 01 11 4 23x3 + 03x2 + 05x1 + 01 8 4
23x3 + 01x2 + 05x1 + 03 8 4 0ax3 + 01x2 + 06x1 + 58 11 4
23x3 + 03x2 + 05x1 + 01 8 4 0ax3 + 58x2 + 06x1 + 01 11 4
58x3 + 06x2 + 01x1 + 0a 11 4 01x3 + 23x2 + 03x1 + 05 8 4
58x3 + 0ax2 + 01x1 + 06 11 4 01x3 + 05x2 + 03x1 + 23 8 4

Table 1. Table of polynomials for matrices of order 340

REFERENCES

[1] Courtois, N.—Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. Proceedings of Asiacrypt’02, Lecture Notes in Computer
Science, Springer-Verlag, 2002.

[2] Daemen, J.—Rijmen, V.: The Rijndael Block Cipher, AES Proposal: Rijndael,
1999.

[3] Daemen, J.—Rijmen, V.: The Design of Rijndael, AES — The Advanced Encryp-
tion Standard. Springer-Verlag, Berlin, 2002.

[4] Ecker, A.: Finite Semigroups and the RSA-Cryptosystem. EuroCrypt’82, LNCS
149, Springer-Verlag, pp. 353–369, 1983.
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5 APPENDIX

5.1 Periodic Semigroups

Multiplicative semigroups of “trapdoor rings” seem to have been first considered
by Ecker [4]. By this he meant a ring with addition and multiplication, where
addition is mainly used for calculations, and there exists Euler-Fermat-like theorem
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for elements under multiplication. Later Varadharajan [17] used this notion exactly
for rings where k = 1 only (see below). In [5] we generalized this approach to an
arbitrary k > 0. For reader’s convenience, we start to review some basic facts (see
e.g. [14, 7]).

Let S be a finite semigroup. Then for any element x ∈ S, in the sequence x,
x2, . . . , for some 1 ≤ s < t xs = xt must hold. Let k(x) = k, and d(x) = d be the
least exponent for which xk = xk+d. It is well known, and easy to prove, that

{xk, . . . , xk+d−1} (4)

forms a cyclic group of order d, and this group is determined by the (unique) idem-
potent e = xr, k ≤ r ≤ k + d− 1 belonging to this group.

Definition 2. Let S be a finite semigroup, and define numbers K,D and R as
follows:

K = max{k(x) | x ∈ S}

D = lcm{d(x) | x ∈ S},

and R is uniquely determined integer such that K ≤ R < K +D and D|R.

Euler-Fermat theorem for finite semigroups is as follows:

Theorem 1 ([14]). For any x ∈ S and K, D, R defined as above, holds

xK+D = xK ,

and xR is an idempotent. Moreover, K, D and R are the least positive integers
having this property.

There is a limited number of semigroups for which the “universal exponents” K,
D and R are known (see e.g. [5]). Recall also that for RSA algorithm K = 1, D =
lcm{p− 1, q − 1}, although D = (p− 1)(q − 1) is commonly used.

5.2 Matrices Over GF (ps)

Let GF (q) be the finite field with q = ps elements (s ≥ 1, p a prime), and Sn be
the multiplicative semigroup of all n×n matrices over GF (q). In 1948 I. Niven [13]
has proved a similar result for Sn like Schwarz in Theorem 1. This result has been
strengthened for singular matrices by Schwarz in 1978, and published in 1985 [15].

Let p be a prime. Then by p{y} we denote the least value in the sequence 1, p,
p2, p3, . . . such that ps ≥ y.

Theorem 2. Let A ∈ Sn be any n× n matrix over GF (q). Then we have

1. If rank(A) = h, h < n then

Ah+1 = Ah+1+λ(h).
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2. If rank(A) < n then
An = An+λ(n−1).

3. For any A ∈ Sn we have
An = An+λ(n),

This implies that K = n,D = λ(n) = p{n}lcm{qn − 1, qn−1 − 1, . . . , q − 1}.

Especially, for n = 4, q = 28, p{n} = 2, λ(n) = lcm{232 − 1, 224 − 1, 216 − 1, 28 − 1}
we have D = 1130315132959740. The magnitude of D is so high since it includes
all matrices A ∈ Sn.

When focusing on largeD, matrices over GF (2) or GF (2s) could be of particular
interest, e.g. for n where 2n − 1 or 2sn − 1 is a prime.

Next we prove Euler-Fermat-like theorem for regular circulant matrices over
GF (ps). The universal exponent D for this special group of matrices is remarkably
smaller than exponent used in Theorem 2. Denote by Cn the set of all n×n circulant
matrices over GF (ps).

Theorem 3. Let M ∈ Cn be a matrix over GF (ps) and rank(M) = n. Then for
n = pk we have D = n(ps − 1).

Proof. First observe that Cn can be assumed as a ring where addition and multi-
plication of ai is over GF (ps), P is the permutation matrix of size n× n

P =















0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
1 0 0 . . . 0 0















,

and M =
∑n−1

i=0 aiP
i. As usual, P 0 = I . This ring is exactly the same as the

ring of all polynomials of the degree less than n over GF (ps) where addition and
multiplication is performed mod (xn − 1). The isomorphism is given by

Φ : M =

n−1
∑

i=0

aiP
i 7→

n−1
∑

i=0

aix
i. (5)

Clearly, Φ(M1M2) = Φ(M1)Φ(M2) mod (xn−1) and Φ(M1+M2) = Φ(M1)+Φ(M2).
Thus images of regular matrices are precisely polynomials coprime to xn − 1. Next
we show that the upper bound follows from arithmetic over the ring of polynomials
mod (xn − 1).

Let f(x) =
∑n−1

i=0 aix
i be a polynomial over GF (ps) associated with the ma-

trix M of the size n× n given by (5). Then for n = pk

f(x)n =

n−1
∑

i=0

ani x
in mod n =

n−1
∑

i=0

ani = c.
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Since in GF (ps) we have c =
∑n−1

i=0 ani = (
∑n−1

i=0 ai)
n, one can write a primitive

element g ∈ GF (ps)∗ as g =
∑n−1

i=0 ai. According to gcd(n, ps − 1) = 1, c = gn is
also an element of ord(ps − 1), and this completes the proof. �

A straightforward corollary states that circulant matrices over GF (2s) have a re-
latively small D.

Corollary 1. Let M ∈ C4 be a 4 × 4 circulant matrix over GF (2s). Then M 4 is
a diagonal matrix such that M 4 = cI for a suitably chosen c ∈ GF (2s).

For further analysis of MixColumn matrix the exact value of c from Corollary 1 and
other properties of 4× 4 regular circulant matrices are needed.

Let M be a 4× 4 circulant matrix over GF (2s), M = a0I + a1P + a2P
2 + a3P

3,
a0, a1, a2, a3 ∈ GF (2s), where

P =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









.

Then M 2 = b0I + b1P
2, where b0 = a20 + a22, b1 = a21 + a23 ∈ GF (2s). Since P 4 = I ,

this yields M 4 = M 2.M 2 = cI , where c = a40 + a41 + a42 + a43 ∈ GF (2s).
Moreover, M ∈ C4 is regular iff M 4 is regular, or equivalently, iff c 6= 0. The

product of two such matrices M1 = a0I + a1P + a2P
2 + a3P

3, M2 = b0I + b1P +
b2P

2 + b3P
3 yields

M1.M2 =
(a0I + a1P + a2P

2 + a3P
3)(b0I + b1P + b2P

2 + b3P
3) =

(a0b0 + a1b3 + a2b2 + a3b1) + (a0b1 + a1b0 + a2b3 + a3b2)P +
(a0b2 + a1b1 + a2b0 + a3b3)P

2 + (a0b3 + a1b2 + a2b1 + a3b0)P
3,

again a circulant matrix. Hence, matrices for which c 6= 0 form a subgroup of C4
belonging to the idempotent I , and c = c1c2. Moreover, M 2 is all zero matrix iff
b0 = 0, b1 = 0. Since the underlying field is of characteristic 2, this is if and only if
a0 + a2 = a1 + a3 = 0. Thus we have

Corollary 2. For any M ∈ C4 over GF (2s), and rank(M) = 4

M = M 1+D, D = 4(2s − 1).

Especially, for s = 8 we have D = 1020.


